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ABSTRACT  

SNPs that are predicted to encode deleterious amino acid variants provide unique insights 

into population history, the dynamics of selection, and the genetic bases of phenotypes. 

This may be especially true for domesticated species, where a history of bottlenecks and 

selection can contribute to the accumulation of deleterious SNPs (dSNPs). Here we 

investigate the numbers and frequencies of deleterious variants in Asian rice (O. sativa), 

focusing on two separate varieties (japonica and indica) that may have been domesticated 

independently. Comparative analyses in two population datasets each for japonica and 

indica rice -- using SNPs identified in separate variant calling pipelines and applying two 

distinct tools for the prediction of deleterious variants -- were consistent in indicating that 

the transition to domesticated rice has shifted site frequency spectra for all derived 

variants but particularly for dSNPs. This potential “cost of domestication” is higher in 

genomic regions of low recombination and within regions of putative selective sweeps. A 

characteristic feature of rice domestication was a shift in mating system from outcrossing 

to predominantly selfing. Using forward simulations, we show that this shift in mating 

system likely ameliorates the cost of domestication through purging of deleterious 

variants.  
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INTRODUCTION 

Several studies have suggested that there is a “cost of domestication” (Schubert et 

al., 2014), because domesticated species may accumulate deleterious mutations that 

reduce their relative fitness (Lu et al., 2006). Under this hypothesis, the small effective 

population size (Ne) during a domestication bottleneck reduces the efficacy of 

genome-wide selection (Charlesworth and Willis, 2009), leading to the accumulation of 

deleterious variants (Lohmueller et al., 2008; Casals et al., 2013). The fate of deleterious 

variants also relies on linkage, because selection is less effective in genomic regions of 

low recombination (Hill and Robertson, 1966; Felsenstein and Yokoyama, 1976) and 

because deleterious variants may hitchhike with alleles that are positively selected for 

agronomic traits (Fay and Wu, 2000; Hartfield and Otto, 2011; Campos et al., 2014). 

Overall, the cost of domestication is expected to increase the prevalence of deleterious 

variants in small relative to large populations, in regions of low recombination, and near 

sites of positive selection. 

 This hypothesis about the cost of domestication closely parallels the debate regarding 

the genetic effects of migration-related bottlenecks (Lohmueller et al., 2008; Casals et al., 

2013) and demographic expansion (Peischl et al., 2013) in human populations. The 

debate regarding human population is contentious, perhaps in part because it suggests 

that some human populations may, on average, carry a greater load of deleterious variants 

than others. Studies in humans also suggest that subtlety of interpretation is required 
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when considering the relative frequency of deleterious variants in populations; both the 

effect size and relative dominance (Henn et al., 2016) of deleterious variants likely play a 

role in how mutations impact the fitness of populations. Moreover, deleterious variants in 

non-equilibrium populations, such as those that have experienced a recent bottleneck, 

may also return to pre-bottleneck frequencies more rapidly than neutral variants 

(Brandvain and Wright, 2016). It nonetheless remains an important task to identify the 

frequency and genomic distribution of deleterious variants in humans, for the purposes of 

disentangling evolutionary history and for understanding the association between 

deleterious variants and disease (Kryukov et al., 2007; Eyre-Walker, 2010).  

In plant crops, the potential for the accumulation of deleterious variants was first 

examined in Asian rice (O. sativa) (Lu et al., 2006). At the time, few resequencing data 

were available, so Lu et al (2006) compared two O. sativa reference genomes to that of a 

related wild species (O. brachyntha) (Lu et al., 2006). They found that radical, 

presumably deleterious amino acid variants were more common within O. sativa 

genomes, suggesting a cost of domestication. A handful of studies have since analyzed 

deleterious variants in crops based on resequencing data (Gunther and Schmid, 2010; 

Nabholz et al., 2014; Renaut and Rieseberg, 2015; Kono et al., 2016), and together they 

suggest that the accumulation of deleterious variants is a general outcome of 

domestication.  More limited analyses have also shown that deleterious variants are 

enriched within genes associated with phenotypic traits (Mezmouk and Ross-Ibarra, 2014; 

Kono et al., 2016), suggesting that the study of deleterious variants is crucial for 
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understanding potentials for crop improvement (Morrell et al., 2011). While a general 

picture is thus beginning to emerge, most of these studies have suffered from substantial 

shortcomings, such as small numbers of genes, low numbers of individuals, or the lack of 

an outgroup to infer ancestral states. Moreover, no study of crops has yet investigated the 

prevalence of deleterious variants in putative selective sweep regions.  

In this study, we reanalyze genomic data from hundreds of accessions of Asian rice 

and its wild relative O. rufipogon. Asian rice feeds more than half of the global 

population (Project, 2005), but the domestication of the two main varieties of Asian rice 

(ssp. japonica and ssp. indica) remains enigmatic. It is unclear whether the two varieties 

represent independent domestication events (Londo et al., 2006; Civian et al., 2015), a 

single domestication event with subsequent divergence (Gao and Innan, 2008; Molina et 

al., 2011), or separate events coupled with substantial homogenizing gene flow of 

beneficial domestication alleles (Caicedo et al., 2007; Sang and Ge, 2007; Zhang et al., 

2009; Huang et al., 2012a; Huang et al., 2012b). It is clear, however, that domestication 

has included a shift in mating system: from predominantly outcrossing O. rufipogon 

[which has outcrossing rates between 5% and 60%, depending on the population of origin 

and other factors (Oka and Miroshima, 1967)] to predominantly selfing rice [which has 

outcrossing rates of ~1% (Oka, 1988)]. This shift in mating system has the potential to 

affect the population dynamics of deleterious variants, because inbreeding exposes 

partially recessive variants to selection (Lande and Schemske, 1985), which may in turn 

facilitate purging of deleterious alleles (Arunkumar et al., 2015).  
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Commensurate with its agronomic importance, the population genetics of Asian rice 

have been studied in great detail. Comparative resequencing studies have estimated that 

nucleotide sequence diversity is ~2 to 3-fold higher in indica varieties than in japonica 

varieties (Zhu et al., 2007; Huang et al., 2012b), which are often separated into temperate 

and tropical germplasm. Sequence polymorphism data have also shown that the derived 

site frequency spectrum (SFS) of both varieties exhibits a distinct U-shaped distribution 

relative to O. rufipogon, due either to the genome-wide effects of selection or migration 

(Caicedo et al., 2007). Surprisingly, however, the population genetics of putatively 

deleterious variants have not been studied across O. sativa genomes.  

In this study, we reanalyze genomic data from hundreds of indica, japonica, and O. 

rufipogon accessions to focus on the population frequencies of putatively deleterious 

genetic variants. To assess the robustness of our results, we have utilized two O. sativa 

datasets: one with many accessions (n = 776) but low sequencing coverage (1-2x), the 

other with fewer individuals (n = 45) but enhanced (>12x) coverage. For both datasets, 

we have re-mapped raw reads and then applied independent computational pipelines for 

SNP variant detection. We have also used two different approaches – PROVEAN (Choi 

et al., 2012) and SIFT (Kumar et al., 2009)- to predict deleterious variants from 

nonsynonymous SNPs. Armed with consistent results from multiple datasets and 

different methodological approaches, we address four questions. First, does the number, 

proportion, or frequency of deleterious mutations reflect a ‘cost of domestication’ in 

Asian rice, despite the potential for purging associated with a shift to inbreeding? Second, 
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does the number of deleterious variants vary with recombination rate, suggesting a 

pervasive effect of linkage? Third, is the accumulation of deleterious variants exacerbated 

in regions of the genome that may have experienced a selective sweep? Finally, can we 

garner insights into the relative contributions of demography, linkage, positive selection, 

and inbreeding for the accumulation of deleterious variants?  

 

RESULTS 

Data sets 

To investigate the population dynamics of deleterious variants, we collated two rice 

datasets. The first was based on the genomic data of 1,212 accessions reported in Huang 

et al. (2012b) (Table S1). This first dataset, which we call the ‘BH’ data after the senior 

author, contains raw reads from 766 individuals of Asian rice, including 436 indica 

accessions and 330 japonica accessions. The BH dataset also included 446 accessions 

representing three populations of O. rufipogon, the wild ancestor of cultivated rice (Table 

1). For these data, we remapped sequencing reads to the japonica reference sequence 

(Goff et al., 2002), then used ANGSD (Korneliussen et al., 2014) to apply cut-offs for 

quality and coverage and to estimate SFS (see Materials and Methods).  

The second dataset, which we call the ‘3K’ data (Li et al., 2014), consisted of 15 

cultivated, high-coverage (>12X) accessions for each of indica, tropical japonica, and 

temperate japonica (Table S2). This dataset was used primarily to assess the robustness 

of results based on the larger, lower coverage dataset, but these data were also employed 
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to examine regions of selective sweeps. For this dataset, reads were again mapped to the 

japonica reference, but SNPs were called using tools from GATK and SAMtools (see 

Materials and Methods).  

Huang et al (2012b) determined that their O rufipogon accessions represented three 

different wild populations, which we denote WI, WII and WIII. They also inferred that WI 

was ancestral to indica rice and that WIII was ancestral to japonica rice. Accordingly, we 

base our cultivated-to-wild comparisons on indica vs. WI and japonica vs. WIII for the 

BH data; when appropriate we also include genetic comparisons to the complete set of 

wild accessions (Wall).  

 

The number and frequency of deleterious variants 

Based on reads in the BH dataset, we identified between 243,964 and 388,615 SNPs 

from the cultivated samples and >1.8M SNPs from each of WI, WII and WIII wild 

populations (Table 1). Despite fewer accessions, we identified more SNPs within the 3K 

data, owing to higher sequence coverage (Table 1). Once identified, we annotated SNPs 

as either non-coding (ncSNPs), synonymous (sSNPs), Loss of Function (LoF) or 

nonsynonymous. LoF SNPs were those that contribute to apparent splicing variation, the 

gain of a stop codon or the loss of a stop codon. Nonsynonymous SNPs were predicted to 

be tolerant (tSNPs) or deleterious (dSNPs) based on either PROVEAN (Choi et al., 2012) 

or SIFT (Choi et al., 2012).  

In the japonica and indica BH samples, we identified hundreds of LoF mutations and 
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predicted 4,640 and 7,579 dSNPs using PROVEAN (Table 1). Interestingly, the 

proportion of the number of detected dSNPs to sSNPs did not increase markedly in 

domesticated vs. wild germplasm. For example, in the BH dataset, where wild and 

domesticated accessions had similar levels of coverage, the indica and japonica accession 

had a dSNP to sSNP ratio of 0.26 and 0.29, while the O. rufipogon populations had 

similar but slightly lower ratios of ~0.25 (Table 1). Thus, domesticated rice contains only 

a modestly higher proportion of total dSNPs compared to O. rufipogon germplasm.  

To test whether the frequency distribution of dSNPs shifted during domestication, we 

defined SNPs as either ancestral or derived based on comparison to 93 O. barthii 

accessions (Table S3) and plotted the SFS for different SNP categories. For the BH data, 

we reduced the sample size to 70 for each population, based on sampling and coverage 

criteria (Materials and Methods). The resulting SFS had a U-shape for all SNP categories 

in cultivated rice, but not for ancestral O. rufipogon (Figure 1). The SFS differed 

significantly between wild and domesticated samples for all SNP categories 

(Kolmogorov-Smirnoff tests; Figure 1).  

The SFS shifts between cultivated and wild germplasm were robust to: i) dataset, 

because the 3K dataset yielded similar results (Figure S1), ii) SNP calling approaches, 

because different methods were applied to the 3K and BH datasets, iii) the composition 

of the wild sample, because similar patterns were observed when the BH japonica and 

indica samples were compared to Wall (p ≤ 1.93e-08 for all comparisons in both varieties) 

(Figure S2) and iv) the prediction approach used to identify dSNPs (i.e., PROVEAN or 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2016. ; https://doi.org/10.1101/057224doi: bioRxiv preprint 

https://doi.org/10.1101/057224
http://creativecommons.org/licenses/by-nc/4.0/


	
   10	
  

SIFT; Figures S1 and S3). Thus, there was a consistent signal of high-frequency derived 

SNPs in domesticated rice relative to its progenitor (Caicedo et al., 2007).  

The primary question with regard to a cost of domestication is whether frequency 

shifts affect SNP types differentially. To investigate this question, we plotted the ratio of 

derived dSNPs vs. derived sSNPs for each frequency category of the SFS. Figure 2 shows 

that both indica and japonica have enhanced frequencies of derived dSNPs to sSNPs 

across the entire frequency range compared to WI (Wilcoxon rank sum p = 4.98e-16; Fig 

2a) and WIII (Wilcoxon rank sum p < 2.20e-16; Fig 2b), respectively. The 3K dataset 

exhibited similar properties (Figure S4).  

In addition, we calculated R(A/B), a measure that compares the frequency and 

abundance of dSNPs vs. sSNPs in one population (A) relative to another (B) (Xue et al., 

2015). When R(A/B) is > 1.0, it reflects an overabundance of derived dSNPs (or LoF 

variants) relative to sSNPs in one population over another across the entire frequency 

range. As expected from SFS analyses, we found that R(A/B) was > 1.0 for LoF variants 

and for dSNPs in indica relative to the WI population (p ≤ 2.30e-139 for all three 

comparisons; Fig. 2c) and in japonica relative to WIII (p ~ 0.000 for the three 

comparisons; Fig. 2c). The 3K dataset yielded similar results (Figure S4). Hence, all of 

our cultivated samples illustrate increased proportions of derived dSNPs relative to 

sSNPs compared to wild samples, consistent with a “cost of domestication”.  

 

Deleterious variants as a function of recombination rate 
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Theory predicts that diversity should be lower in low recombination regions (Begun 

and Aquadro, 1992; Charlesworth, 1994) and also that the ratio of dSNPs to sSNPs 

should be higher in low recombination regions due to interference (Felsenstein, 1974b). 

To test these predictions, we used a genetic map to calculate recombination rate in 

windows across rice chromosomes, and then estimated the ratio of the number of dSNPs 

to sSNPs for each window. Owing to different numbers of SNPs, we used larger (3MB) 

windows for the BH data than the 3K data (2MB). We found that the correlation between 

recombination rate and dSNPs to sSNPs was negative in indica and japonica for the BH 

data, but not significant for either taxon (Figure 3a and Table 2). However, these same 

results were significant for the 3K data (Figure S5 and Table 2).  

We also examined the density of sSNPs and dSNPs relative to map-based 

recombination rate (Figure 3bc). For both the BH and 3K datasets (Figure S5), the 

density of sSNPs and dSNPs were significantly positively correlated with recombination 

rate, indicating reduced diversity in low recombination regions (Begun and Aquadro, 

1992; Charlesworth, 1994). Overall, our results indicate that lower recombination regions 

contain less diversity but higher proportions of dSNPs. 

 

dSNPs in regions of putative selective sweeps 

Regions linked to selective sweeps (SS) should have increased frequencies of derived 

mutations (Fay and Wu, 2000), including dSNPs (Hartfield and Otto, 2011). We tested 

two hypotheses concerning SNPs in putative SS regions. The first was that SS regions 
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have increased frequencies of derived SNPs relative to the remainder of the genome. The 

second is that SS regions can alone explain the accumulation of high frequency derived 

dSNPs in Asian rice.  

To test our hypotheses, we made use of previously identified SS regions. Huang et al. 

(2012c) defined SS regions based on the relative difference in average pairwise 

nucleotide diversity (π) between wild and domesticated populations (Huang et al., 2012c). 

That is, the regions were based on  πd/πw, where π is measured per base pair and the 

subscripts refer to domesticated and wild samples. We also inferred selective sweeps 

using two additional approaches: SweeD (Pavlidis et al., 2013) and XP-CLR (Chen et al., 

2010). SweeD identifies regions of skewed selective SFS relative to background levels 

for a single population (i.e., the rice sample). In contrast, XP-CLR searches for genomic 

regions for which the change in allele frequency between two populations (cultivated vs. 

wild samples) occurred too quickly at a locus, relative to the size of the region, to be 

caused by genetic drift. Both SweeD and XP-CLR were applied with a 5% cutoff. 

Because XP-CLR requires explicit genotypes, we used the 3K datasets for all of the SS 

analyses, along with a subset of 29 O. rufipogon genomes that had higher (> 4x) coverage 

than the full O. rufipogon dataset (Table S1).  

Focusing first on the indica 3K dataset, the three approaches identified different 

numbers, locations and sizes of selective sweeps (Table 3). For example, Huang et al. 

(2012b) defined 84 SS regions that encompassed 9.98% of the genome. In contrast, 

SweeD identified 485 SS regions, and XP-CLR distinguished an intermediate number of 
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161 SS regions. Consistent with the 5% cutoff, SweeD and XP-CLR identified 4.61% and 

5.02% of the genome, respectively, as having been under selection (Table 3). 

The locations of putative SS regions are of interest because they may correspond to 

genes of agronomic significance (Wright et al., 2005) and provide unique insights into 

domestication events (He et al., 2011). To see if the same genes were identified with 

different SS identification methods, we calculated the degree of overlap across methods, 

focusing on the percentage of genes that two methods identified in common (see 

Methods). The overlap was surprisingly low (Figure 4 and Figures S6-16). Across the 

entire genome, the putative SS regions defined by SweeD and Huang et al (2012c) shared 

6.24% of genes. Similarly, the regions defined by XP-CLR shared 8.51% and 8.69% of 

genes with Huang et al. (2012c) and SweeD, respectively.  

To test our first hypothesis, we contrasted the SFS between SS and non-SS regions 

for derived sSNPs and dSNPs (Marsden et al., 2016). The SFS for derived sSNPs and 

dSNPs were skewed for SS regions relative to non-SS regions, independent of the method 

used to detect selective sweeps (Figure 5). These SS regions also contained higher 

proportions of derived allele counts (Figure 5). We note that these results were not 

completely unexpected, because all of the methods used to define SS regions rely, in part, 

on identifying a skewed SFS relative to the genomic background (see Discussion).  

These observations raise the intriguing possibility that selective sweeps alone explain 

the shifted SFS of indica rice relative to O. rufipogon. To examine this second hypothesis, 

we removed all SS regions (as defined by SweeD, XP-CLR and pd/pw) from the indica 3K 
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dataset and recalculated the SFS for non-SS regions. Even with SS regions removed, the 

SFS for wild and cultivated samples remained significantly different for sSNPs and 

dSNPs (p ≤ 0.0067). These results imply either that positive selection is not the only 

cause of the U-shaped SFS in indica rice (Caicedo et al., 2007) or, alternatively that 

positive selection has affected more of the genome than is encompassed within the 

identified SS regions.  

We performed these same analyses for the 3K temperate and tropical japonica 

datasets (Table 3), with similar results. First, although a greater extent of the genome 

tended to be identified as SS regions in japonica (Table 3), the overlap among SS regions 

identified by different methods was again low (< 9%). Second, for both japonica datasets, 

derived sSNPs and dSNPS were generally at higher frequencies and at higher counts in 

putative SS regions, although the effect was not as apparent for sweeps identified with 

SweeD (Figure S17). Third, like indica rice, the SS regions alone did not account for the 

difference in SFS between wild and either tropical or temperate japonica germplasm (p ≤ 

0.0049 for both comparisons).  

 

The potential effect of mating system  

Our empirical analyses indicate that domestication has increased the frequency of derived 

dSNPs relative to sSNPs for both indica and japonica rice (Figure 2), and that these 

increased frequencies are exacerbated in putative SS regions (Figure 5). However, we 

also find that the proportion of the total number of dSNPs to sSNPs is similar across taxa 
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in the BH dataset; that is, the proportion of dSNPs to sSNPs is not substantially elevated 

in O. sativa (Table 1). To gain further insight into this observations, we performed 

forward simulations of populations that differed in the presence or absence of three 

important features: a domestication bottleneck, positive selection and a shift to inbreeding 

at the time of the domestication bottleneck. To perform these forward simulations, we 

made assumptions about the bottleneck size during domestication (Caicedo et al., 2007), 

the dominance coefficient (h=0.5) and the distribution of fitness effects of new mutations 

(see Methods).  

Figure 6 presents the simulation results, which can be summarized as follows. First, 

the effect of a bottleneck is to increase proportion of dSNPs to sSNPs relative to a 

non-bottlenecked population. Second, the net effect of inbreeding, relative to an outbred 

population, is to lower the ratio of dSNPs to sSNPs, consistent with the action of purging 

of deleterious variants (Arunkumar et al., 2015). Third, under our simulation conditions, 

positive selection has only slight effects on the ratio of the number of dSNPs to sSNPs 

(Figure 5), probably because positive selection affects both SNP categories. Overall, the 

combination of a domestication bottleneck, a shift to inbreeding and positive selection 

produces a ratio of dSNPs to sSNPs that is similar to that of an outbred population under 

our simulation conditions.  

 

DISCUSSION  

Recent focus on the population genetics of dSNPs in humans (Henn et al., 2015; Henn et 
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al., 2016), plants (Lu et al., 2006; Gunther and Schmid, 2010; Mezmouk and Ross-Ibarra, 

2014; Nabholz et al., 2014; Renaut and Rieseberg, 2015; Kono et al., 2016) and animals 

(Schubert et al., 2014; Marsden et al., 2016; Robinson et al., 2016) reflect an emerging 

recognition that dSNPs provide unique clues into population history, the dynamics of 

selection and the genetic bases of phenotypes. This is especially true for the case of 

domesticated species, where the increased frequency of deleterious variants reflect a 

potential “cost of domestication” (Schubert et al., 2014).  

Our analyses unequivocally demonstrate a cost of domestication in Asian rice. We 

have detected this cost as a skew in the frequency spectrum in domesticated relative to 

wild populations (Figure 1), an increased proportion of derived dSNPs relative to derived 

sSNPs across frequency classes (Figure 2A&B), and an overall increase in the ratio of the 

frequency and number of deleterious variants to synonymous SNPs between wild and 

cultivated germplasm (Figure 2C). For all of these measures, the results were consistent 

between different types of presumably deleterious variants (i.e., dSNPs vs. LoF variants), 

different methods to predict deleterious SNPs (PROVEAN vs SIFT; Figs. S1 and S3), 

and rice datasets (BH data vs. 3K data) that were based on different accessions, levels of 

coverage and SNP detection methods. We note, however, that our analyses of the 3K and 

BH data relied on the same O. rufipogon accessions, which may artificially emphasize 

similarities between the two datasets.  

Our analyses are subject to caveats and assumptions. While we have tried to 

overcome potential pitfalls by using multiple approaches (different datasets, SNP calling 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2016. ; https://doi.org/10.1101/057224doi: bioRxiv preprint 

https://doi.org/10.1101/057224
http://creativecommons.org/licenses/by-nc/4.0/


	
   17	
  

methods, dSNP predictors, and SS inference metrics), important limitations remain. One 

is the potential for a reference bias, because the use of the japonica reference is expected 

to decrease the probability that a japonica variant (as opposed to an indica variant) 

returns a low PROVEAN or SIFT score (Lohmueller et al., 2008). We have adjusted for 

this bias by submitting the ancestral allele -- rather than the reference allele -- to 

annotation programs (Kono et al., 2016). Without this adjustment, a reference bias was 

patently obvious, because the SFS of japonica dSNPs lacked a high frequency peak, and 

the U-shape of tSNPs became commensurately more extreme. We cannot know that we 

have corrected completely for reference bias. We do, however, advocate caution when 

interpreting results from dSNP studies that make no attempt to correct for reference bias, 

because the effect can be substantial.  

Our treatment of reference bias requires accurate ancestral inferences. To date, many 

studies of Asian rice have relied on outgroup sequences from O. meridionalis e.g., 

(Caicedo et al., 2007; Gunther and Schmid, 2010), a species that diverged from O. sativa 

~2 million years ago (Zhu and Ge, 2005). When we used O. meridionalis as the sole 

outgroup, we inferred a U-shaped SFS in wild O. rufipogon, which is suggestive of 

consistent parsimony misinference of the ancestral state (Keightley et al., 2016). We 

instead inferred ancestral states relative to a dataset of 93 accessions of African wild rice 

(O. barthii) (Wang et al., 2014). O barthii is closer phylogenetically to O. sativa than O. 

meridonalis, but O. barthii sequences form clades distinct from O. sativa (Zhu and Ge, 

2005). Even so, we have found that ~10% of SNPs sites with minor allele frequencies > 
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5% are shared between African wild rice and Asian rice.  

These shared polymorphic sites could mislead inference of the ancestral state, but we 

do not believe that the use of O. barthii this has distorted our primary inferences, for two 

reasons. First, systematic misinference of the ancestral state should lead to a U-shaped 

SFS, which is lacking from O. rufipogon. Instead, the U-shaped SFS is unique to O. 

sativa and differentiates wild from domesticated species. Second, we have confirmed our 

inferences by using O. meridonalis and O. barthii together as outgroups (Keightley et al., 

2016), considering only the sites where the two agree on the ancestral state. The use of 

two outgroups decreases the number of SNPs with ancestral states by ~10% and ~15% 

for the BH and 3K datasets, but all analyses based on these reduced SNP sets were 

qualitatively identical to those with only an O. barthii outgroup (e.g., Figure S18).  

 

The components of cost 

Our principle finding is that the frequency of derived dSNPs has shifted from wild O. 

rufipogon to domesticated Asian rice and that shift is more pronounced for dSNPs than 

sSNPs. There are at least four major evolutionary factors that could drive these patterns: i) 

population size, particularly bottlenecks associated with domestication (Caicedo et al., 

2007; Zhu et al., 2007), ii) linkage effects, especially to selective sweeps (Hartfield and 

Otto, 2011; Marsden et al., 2016), iii) relaxed selection on wild traits that are no longer 

important under cultivation (Renaut and Rieseberg, 2015) and, finally, iv) inbreeding, 

because the domestication of rice included a shift from an outcrossing to a selfing 
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breeding system.  

We cannot apportion the proportion of cost attributable to each of four forces, but we 

can provide some insights as to whether each has an effect. First, consider population size 

and recall that japonica rice has ~2-3 fold smaller Ne than indica (Huang et al., 2012b). If 

shifts in population sizes have played a role in the accumulation of high frequency dSNPs 

in japonica and indica, we expect japonica to have a more pronounced shift in high 

frequency derived dSNPs, owing to lower efficacy of selection in smaller populations. 

This is indeed what we find (Figure 2C), consistent with an effect of Ne. This observation 

agrees with simulation results, because they show a pronounced effect between 

bottlenecked vs. non-bottlenecked populations (Figure 6).  

Our work also shows that the second force - linkage - influences the accumulation of 

deleterious variants within the rice genome, because low recombination regions of the 

rice genome have higher ratios of dSNPs to sSNPs than the remainder of the genome 

(Figure 3). This enrichment of dSNPs in low recombination regions appears to be a 

general phenomenon, based on studies in Drosophila (Campos et al., 2014), sunflower 

(Renaut and Rieseberg, 2015) and soybean (Kono et al., 2016). It remains unclear 

whether differences between high and low recombination regions of the genome are 

driven by lower Ne in regions of low recombination (Hill	
  and	
  Robertson,	
  1966;	
  

Felsenstein,	
  1974a;	
  Charlesworth	
  et	
  al.,	
  1993) or by linkage effects to positively 

selected variants (Begun and Aquadro, 1992). 

A more interesting aspect of linkage is the expected enrichment of dSNP frequencies 
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near genes that have experienced selective sweeps (SS) (Hartfield and Otto, 2011). This 

enrichment is readily detectable for indica rice (Figure 5) and largely consistent – but less 

pronounced – within japonica rice (Figure S17). We suspect that the enrichment of 

dSNPs in SS regions is not as pronounced in japonica rice because of its lower genetic 

diversity. Lower diversity has two confounding effects: it makes it more difficult to 

identify discrete SS regions, and the demographic history that leads to lower diversity 

(e.g., lower Ne in japonica) may drive more accumulation of high frequency derived 

dSNPs throughout the genome, independent of sweeps. Nonetheless, one must be careful 

about our conclusions, because there is circularity in our identification of SS regions and 

comparisons of SFS between SS and non-SS regions. This circularity comes from the fact 

that most methods that detect SS regions, including πd/πw, rely to some extent on a skew 

of the SFS. The relationships among population size, SS regions and their contributions 

to the ‘cost of domestication’ merit continued study.  

 As an aside, it is worth briefly focusing on the locations of SS regions identified by 

three different methods (Figure 5). To our surprise, the regions defined by the three 

methods rarely overlapped (Table 3), such that the three methods identified almost 

completely independent regions of the genome. The lack of convergence among methods 

probably reflects the fact that different tests are designed to capture different signals of 

selection. However, the results are also sobering, because overlaps in SS regions have 

been used by a number of groups to argue for or against independent domestication of 

indica and japonica rice (He et al., 2011; Molina et al., 2011). Recently, both Huang et al. 
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(2012b) and Civian et al. (2015) have argued for independent domestication events for 

japonica and indica based on the observation that there is little overlap between the SS 

regions in japonica and indica. [The Civian et al. (2015) analyses may also have other 

flaws (Huang and Han, 2015)]. The fact that we find little overlap among SS regions 

identified by different methods mirrors the lack of overlap of SS regions identified across 

the human genome by different studies (Akey, 2009), between domesticated grasses 

(Gaut, 2015), and between independent domestication events of common bean (Gaut, 

2015). Because the inferred locations of SS regions vary markedly by method, sampling 

and taxon, they should be interpreted with caution, particularly as markers of independent 

domestication events.  

The third potential contributor to the preferential accumulation of high frequency 

derived dSNPs is relaxed selection on traits that are under strong purifying selection in 

the wild but less critical under cultivation (Renaut and Rieseberg, 2015). Unfortunately, 

we cannot yet ascertain the degree to which this shift contributes to the accumulation of 

dSNPs in rice or other domesticated crops.  

The fourth and final potential evolutionary force is a shift in mating system, because 

rice became predominantly selfing during domestication. It is generally thought that a 

shift to selfing offers advantages for an incipient crop, such as reproductive assurance, 

reduced opportunities for gene flow between an incipient crop and its wild ancestor 

(Dempewolf et al., 2012), and the creation of lines that “breed true” for agronomically 

advantageous traits (Allard, 1999). This shift may also affect the accumulation of 
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deleterious mutations, but the effect can be difficult to predict, because of antagonistic 

effects (Arunkumar et al., 2015). On one hand, inbreeding increases homozygosity, 

exposing recessive deleterious mutations to natural selection (Lande and Schemske, 1985) 

and potentially leading to the purging of deleterious alleles (Charlesworth and Willis, 

2009). On the other hand, inbreeding reduces both the population size and effective 

recombination rates (Nordborg, 2000), thereby reducing the efficiency of selection and 

contributing to the retention and possible fixation of deleterious variants (Takebayashi 

and Morrell, 2001).  

We have used forward simulations to examine the interplay between inbreeding and 

demographic (bottleneck) effects under parameters similar to those of O. sativa 

domestication. These simulations are unlikely to precisely mimic rice genome history, 

but they do offer some insight into relative effects among evolutionary forces. Our 

forward simulations are consistent with the possibility that a change in mating system 

during domestication provides a benefit, in terms of purging deleterious variants, as 

measured by the ratio of dSNPs to sSNPs (Figure 6). These interactions require further 

study, because this potential benefit may vary with bottleneck size, dominance 

coefficients (h), patterns of positive selection, and the timing of recovery from 

demographic events (Brandvain and Wright, 2016).  

Similar analyses that take into account population size, inbreeding and their interplay 

have been performed for domesticated dogs (Marsden et al., 2016). Dog domestication 

includes two stages: a population bottleneck associated with domestication ~15,000 years 
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ago (Vonholdt et al., 2010) and inbreeding within the last few hundred years to produce 

modern breeds. Marsden et al (2016) have argued that the domestication bottleneck, 

rather than inbreeding, has had a larger effect on the accumulation of deleterious genetic 

variation in dogs. In rice, however, selfing likely coincides with the domestication 

bottleneck, such that the bottleneck and selfing have roughly similar durations and 

commensurately similar effects on the ratio of dSNPs to sSNPs over the limited 

parameters of our simulation (Figure 6). In the long term, selfing species are likely to fall 

victim to Muller’s ratchet and go extinct (Takebayashi and Morrell, 2001). However, in 

the short term, a shift to selfing during domestication may provide a benefit that 

ameliorates some features of the “cost of domestication”.  
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MATERIALS AND METHODS 

Sequence polymorphism data  

All of the data used in this study are publicly available. Illumina paired-end reads for 

the BH and 3K dataset were downloaded from the European Nucleotide Archive (ENA; 

http://www.ebi.ac.uk/ena) (see Tables S1 and S2 for accession numbers). The 3K 

accessions were chosen randomly among the total set of accessions with >12X coverage 

for an equal representation (n=15) of indica, tropical japonica and temperate japonica 

rice accessions. We also downloaded resequencing reads from O. barthii to polarize 

SNPs as either derived or ancestral. Sequencing reads for 93 O. barthii accessions (Wang 

et al., 2014) were obtained from the Sequence Read Archive (SRA) database in National 

Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov/sra/) (see 

Table S3 for accession numbers). Sequencing reads for another outgroup taxon, O. 

meridonalis were obtained from NCBI (BioProject No: PRJNA264483) (Zhang et al., 

2014). 

 

Read alignment and SNP detection 

Paired-end reads for O. sativa and O. rufipogon data were assessed for quality using 

FastQC V0.11.2, and then preprocessed to filter adapter contamination and low quality 

bases using Trimmomatic V0.32 (Bolger et al., 2014). The trimmed reads were mapped 

to the reference genome for japonica rice (MSU V7), which was downloaded from the 
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Rice Genome Annotation Project (http://rice.plantbiology.msu.edu). Mapping was 

performed with the ALN and SAMPE commands implemented in the software 

Burrows-Wheeler Aligner (BWA) V0.7.8 (Li and Durbin, 2010), using default 

parameters. All reads with a mapping quality score of < 30 were discarded.  

 The method of SNP calling varied with the dataset. For the BH data, alignment files 

from BWA mapping were processed further by removing PCR duplicates and by 

conducting indel realignments using Picard tools and GATK, and then used as input for 

ANGSD V0.901, which is designed to deal with sequences of low depth (Korneliussen et 

al., 2014). ANGSD was run with the command line: 

angsd -b BAMLIST -anc OUTGROUP –out OUTFILE -remove_bads -uniqueOnly 1 

-minMapQ 30 -minQ 20 -only_proper_pairs 1 -trim 0 -minInd NUMBER -P 

CPUNUMBERS -setMinDepth 3 -setMaxDepth 15 -GL 1 -doSaf 1 -doMaf 2 

-SNP_pval 1e-3 -doMajorMinor 1 -baq 1 –C 50 –ref REFSEQ  

We considered only SNPs that had between 3X and 15X coverage, with the high-end 

implemented to avoid regions with copy number variation (Huang et al., 2012b). For SNP 

calling, we used only uniquely mapping reads, and bases with quality score of < 20 were 

removed. SNP sites with >50% missing data were discarded.  

For the higher coverage ‘3K’ dataset, we used SAMtools V1.2 (Li et al., 2009) and 

GATK V3.1 (McKenna et al., 2010) to call SNPs. After mapping reads of each accession 

onto the reference genome, alignments were merged and potential PCR duplications were 

removed using Picard tools V1.96 
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(http://sourceforge.net/projects/picard/files/picard-tools/1.96/). Unmapped and 

non-unique reads were filtered using SAMtools V1.2. We realigned reads near indels by 

using the IndelRealigner and BaseRecalibrator packages in GATK to minimize the 

number of mismatched bases. The resulting mapping alignments were used as input for 

UnifiedGenotyper package in GATK and for SAMtools. SNPs that were identified by 

both tools, with no missing data and a minimum phred-scaled confidence threshold of 50, 

were retained. Subsequently, SNP calls were further refined by using the 

VariantRecalibrator and ApplyRecalibration packages in GATK on the basis of two sets 

of “known” rice SNPs (9,713,967 and 2,593,842) that were downloaded from the dbSNP 

and SNP-Seek databases (Alexandrov et al., 2015). These same SNP detection methods 

were applied to the subset of 29 O. rufipogon accessions the highest coverage - i.e. >4x 

(Table S1).  

Finally, sequence reads for the outgroup dataset were aligned to the reference 

genome using stampy V1.0.21 (Lunter and Goodson, 2011), and then a pseudo-ancestral 

genome sequence was created using ANGSD (Korneliussen et al., 2014) with the 

parameters “-doFasta 2 -doCounts 1”. This pseudo-ancestral genome was used to determine 

the ancestral state of each SNP in O. sativa and O. rufipogon. 

 

SNP Annotation and Deleterious Mutation Prediction  

SNPs were annotated using the latest version of ANNOVAR (Wang et al., 2010) 

relative to the japonica reference genome (MSU v 7.0). SNPs were annotated as 
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synonymous, nonsynonymous, intergenic, splicing, stop-gain and stop-loss related. 

Throughout the study, we combined SNPs that contribute to splicing variation, stop-gain 

and stop-loss and called them loss-of-function (LoF) mutations.  

To discriminate putatively deleterious nSNPs from tolerant nSNPs, nSNPs were 

predicted as deleterious or tolerated using PROVEAN V1.1.5 against a search of the 

NCBI nr protein database (Choi et al., 2012). To reduce the effects of reference bias, 

predictions of deleterious variants were inferred using the ancestral (rather than the 

reference) variant. Following previous convention (Renaut and Rieseberg, 2015), we 

considered an nSNP to be a deleterious dSNP if it had a PROVEAN score ≤ -2.5 and a 

tolerant tSNP when a PROVEAN score was > -2.5. To assess consistency, we also 

employed SIFT (Kumar et al., 2009) to predict nSNPs as dSNPs or tSNPs. For these 

analyses, a nSNP was defined as a dSNP if it had a normalized probability < 0.05, and an 

nSNP was predicted to be a tSNP with a SIFT score ≥ 0.05.  

 

Calculating site frequency spectra 

Following Huang et al. (2012b), we separated the BH dataset of 1,212 accessions 

into five populations: indica, japonica (mostly temperate) and three O. rufipogon 

subpopulations (WI, WII, and WIII) The five subpopulations were composed of 436, 330, 

155, 121, and 170 individuals, respectively (Table S1).  

To calculate the site frequency spectrum (SFS) for subpopulations, we initially 

projected the sample size of all five subpopulations to that smallest WII population of 
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n=121. However, many of the 121 accessions had low sequencing depth and high levels 

of missing data. We therefore focused on the WII population to find criteria suitable for 

inclusion. Ultimately, we sought to retain ≥ 90% of SNP sites within each SNP category, 

which resulted in a sample size of n = 70 for the WII population. Accordingly, we 

randomly sampled n = 70 individuals from the remaining four subpopulations, so long as 

the sample retained ≥ 90% of SNP sites for each category, to mimic the WII sample.  

Given a sample of n = 70 for each of the five subpopulations, the SFS for each 

subpopulation was calculated using the formula proposed by (Nielsen et al., 2005), where 

the O. barthii sequence was used as an outgroup to determine the polarity of the 

mutations.  

 (1) 

In this formula (1), pi,70 represents the probability of the derived allele frequency 

(DAF) of SNPs found in i individuals in a sample size of 70; k is the total number of 

SNPs in the dataset; nj and fj are the sample size and the number of derived alleles of the 

jth SNP, respectively. The SFS was calculated in an identical manner with data from the 

3K dataset except the sample sizes for each population were n = 15 instead of 70. The 

SFS for sSNPs, tSNPs, dSNPs and LoF SNPs were compared with the 

Kolmogorov-Smirnov test. 

 

RA/B - A relative measure of dSNPs frequency enhancement 
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We adopted a metric to assess the accumulation of deleterious variants in either 

cultivated or wild rice populations (Xue et al., 2015). In this analysis, the statistic LA,B(C) 

compares two populations (A and B) within a given particular category, C, of SNP sites 

(e.g., dSNPs). It was calculated by counting the derived alleles found at specific sites in 

population A rather than B and then normalized by the same metric calculated in 

synonymous sites (S). The calculation of LA,B(C) was: 

 (2) 

where fi
A and fi

B are the observed derived allele frequency at each site i in populations A 

and B, respectively, and S refers to sSNPs. The ratio RA/B(C) = LA,B(C) / LB,A(C) then 

measures the relative number of derived alleles that occur more often in population A 

than that in population B. To obtain the standard errors of RA/B(C) we used the 

weighted-block jackknife method (HR, 1989), where each of the tested SNP datasets was 

divided into 50 contiguous blocks and then the RA/B(C) values were recomputed. A P 

value was assigned by using a Z score assuming a normal distribution (Do et al., 2015). 

 

Calculation of recombination rate 

The high-density rice genetic map was downloaded from 

http://rgp.dna.affrc.go.jp/E/publicdata/geneticmap2000/index.html, on which a total of 

3,267 EST markers were anchored. We extracted the sequences of these markers from the 
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dbEST database in NCBI, which were used as query to perform a BLAST search against 

the rice genome sequences (MSU V7) to annotate their physical positions. Finally, we 

normalized the recombination rate to centiMorgans (cM) per 100kb between different 

markers, and then calculated the average recombination rate in 3 or 2Mb window 

segments for the BH and 3K datasets.  

 

Identification of selective sweep regions 

Both SweeD (Pavlidis et al., 2013) and XP-CLR (Chen et al., 2010) were used for 

identifying selective sweep (SS) regions separately in indica and japonica populations. 

SweeD was used with a sliding window size of 10kb, and the O. barthii genome 

sequence (Zhang et al., 2014) was used as an outgroup to determine whether alleles were 

ancestral or derived. XP-CLR was applied to the 3K datasets along with a subset of 29 O. 

rufipogon individuals for which we could infer explicit genotypes. Both packages were 

applied with 5% cutoffs to define putative sweep regions.  

We calculated the percentage of genes overlapping between two sets of SS regions, 

defined as: 

  Overlap%= number of genes in common/ ((number of genes in the first set 

of SS regions + number of genes in the second set of SS regions)-number of 

genes in common))*100 

 

Forward simulations 
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To examine the relative effects of demography, inbreeding and positive selection on the 

deleterious variants, we conducted forward simulations using the software SLiM V1.8 

(Messer, 2013). SLiM includes both selection and linkage in a Wright–Fisher model with 

nonoverlapping generations. Similar to previous demographic studies of Asian rice 

domestication (Caicedo et al., 2007), we simulated a population of N = 10000 individuals, 

which were run for 10N generations to reach equilibrium. We then introduced a 

domestication bottleneck of size Nb/N = 0.01 at generation 11N until generation 15N, 

when the population size recovered to size N. For the selfing population, the population 

switched from outcrossing to total inbreeding (inbreeding coefficient F = 1) at the 

beginning of the domestication bottleneck. We adjusted population size after the 

outcrossing-selfing transition by calculating the reduction in silent genetic diversity (θw = 

4Neµ, where θw is genetic diversity, Ne is effective population size and µ is mutation rate). 

To simplify the simulation, we assumed a constant mutation rate (µ = 6.5 x 10-9 

substitutions per site per generation) (Gaut et al., 1996)) and recombination rate (ρ = 4 x 

10-8 recombinants per generation) (Gaut et al., 2007) across the single chromosome of 

100 Mb with alternating 400 bp of noncoding and 200 bp of coding DNA. All noncoding 

and 75% of coding sequences were selectively neutral (s = 0). The remaining 25% of 

coding sequences were under negative selection with s following a gamma distribution 

with shape parameter 0.3 and mean -0.05. For the simulations with positive selection, we 

introduced 20 predetermined mutations with s drawn from an exponential distribution of 

mean 0.05 at the beginning of domestication. Positive selection was applied throughout 
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the entirety of the population simulation, not only during domestication. For all mutations 

under positive or negative selection, we assumed a dominance coefficient h = 0.5 (i.e., an 

additive model). In total, we simulated under six models: 1) outcrossing population with 

constant population size (out); 2) selfing population with comparable population size 

(inb); 3) bottleneck without the outcrossing-inbreeding transition (bot+out); 4) bottleneck 

with the outcrossing-inbreeding transition (bot+inb); 5) bottleneck with positive selection 

(bot+out+pos) and 6) bottleneck with both positive selection and the 

outcrossing-inbreeding transition (bot+inb+pos). The results for each model were 

summarized over 20 separate runs of SLiM; the SLiM input is available as 

Supplementary Text.  
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Table 1: The number and category of SNPs identified from different datasets 

 

  SNP Type1 

Sample n ncSNP sSNP dSNP tSNP LoF Total2 

BH data 
indica 436 323,182 28,765 7,579 22,577 1,279 388,615 
japonica 330 206,915 15,767 4,640 13,230 797 243,964 
WI 155 1,608,310 91,985 23,195 66,641 4,976 1,816,094 
WII 121 3,548,048 150,522 37,483 108,480 8,415 3,888,315 
WIII 170 3,054,763 147,824 35,795 105,455 7,641 3,381,359 

3K data 
indica 15 3,262,864 118,582 22,293 87,225 5,788 3,534,837 
japonica 
(temperate) 

15 2,634,868 97,922 18,894 72,823 4,751 2,861,999 

japonica 
(tropical) 

15 2,808,403 103,238 19,977 77,414 5,012 3,048,559 

 
1 ncSNP=non-coding; sSNP=synonymous; dSNP=deleterious; tSNP=tolerated; LoF = 

Loss of Function. dSNPs were predicted with PROVEAN.  
2 The total number of SNPs identified in the dataset is not equal to the sum of all SNP 

categories, because some nonsynonymous SNPs were filtered for quality after 

PROVEAN analysis and therefore were not categorized.  
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Table 2: Correlation coefficients comparing rice diversity statistics to recombination 

rate (cM/100kb) 

 sSNPs1 dSNPs dSNPs/sSNPs 

Data Set r2 p-value2 r p-value r p-value 

BH indica 0.297 6.68e-04 0.319 2.46e-04 -0.166 0.061 

BH japonica 0.209 1.81e-02 0.263 2.68e-03 -0.094 0.291 

3K indica 0.358 3.77e-07 0.338 1.72e-06 -0.306 1.70e-05 

3K japonica 

(temperate) 

0.339 1.62e-06 0.306 1.72e-05 -0.279 9.47e-05 

3K japonica 

(tropical) 

0.375 9.11e-08 0.324 4.87e-06 -0.268 1.79e-04 

1 sSNPs, dSNPs and their ratio were calculated in non-overlapping 3Mb windows for 

the BH dataset and 2Mb windows for the 3K dataset.  
2 r is the Pearson correlation coefficient, with corresponding p-value.  
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Table 3: The number and percentage of SS regions identified by different methods, based 

on the 3K data.  

 

 indica japonica 

(temperate) 

japonica (tropical) 

 No. Extent2 No. Extent2 No. Extent2 

Huang et al 

(2012b) 

841 9.98% 1033 15.32% 1033 15.32% 

SweeD 485 4.61% 461 4.76% 389 4.81% 

XP-CLR 161 5.02% 160 8.41% 171 5.62% 
1 Based on 60 SS regions identified as specific to indica, which overlapped with 31 of 55 

regions identified in the combined samples of indica and japonica rice, for a total of 

[60+(55-31)]=84. 
2 Extent = the percentage of the reference genome covered by SS regions. 
3 Based on 62 SS regions identified as specific to japonica, which overlapped with 14 of 

55 regions identified in the combined samples of indica and japonica rice, for a total of 

[62+(55-14)]=103. 
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FIGURE LEGENDS: 
Figure 1: The site frequency spectrum (SFS) for cultivated rice and O. rufipogon, based 
on BH data. Each row represents a different category of SNP, featuring from top to 
bottom: sSNPs, tSNPS, dSNPs, and LoF variants. The two columns represent indica rice 
on the left and japonica rice on the right. As per Huang et al (2012b), indica rice is 
contrasted to the accessions from wild population I (WI) and japonica rice is contrasted to 
wild sample population III (WIII). The Density on the y-axis is the proportion of alleles in 
a given bin. Each graph reports the p-value of the contrast in SFS between cultivated and 
wild samples; a similar graph for the 3K data is presented in Figure S1.  
  
Figure 2: Comparisons of the number of derived dSNP to sSNP between wild and 
cultivated samples based on their frequencies BH data. A) The ratio of the number of 
dNSPs to sSNPs (y-axis) at each derived allele frequency (x-axis) between indica rice 
and the WI sample. B) The ratio of the number of dNSPs to sSNPs (y-axis) at each 
derived allele frequency (x-axis) between between japonica rice and the WIII sample. C) 
A measure of the relative accumulation of SNPs in indica or japonica rice compared to O. 
rufipogon. A value > 1.0 indicates an increased population density of that SNP type 
relative to wild rice. Bars indicate standard errors. A similar figure for the 3K data is 
presented in Figure S4.  
 
Figure 3: Patterns of genomic variation relative to recombination, based on the BH 
dataset. The x-axis for each graph is the recombination rate (x-axis) as measured by 
centiMorgans (cM) per 100 kb. The y-axis varies by row. The top row is the ratio of 
deleterious to synonymous variants (y-axis) in 3Mb windows; the middle row is the 
density of dSNPs in 3Mb windows; and the bottom row is the density of sSNPs in 3Mb 
windows. The p-values for correlations are provided in the plot, but also within Table 2. 
A similar figure for the 3K data is provided in Figure S5.  
 
Figure 4: A graph of the location of inferred SS regions along Chromosome 1 for the 3K 
indica dataset. The x-axis is the location along the chromosome, measured in base pairs. 
The top graph (red) indicates the ratio of π for the indica accessions against a set of wild 
accessions. The (grey) background represents values for windows of 10kb with a step 
size of 1kb. Values > 2.0 were omitted for ease of presentation, and the line was 
smoothed. The middle graph shows values of π for the indica accessions. The bars at the 
bottom represent inferred SS regions using SweeD and XP-CLR, along with predefined 
SS regions (BH) defined by Huang et al. (2012b). The red and blue colors are included to 
help differentiate SS regions; the orange bars represent additional SS regions defined by 
Huang et al. (2012b) on the basis of their combined indica+japonica dataset. The width 
of each bar is proportional to the length of the corresponding SS region along 
chromosome. Similar graphs for chromosomes 2 through 12 are available as 
supplemental figures (Figures S6 to S16).  
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Figure 5: A comparison between selective sweep (SS) and non-SS regions based on the 
indica 3K dataset. The rows correspond to different methods employed to detect sweeps, 
including pre-detected SS regions from Huang et al (2012b) (top row), SweeD (middle 
row), and XP-CLR (bottom row). The set of histograms on the right compare the density 
of either sSNPs or dSNPs in inferred SS regions against the remainder of the genome 
(non-SS regions).  
 
Figure 6: The results of forward simulations. The y-axis denotes the ratio of the number 
of dSNPs and sSNPs. The x-axis defines the six models; ‘out’ represents an outbred 
(random mating) population with a constant population size; ‘inb’ represents an inbred 
(selfing) population with a comparable population size; ‘bot+out’ and ‘bot+inb’ 
represents outbred and inbred populations with a domestication bottleneck; 
‘bot+out+pos’ and ‘bot+inb+pos’ include positively selected alleles.  
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