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Testing for associations in big data faces the problem of multiple comparisons, with true 
signals buried inside the noise of all associations queried. This is particularly true in genetic 
association studies where a substantial proportion of the variation of human phenotypes is 
driven by numerous genetic variants of small effect. The current strategy to improve power 
to identify these weak associations consists of applying standard marginal statistical 
approaches and increasing study sample sizes. While successful, this approach does not 
leverage the environmental and genetic factors shared between the multiple phenotypes 
collected in contemporary cohorts. Here we develop a method that improves the power of 
detecting associations when a large number of correlated variables have been measured on 
the same samples. Our analyses over real and simulated data provide direct support that 
large sets of correlated variables can be leveraged to achieve dramatic increases in 
statistical power equivalent to a two or even three folds increase in sample size.   

 

 

Background 

Performing agnostic searches for association between pairs of variables in large-scale data, 
using either common statistical techniques or more complex machine learning algorithms, faces the 
problem of multiple comparisons. This is particularly true for genetic association studies, where 
contemporary cohorts have access to millions of genetic variants as well as a broad range of clinical 
factors and biomarkers for each individual. With billions of candidate associations, the 
identification of a true association of small magnitude is extremely challenging because such signals 
compete with the large number of correlations that will emerge by chance. The standard analysis 
approach currently consists of looking at the data in one dimension (i.e. testing a single outcome 
with each of the millions of candidate genetic predictors) and applying univariate statistical tests – 
the commonly named GWAS (genome-wide association study) approach1,2. To increase power, 
GWAS rely on increasing sample size in order to reach the very stringent significance level that 
accounts for the multiple comparisons. The largest studies to date, including hundreds of thousands 
of individuals across dozens of studies, have been pushing the limit of detectable effect size3,4. For 
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example, researchers are now reporting genetic variants explaining less than 0.01% of the total 
variation of body mass index (BMI)4,5. 

Apart from the cost of genotyping hundreds of thousands of cases and controls, this brute 
force approach has practical limits. Sample size cannot be increased indefinitely, especially for rare 
diseases and diseases for which there is no registry. More importantly, this approach does not 
leverage the large amount of additional phenotypic and genomic information measured in many 
studies6-8. A commonly discussed alternative to improve statistical power consists of applying 
multivariate analyses that combine tests of multiple phenotypes with one (or multiple) predictors 
of interest9-12. Standard multivariate analysis, although they offer a gain in power, have two major 
drawbacks. First, because they are built on a composite null hypothesis, a significant result can only 
be interpreted as an association with any one of the predictors. While this is useful information for 
screening purposes, it is insufficient when the ultimate goal is to identify specific genotype-
phenotype associations. Moreover, it makes the replication process more difficult, since any 
significant test points to multiple potential culprits. Second, such composite null hypotheses can 
have lower power than univariate tests when only a small proportion of the phenotypes are 
associated with the tested genetic variant. This is a simple problem of dilution; a small number of 
true associations mixed with a large number of null phenotypes will reduce power. For these and 
other reasons the standard univariate test is often preferred to large multivariate analyses, 
although multivariate analyses are now considered when the number of phenotypes collected is 
small9,13. 

 

Have your cake and eat it 

The objective of this work is to develop a method that keeps the resolution of univariate 
analysis when testing for association between an outcome 𝑌 and candidate predictor 𝑋, but takes 
advantage of other available covariates 𝑪 = (𝐶1, 𝐶2, … 𝐶𝑚) to increase power. A first step toward 
this aim is to consider the inclusion of covariates correlated with the outcome in a standard 
regression framework. This may increase the signal-to-noise ratio between the outcome and the 
candidate predictor when testing:  𝑌 = 𝑋 + 𝑪. The selection of which covariates 𝐶𝑖 are relevant to a 
specific association test is usually based on causal assumptions14-17. Putting aside the estimation of 
indirect and direct effects18 of 𝑋 on 𝑌, epidemiologists and statisticians recommend the inclusion of 
two types of covariates: those that are potential causal factors of the outcome and independent of 𝑋, 
and those that may confound the association signal between 𝑋 and 𝑌, i.e. variables such as principal 
component (PC) of covariates that capture undesired structure in the data that can lead to false 
associations19. All other variables that vary with the outcome because of shared risk factors are 
usually ignored. However, those variables carry potentially interesting information about the 
outcome, and more precisely about the risk factors of the outcome. Because of their shared 
dependencies they can be used as proxies for risk factors of the outcome. As such, they can be 
incorporated in 𝑪 to improve the detection of associations between 𝑋 and 𝑌. However, as we 
discuss further, when these variables depend on the predictor 𝑋, using them as covariates can lead 
to both false positive and false negative results depending on the underlying causal structure of the 
data. 

The presence of interdependent explanatory variables, also known as multicollinearity20, 
can induce bias in the estimation of the predictor’s effect on the outcome. We recently discussed 
this issue in the context of genome-wide association studies that adjusted for heritable covariates21-

23. To illustrate this collider bias, take first the simple case of two independent covariates 𝑈1 and 𝑈2 
that are true risk factors of 𝑌. When testing for association between 𝑋 and 𝑌, adjusting for 𝑈1 and 
𝑈2 can increase power, because the residual variance of 𝑌 after the adjustment is smaller while the 
effect of 𝑋 is unchanged, i.e. in Figure 1a the ratio of the outcome variance explained by 𝑋 over the 
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residual variance is larger after removing the effect of 𝑈1 and 𝑈2. However, in practice, true risk 
factors of the outcome are rarely known. Consider instead the more realistic scenario where 𝑈1 and 
𝑈2 are unknown but a covariate 𝐶, which also depends on those risk factors, has been measured. 
Because of their shared etiology, 𝑌 and 𝐶 display positive correlation, and when 𝑋 is not associated 
with 𝐶, adjusting 𝑌 for 𝐶 increases power to detect (𝑌, 𝑋) associations (Fig. 1b). Problems arise 
when 𝐶 is associated with 𝑋. In this case adjusting 𝑌 for 𝐶 biases the estimation of the effect of 𝑋 on 
𝑌, decreasing power when the effect of 𝑋 is concordant between 𝐶 and 𝑌 (Fig. 1c), and inducing 
false signal when the effect is discordant (in opposite direction or when 𝑋 is not associated with 𝑌, 
Fig. 1d). These issues occur in Figure 1c-d because when 𝐶 is included in the model, 𝑈1 and 
𝑈2 become confounding variables between 𝑋 and 𝑌 according to the causal graph. 

The same principles apply for any number of variables correlated with the outcome 
provided the sample size is large enough such that the effect of all covariates can be estimated in a 
multiple regression24. When none of the covariates depend on the predictor (Fig. 1a-b), their 
inclusion in a regression can reduce the variance of the outcome without confounding, leading to 
increased statistical power while maintaining the correct null distribution. This gain in power can 
be easily translated in terms of sample size increase. The noncentrality parameter (ncp) of the 
standard univariate test between 𝑋 and 𝑌 equals 𝑛𝑐𝑝𝑋𝑌 = 𝑁 × 𝑣𝑋 𝜎𝑌

2⁄  where N, 𝑣𝑋 and 𝜎𝑌
2 are the 

sample size, the variance of the outcome explained by the predictor, and the total variance of the 
outcome respectively. When reducing 𝜎𝑌

2 by a factor 𝛾 through covariate adjustment, and assuming 
the effect of 𝑋 on 𝑌 is small, 𝑛𝑐𝑝𝑋𝑌 can be approximated by 𝑁 × 𝑣𝑋 (𝜎𝑌

2/𝛾)⁄ = (𝑁/𝛾) × (𝑣𝑋 𝜎𝑌
2⁄ ). For 

example, when the covariates explain 30% of the variance of 𝑌, the power of the adjusted test is 
equivalent to analyzing approximately a 1.4 fold larger sample size (as compared to the unadjusted 
test). When covariates explain 80% of the phenotypic variance as discuss further, a realistic 
proportion in some genetic datasets the power gain is equivalent to a 5 fold increases in sample 
size (Fig. 2a). 

 

Separating the wheat from the chaff 

The central problem that must be solved is how to intelligently select a subset of the 
available covariates to optimize power while preventing induction of false positive or false negative 
associations. To do this, all covariates associated with the outcome should be included except those 
also associated with the predictor. A naïve solution would consist in filtering out covariates based 
on a p-value threshold from the association test between those covariates and the predictor 
considered. However, unless the sample size is infinitely large, some associations will be missed 
and unwanted covariates will be included. Furthermore, because a number of the covariates will be 
associated with the predictor by chance, the overall distribution of p-values from the covariate-
adjusted test can be inflated, again potentially inducing false association signals (Supplementary 
Fig. 1). The underlying problem with p-value based filtering is that p-values are used to reject the 
null hypothesis in favor of the alternate. In our case the objective is to reject those covariates under 
the alternative hypothesis. Therefore, instead of using p-values to filter covariates, we developed a 
computationally efficient heuristic based on equivalence testing to improve the filtering of 
covariates while controlling the type I and type II error rate. Because the selected covariates will 
change for each predictor/outcome pair, we named our approach the Musical Chair (MC) algorithm 
(Supplementary Fig. 2). 

Consider 𝛿, the estimated regression coefficient between 𝑋 and 𝐶 . The p-value based 

filtering can be transposed into an unconditional filtering on 𝛿. Under the null (𝛿 = 0), 𝛿 is normally 

distributed with mean 0 and variance 1/𝑁, where 𝑁 is the sample size. Figure 3a shows 𝛿 inclusion 

area for a p-value threshold of 5% –i.e. if 𝛿 is outside the inclusion area, the covariate 𝐶 is filtered 

out. Now consider 𝛽̂, the estimated marginal effect of the predictor 𝑋 on the outcome 𝑌 (not 
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adjusted for 𝐶). Using 𝛽̂ along with 𝛾 the estimated effect between 𝐶 and 𝑌, we can derive the 

conditional distribution of 𝛿, under a complete null model (𝛽 = 0 and 𝛿 = 0) (Fig. 3b-c, and 
Supplementary Note). The MC approach uses a joint inclusion area that combines the conditional 

and unconditional of distribution of 𝛿. To prevent bias while maintaining power, the size of the 
inclusion region is determined by the strength of the collinearity between X, Y, and C.  

More formally, for an outcome 𝑌,  a predictor 𝑋 , and 𝑚  candidate covariates 𝑪 =
(𝐶1, 𝐶2, … 𝐶𝑚), the MC algorithm uses four features to select covariates to be included in the model 
and perform a statistical test: i) 𝑝MUL, the p-value for the overall association between all 𝐶𝑙=1…𝑚, 
and 𝑋; ii) 𝑟𝐶

2 the amount of total outcome variance explained by the candidate covariates; iii) 𝛾𝑙 the 

estimated effect of each 𝐶𝑙∈1…𝑚 on 𝑌 ; and iv) 𝛽̂, the marginal unadjusted estimated effect of  𝑋 on 𝑌. 
The first three features are used to define the stringency of the filtering (i.e. the size of the inclusion 
region). When 𝑝MUL is very significant, the inclusion region is smaller reflecting the likelihood of the 
presence of undesired covariates. Similarly, when 𝑟𝐶

2 or 𝛾𝑙 are large, the inclusion region is smaller 

because of potential bias21 (see e.g. Fig. 3b-c). The fourth feature, 𝛽̂, is used to make inference on 

the expected null distribution of 𝛿𝑙 , the regression coefficient between 𝑋 and the covariate 𝐶𝑙. It 

leverages the correlation between 𝛽̂ and 𝛿𝑙  under a complete null model (𝛽 = 0 and 𝛿𝑙 = 0). These 

features are combined to derive a confidence interval Δ𝑙 for each 𝛿𝑙 , which determines whether a 
covariate can be safely included in the model.  

Finally, when the dataset analyzed includes many covariates with substantial pairwise 
correlation (e.g. >0.2), the estimated effects of each covariate on 𝑌 obtained from a multivariate 
linear model, 𝜸̂ = (𝛾1 … 𝛾𝑚), can vary substantially depending on which covariate is included in the 
model because of collinearity. This can be an issue because potential bias depends directly on 𝜸̂. To 
address this point we implemented the selection of covariates described above into an iterative 
backward elimination where 𝜸̂ terms are re-estimated each time a candidate covariate is excluded. 
The complete details of the algorithm are presented in the online Methods section below.  

 

Simulated data analysis 

 We first assessed the performances of the proposed method through a simulation study in 
which we generated series of multi-phenotype datasets over an extensive range of parameter 
settings (see online Methods and Supplementary Note). Each dataset included 𝑁 individuals 
genotyped at a single nucleotide polymorphism (SNP) with minor allele frequency (MAF) drawn 
uniformly in [0.1, 0.5], a phenotype 𝑌, and 𝑚 = [10, 40, 80] correlated covariates 𝑪 = (𝐶1, 𝐶2, … 𝐶𝑚). 
Under the null, the SNP did not contribute to the phenotype and under the alternate the SNP 
contributed to the phenotype under an additive model. In some datasets, the SNP also contributed 
to a fraction 𝜋 = [0%, 15%, 35%] of the covariates. These are the covariates, which we wish to 
identify and filter out of the regression. We considered sample sizes 𝑁 of 300, 2,000 and 6,000, we 
varied 𝑟𝐶

2, the variance of 𝑌 explained by 𝑪, from 25% to 75%, and we increased the effect of the 
predictor on 𝑌 and 𝑪, when relevant, so that it would corresponds to almost undetectable effects 
(i.e. median 𝜒2 = 3) to relatively large effects  (i.e. median 𝜒2 = 20). For each choice of parameters 
we generated 10,000 replicates and performed four association tests: (unadjusted) linear 
regression (LR), linear regression with covariates included based on p-value filtering at an 𝛼 
threshold of 0.1 (FT), the MC algorithm (MC), and an oracle method that includes only the 
covariates not associated with the SNP (OPT), thus being the optimal test in regards of our goal. 
Crossing the different parameters, we considered a total of 351 scenarios which detailed results are 
presented in Supplementary Figures 11-37. 

To comprehensively summarize the performances of the different tests across these many 
scenarios, we randomly sampled subsets of the simulations to mimic real datasets while focusing 
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on a sample size of 2,000 individuals and a total of 100,000 SNPs tested. For null models we 
assumed that 70% of the genotypes would be under the complete null (not associated with any 
covariate, 𝜋 = 0), while 20% would be associated with a small proportion of the covariates 
(𝜋 = 0.15) and the remaining 5% would be highly pleiotropic (𝜋 = 0.35). The results from this 
analysis are presented in Figure 4. Overall the MC approach outperforms the other methods 
(except OPT), being more powerful than LR with an average of two-fold increase in detection rate, 
and with dramatically lower false positives than FT (FT showed a genomic inflation factor25, 𝜆𝐺𝐶 of 
1.18, 1.17 and 1.19 when simulating 10, 40 and 80 covariates, respectively). However, in the 
extreme case when the number of candidate covariates is small (e.g. ≤10), they are highly 
correlated to the outcome (e.g. 𝑟𝐶

2 ≥ 0.75), and the SNP is highly pleiotropic but has small effects, we 
observed a few outliers in the p-value distribution (e.g. Supplementary Figs. 13,16,19). Also, 
when the sample size was low compared to the number of covariate (e.g. 𝑁=300, and 𝑚=10), we 
observed small deflation of the p-values under the null (e.g. Supplementary Figs. 29-31). We did 
not considered the strategies which consists in including all 𝐶𝑙=1…𝑚 variables as covariates without 
any filtering on predictor-covariate association or the so-called reverse regression (which consists 
in using the predictor as the outcome26), as both approaches lead to substantial type I error rate 
(see Supplementary Fig. 3). 

    

Real data analysis 

We first analyzed a set of 79 metabolites measured in 1192 individuals genotyped at 668 
candidate single nucleotide polymorphisms (SNPs). We derived the correlation structure between 
these metabolites (Fig. 2b and Supplementary Fig. 4)5 and estimated the maximum gain in power 
that can be achieved by our approach in these data. The proportion of variance of each metabolite 
explained by the other metabolites varied between 1% and 91% (Fig. 2b). This proportion is higher 
than 50% for two thirds of the metabolites, meaning that for all those variables, one can potentially 
achieve a gain in power equivalent to a two-fold increase in sample size. More interestingly, for 
10% of the metabolites, other variables explain over 80% of the variance, corresponding to a 
maximum five-fold increase in sample size. In such cases, predictors explaining a very small amount 
of a metabolite’s variation (e.g. <1%) can moved from undetectable (power<1%) to fully detectable 
(power>80%). We performed a systematic screening for association between each SNP and each 
metabolite, using both a standard univariate linear regression adjusting for potential confounding 
factors and using the MC approach to identify additional covariates. Overall, both tests showed 
correct 𝜆𝐺𝐶 (Supplementary Fig. 5). We focused on associations significant after Bonferroni 
correction (P < 9.5x10-7 corresponding to a correction for the 52,772 tests performed). The 
standard unadjusted approach (LR) detected 5 significant associations. In comparison, the MC 
approach identifies 10 associated SNPs (Table 1), including four of the five associations identified 
by LR. In most cases the p-value of our approach was dramatically lower (e.g. 1000 fold smaller for 
the rs780094 – alanine association). Comparing these results to four previous independent GWAS 
metabolite scans of larger sample size (𝑁 equal 8,330, 7,824, 2,820, and 2,076 for Finnish27, 
KORA+TwinsUK6,28, and FHS29, respectively), we found that all metabolite/gene associations only 
identified by the MC approach have been previously identified (Supplementary Table 1). These 
positive controls confirmed the power of the proposed MC approach, highlighting its ability to 
identify variants with much smaller sample size. Interestingly, the only association identified by the 
unadjusted analysis (lactose and GC, P=6.1x10-7) and not confirmed by the MC approach (P=6.3x10-6) 
was also the only one not previously reported in previous larger studies, highlighting the ability of 
the proposed MC approach to improve not only power but also type II error rate. 

We then considered genome-wide cis-eQTL mapping in RNA-seq data from the gEUVADIS 
study. Gene expression is a particularly compelling benchmark, as the current standard analyses 
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already use an adjustment strategy to account for hidden factors in trans and cis eQTL GWAS30-33. 
Here we used the PEER approach30 to derive those hidden factors, as the method has been applied 
in one of the major recent cis-eQTL screenings in the gEUVADIS data34. After stringent quality 
control the data included 375 individuals of European ancestry with expression estimated on 
13,484 genes, of which 11,694 had at least one SNP with a MAF ≥ 5%. We observed that expressions 
levels between genes were highly correlated (Fig. 2c), an ideal scenario for MC. We first performed 
a standard cis-eQTL screening using linear regression (LR), testing each SNP within 100kb of each 
available gene for association with overall RNA level while adjusting for 10 PEER cofactors, for a 
total of ~1,3 million tests. Then, we applied MC to identify for each test, which other gene’s RNA 
levels could be used as covariates on top of the PEER factors. As shown in Supplementary Figure 
6, both LR and MC showed large number of highly significant association. For comparison purposes 
we plotted in Figure 5 the most significant SNP per gene obtained with the standard approach 
against those obtained with MC. As shown in this figure, 2,725 genes had a least one SNP significant 
with both methods, and 56 genes were identified by the standard approach only. Conversely 657 
genes were found only with the MC approach, corresponding to a 24% increase in detection of cis-
eQTLs. This indicates that by being gene/SNP specific, the MC approach is able to recover 
substantial additional variance, allowing for increased power. We also performed quasi-null 
experiment where we tested for cis-effect using random SNPs from the genome. We observed a 
small inflation (𝜆𝐿𝑅=1.01, and 𝜆𝑀𝐶=1.05, Supplementary Figs. 7-8). However even after correcting 
p-value of the former analysis for this potential bias the improvement in detection for MC remained 
above 22%.  

  

 

Discussion 

 Growing collections of high-dimensional data across myriad fields, driven in part by the “big 
data revolution” and the Precision Medicine Initiative, offer the potential to gain new insights and 
solve open problems. However, when mining for associations between collected variables, 
identifying signals within the noise remains challenging. While univariate analysis offers precision, 
it fails to leverage the correlation structure between variables. Conversely multivariate methods 
have increased power at the cost of decreased precision. We demonstrated in both simulated and 
real data that the proposed method, Musical Chairs, maintains the precision of univariate analysis, 
but can still exploit global data structures to increase power. Indeed, in the data sets examined in 
this study we observed up to a 3-fold increase in effective sample size in both the gene expression 
and metabolites data (Supplementary Figure 9) thanks to the inclusion of relevant covariates. 
Moreover, results from other ongoing applications of our approach to other real datasets show 
promise. In particular, we recently used MC to screen for association between gut microbiome and 
genetic variants in individuals with inflammatory bowel disease. The MC approach allowed for the 
identification of an association between a risk score for NOD2 and F,prausnitzii which was missed 
by the standard approach.35 This result, in agreement with recent functional studies,36,37 was 
further confirmed in a replication dataset using the standard (unadjusted) approach. 

Musical Chairs can be potentially applied to any type of data, however it is particularly well 
suited to the analysis of human genomic data for several reasons. First, the genetic architecture of 
human phenotypes likely follows a polygenic model with many genetic variants of small effect size 
that are difficult to detect using standard approaches38. Second, many correlated phenotypes share 
genetic and environmental variance without complete genetic overlap39. Each single phenotype 
from a multi-phenotype dataset depends on a mixture of shared and phenotype-specific risk 
factors, and the aforementioned principle can be applied. Third, the underlying structure of the 
genomic data is relatively well understood with an extensive literature on the causal pathway from 
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genotypes to phenotypes through direct and indirect effects on RNA, protein and metabolites40 
(Supplementary Fig. 10 and Supplementary Note). Finally, when the predictors of interests are 
genetic variants, e.g. single nucleotide polymorphisms (SNPs), there is little concern regarding 
potential confounding factors. The only well-established confounder of genetic data is population 
structure and this can be easily addressed using standard approaches19. For other types of data, 
application should be considered on a case-by-case basis. In particular, when the underlying 
structure of the data is unknown the risk for introducing bias is higher, especially when the many 
variables have causal relationships. Second, confounding factors will in general match covariate’s 
criteria for exclusion as they are, by definition, correlated with both the outcome and the predictor. 
These covariates should indeed remain in the model and our approach allows for their inclusion. 
However, as for any large scale screening using standard approach, manually defining confounding 
factors for each predictor/outcome pair can be a daunting task. Moreover, confounding factors 
might not always be well known. 

Several other groups have considered the problem of association testing in high-
dimensional data. In genetics, multivariate linear mixed models (mvLMMs) have demonstrated 
both precision and increases in power when correlated phenotypes are tested jointly9. However, 
mvLMMs are only exploiting the genetic similarity of phenotypes and are not computationally 
efficient enough to handle dozens of phenotypes jointly (e.g. would be limited to the analysis of 2 to 
10 phenotypes10) let alone hundreds. MC leverages both genetics and environmental correlations 
and can be easily adapted to hundreds or thousands of phenotypes as we demonstrated here. It is 
also worth noting that substantial work has been published on how to account for hidden technical 
artifact in trans and cis eQTL GWAS30-33. While adjusting for principal components of expression has 
been the most common approach33 and is still commonly used, other, more complex methods have 
been proposed, including SVA31 and PEER30 (which we used in parallel with MC in the gEUVADIS 
analysis). Though presented from a different perspective, these methods aim at recovering what 
would be 𝑈1 and 𝑈2 in Figure 1. One advantage of these methods is that they reconstruct hidden 
factors only once for all of the outcomes data, thus being more computationally efficient. However, 
by not being specific they can (i) induce false signal if genetic effects happen to be captured by these 
factors, and (ii) be suboptimal, as they assume a limited number of shared risk factors while our 
approach does not make such assumption and optimizes the test for each predictor-outcome pair. 
Indeed the gEUVADIS analysis showed a 24% increase in the detection of eQTL when applied on 
top of PEER. 

There are several caveats to our approach. First, the proposed heuristic is conservative by 
design in order to avoid false association signal and so all the available power gain is not achieved. 
Second, while all simulations we performed show strong robustness of our approach, it remains a 
heuristic, and the validity of the proposed approach cannot be guaranteed. We are currently 
examining alternatives for excluding covariates, such as structural equation modelling, which more 
directly assess causal relationships at the expense of computational efficiency41. Ultimately we 
recommend external replication to validate results as is standard in genetic studies. Third, MC is 
more computationally intensive than methods such as PCA or PEER which derived hidden factors 
for all data at once. However, as we demonstrated here, this is the cost for improved statistical 
power. Still, we are actively working on updates of the algorithm to improve computational 
efficiency. Fourth, the method assumes that the variables are measured and available on all samples 
and we intend to explore the handling and imputation of missing phenotypes in future work. Fifth, 
while principles we leveraged are likely applicable to categorical and binary outcome (see e.g. 42 for 
logistic regression), as of now, our algorithm is only applicable to continuous outcomes.  There are 
also other additional improvements not specific to MC that might be worth exploring in future 
works. In particular, when multiple phenotypes are considered as outcomes then a multiple test 
correction penalty must be selected to account for all tests across all phenotypes. In this work we 
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applied a Bonferroni correction, not accounting for the correlation between outcomes. This is a 
very conservative correction and more powerful approaches are possible.  

Big genomic data have the potential to answer important biological questions and improve 
public health. However those data come along with great methodological challenges. Many 
questions, such as improving risk prediction or inferring causal relationship, rely in particular on 
our ability to identify association between variables. In this study we provide a comprehensive 
overview of how leveraging shared variance between variables can be used to fulfill this goal. 
Building on this principle we developed the Musical Chair algorithm, an innovative approach which 
can dramatically increase statistical power to detect weak association.  
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Online Methods 

Principle 

 Consider two variables 𝑌 and 𝐶 that are collected on the same set of individuals, which we 
would like to examine in an association study. If 𝑌 and 𝐶 are correlated then they either influence 
each other or they share sets of risk factors. In the latter case, it means that the variations of the 
shared risk factors are captured by both variables. Therefore, 𝐶 can be a proxy for a risk factor or a 
(eventually, a complex) combination of risk factors of 𝑌 and conversely, 𝑌 can be a proxy for risk 
factors of 𝐶. When a predictor 𝑋 is not part of these shared risk factors and is for example 
associated with 𝑌 only, it implies that including 𝐶 as a covariate in the association test between 𝑋 
and 𝑌 can increase power since part of the variance of 𝑌 not explained by 𝑋 will be removed. 
Consider the simple additive linear model in which 𝑌 is generated according to: 

𝑌 = 𝑋 × 𝛽 + ∑[𝐸𝑗 × 𝛾𝑗
𝑘]

𝑗

 

where 𝑋 is a measured risk factor of 𝑌and 𝐸𝑗=1…𝐾 are unmeasured risk factors of 𝑌. The expected 

test statistic when testing the association between the normalized predictor 𝑋  and 𝑌  is 
𝑐𝑜𝑟(𝑋, 𝑌)2 × 𝑁, where 𝑁 is the number of individuals in the study. This correlation is a function of 𝛽 
and the variances of 𝑋 and 𝑌. If it were possible to create a new adjusted outcome: 

𝑌′ = 𝑌 − ∑[𝐸𝑗 × 𝛾𝑗
𝑘]

𝑗

= 𝑋 × 𝛽 

Then the correlation 𝑐𝑜𝑟(𝑋, 𝑌′)2 × 𝑁 = 𝑁, and this would be optimally powered. If another variable  
𝐶 collected in the study is correlated with 𝑌, then it might share causal risk factor 𝑋 and/or some of 
the 𝐸𝑗=1…𝐾. We can include this variable as a covariate in the regression when testing for 

association between 𝑋 and 𝑌. If 𝑋 is not associated with 𝐶, then this is effectively removing 
elements of 𝐸 that influence 𝑌 and thereby increasing the power of the association test.  

The issue with the application of this principle is that if 𝑋 is associated with 𝐶, then 
including it as a covariate in the regression will potentially decrease the test statistic since elements 
of 𝑋 will be removed from 𝑌. Even worse, if 𝑋 is associated with 𝐶 only, then including 𝐶 as a 
covariate can induce a false association signal. The objective of our approach is to remove from 𝑌 
variance explained by factors not correlated with 𝑋 in order improve the study’s power. 

 

The heuristic 

We develop a heuristic to select relevant covariates when testing for association between a 
predictor 𝑋 and an outcome 𝑌. For a set of candidate covariates 𝑪 = (𝐶1, 𝐶2, … 𝐶𝑚), the filtering is 

applied on 𝛿𝑙  and 𝑝𝑙 , the estimated marginal effect of the predictor 𝑋 on 𝐶𝑙 and its associated p-
value, respectively. It uses four major features: i) 𝑝MUL, the p-value for the multivariate test of all 
𝐶𝑙=1…𝑚 and 𝑋, which is estimated using a standard multivariate approach (a MANOVA in the 
present application); ii) 𝑟𝐶

2 the total amount of variance of 𝑌 explained by the 𝑪 ; iii) 𝛾𝑙  the estimated 

effect of each 𝐶𝑙∈1…𝑚 on 𝑌 ; and iv) 𝛽̂, the estimated effect of 𝑋 on 𝑌 the marginal model 𝑌~𝛼 + 𝛽𝑋.  

Filtering is applied in two steps using the aforementioned features and additional 
parameters describe thereafter. Step 1 is an iterative procedure focusing on 𝑝MUL. It consists in 
removing potential covariates until 𝑝MUL.s reaches 𝑡𝑀𝑈𝐿, a p-value threshold. This step is effective at 
removing combination of covariates with strong to moderate effects, but will potentially leave 
weakly associated covariates. Step 2 is also iterative and uses covariates pre-selected at step 1. It 

consists in deriving two confidence intervals Δl.cond and Δl.un, for the expected distribution of 𝛿𝑙  
conditional on 𝛽̂  under a complete null model ( 𝛿𝑙 = 0  and 𝛽 = 0), and the unconditional 
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distribution of 𝛿𝑙 , respectively. The unconditional distribution of 𝛿𝑙  can be approximated as 

𝒩(0, √1 𝑁⁄ ), while the conditional distribution equals  𝒩(𝛾𝛽̂, √(1 − 𝛾2) 𝑁⁄ ), where 𝛾 is the 
estimated correlation between 𝑌 and 𝐶 (see Supplementary Notes). The final inclusion area for 

each 𝛿𝑙  is then defined as the union of Δ𝑙.𝑐𝑜𝑛𝑑 and Δ𝑙.𝑢𝑛 after applying ad hoc weighting functions. 
This includes first a stringency weight wST that combines the aforementioned indicators of 
potential bias. The second component consists in two semi-linear threshold functions 𝑓𝑐 and 𝑓𝑢 that 
balance the importance of the two inclusion areas of each 𝐶𝑙 (i.e. Δl.cond and Δl.un, respectively) in 
order to reflect the probability of being under a complete null model, and to limit them to be no 
larger than the 95% confidence interval (CI) of 𝛿𝑙 . More specifically, when |𝛽̂| is small, the two 

intervals (Δl.cond and Δl.un) are giving the same weights, however as |𝛽̂| increases, the likelihood of 

the true 𝛽 being null decreases and the conditional interval, Δl.cond is shrunk to zero. In practice we 
used simple linear functions with a tipping point that corresponds to a situation where the 95% CI 

of the observed 𝛽̂  and 𝛿𝑙|𝛿𝑙 = 0  stop overlapping. The former CI approximately equal 𝛽̂ ±

2 (√𝑁 × 𝜎𝑋)⁄ , where 𝜎𝑋 is the standard deviation of 𝑋, while the later equals 0 ± 2 (√𝑁 × 𝜎𝑋)⁄ . 

Expressed as chi-squared this tipping point corresponds to 𝜒𝛽
2 = 𝛽̂2 × 𝑁 × 𝜎𝑋

2 = 16.  

 

The proposed multi-step algorithm is defined as follows: 

 

For each predictor 𝑋 and 𝑌 

1. Univariate association 

1.1. Standardized all variables (𝑌, 𝑋, 𝑪) to have mean 0 and variance 1 

1.2. Initialize 𝐿 = 1 … 𝑚, the list of selected covariates, with all available covariates 

1.3. Derive for each 𝑙 ∈ 𝐿,  𝛾𝑙𝑢and 𝛾𝑙𝑚 the marginal effect estimates from the univariate 
regression 𝑌~𝐶𝑙=1…𝑚, and multivariate model 𝑌~𝑪, respectively. 

 

2. Filter 1: multivariate 

2.1.  Perform a marginal association test between 𝑋 and each 𝐶𝑙=1…𝑚 

2.1.1.  Derive all 𝛿𝑙  and 𝑝𝑙  from 𝑌~𝛿0 + 𝛿𝑙 × 𝑋 

2.2.  Set 𝑝𝑀𝑈𝐿=1 

2.3.  While 𝑝𝑀𝑈𝐿 < 𝑡𝑀𝑈𝐿 

2.3.1. Derive 𝑝𝑀𝑈𝐿 from 𝑪𝐿~𝑋 using a multivariate test, where 𝑪𝐿 is the data matrix 
𝑪 including only 𝑙 ∈ 𝐿 covariates. 

2.3.2. Update 𝐿 by removing the 𝐶𝑙 that match 𝑝𝑙∈𝐿 = 𝑚𝑖𝑛(𝑝𝑙∈𝐿) from the set of 
candidate covariates  

 

3. if L ≠ 0, filter2: univariate 

3.1. while L ≠ 0 and L𝑡+1 ≠ L𝑡  

3.1.1. Update for each 𝑙 ∈ 𝐿  𝛾𝑙𝑚 the effect estimates from the multivariate model 
𝑌~𝑪𝐿. 

3.1.2. Derive 𝑟𝐶
2 the variance of 𝑌 explained by 𝑪𝐿 from the model in 3.1.1 
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3.1.3. Derive for each 𝑙 ∈ 𝐿 the ad hoc stringency weight of the inclusion area 
𝑤𝑆𝑇 = 0.1 × 𝑝𝑀𝑈𝐿 × (1 − 𝑟𝐶

2) × (1 − 𝛾𝑙𝑢
2 ) 𝛾̂𝑙𝑚

2⁄  

3.1.4. Derive the overall weights of the conditional and unconditional models using 
semi-linear threshold functions 𝑤𝑐 = 𝑤𝑆𝑇 × 𝑓𝑐(𝜒𝛽

2) and 𝑤𝑢 = 𝑤𝑆𝑇 × 𝑓𝑢(𝜒𝛽
2) , 

where 𝜒𝛽
2 = 𝑁 × 𝛽̂2 𝜎𝑋

2⁄ : 

a. 𝑓𝑐 = {

𝜒𝛽
2 8⁄                𝑖𝑓𝜒𝛽

2 < 16                            

2 − 𝜒𝛽
2 8⁄        𝑖𝑓𝜒𝛽

2 > 16   and  𝜒𝛽
2 < 32

0                       Otherwise                             

 

b. 𝑓𝑢 = {
𝜒𝛽

2 8⁄                 𝑖𝑓𝜒𝛽
2 < 16   

2                        Otherwise  
 

3.1.5. Derive the mean 𝜇𝑙.𝑢𝑛 = 0  and standard deviation 𝜎𝑙.𝑢𝑛 = √
1

𝑁
 of the 

unconditional distribution of 𝛿𝑙  and the associated inclusion area: 
𝛥𝑙.𝑢𝑛 = [𝜇𝑙.𝑢𝑛 − 𝜎𝑙.𝑢𝑛 × 𝑤𝑢, 𝜇𝑙.𝑢𝑛 + 𝜎𝑙.𝑢𝑛 × 𝑤𝑢].  

3.1.6. Derive the mean 𝜇𝑙.𝑐𝑜𝑛𝑑 = 𝛾𝑙 × 𝛽̂ and standard deviation 𝜎𝑙.𝑐𝑜𝑛𝑑 = √(1−𝛾̂𝑙
2)

𝑁
 of 

the conditional null distribution of 𝛿𝑙 , and the associated inclusion area: 
𝛥𝑙.𝑐𝑜𝑛𝑑 = [𝜇𝑙.𝑐𝑜𝑛𝑑 − 𝜎𝑙.𝑐𝑜𝑛𝑑 × 𝑤𝑐 , 𝜇𝑙.𝑐𝑜𝑛𝑑 + 𝜎𝑙.𝑐𝑜𝑛𝑑 × 𝑤𝑐] 

3.1.7. Update 𝐿 by removing all 𝑙 which 𝛿𝑙  is not included in 𝛥𝑙.𝑐𝑜𝑛𝑑 ∪ 𝛥𝑙.𝑢𝑛 
 

4. Perform the test of association between 𝑋 and 𝑌, while adjusting for the selected covariates 

4.1. Estimate 𝛽̂𝑀𝐶  and derive the associated p-value from the multivariate model 
including all 𝑙 ∈ 𝐿 covariate from 𝑌~𝛽0 + 𝛽𝑀𝐶 × X + 𝜷𝑳 × 𝑪𝑳  

 

 

Simulations 

 We simulated 𝑌  and 𝑚  correlated phenotypes Y, 𝑪 = (𝐶1, 𝐶2, … 𝐶𝑚) under a variety of 
genetic models to interrogate the properties of the proposed test. Genotypes 𝑔 for each of 𝑁 
individuals were generated by summing two samples from a random binomial distribution with 
probability uniformly drawn in [0.1, 0.5] and then normalized to have mean 0 and variance 1. 
Under the alternate, the effect of the genotype on phenotype 𝑌 had effect size 𝛽, and effect size 0 
under the null. In some simulation, the genotype was also associated to a fraction 𝜋 of the 𝑚 
covariates with effect size drawn from [-𝛿 , 𝛿 ]. The remaining variance for each phenotype was 
drawn from a m+1-dimensional multivariate normal distribution, and represents the remaining 
genetic and environmental variance. The diagonal of the covariance matrix was specified as 1 minus 
the effect of 𝑔 (if relevant) such that the total variance of each phenotype had an expected value of 
1. The off diagonal elements for each pair of phenotypes specifies the phenotypic covariance and 
was drawn from a normal distribution with mean 0 and variance 𝐶 . In instances where this matrix 
was not positive definite we used the Higham algorithm43 to find the closest positive definite 
matrix. For each null model we derived the genomic inflation factor25 𝜆𝐺𝐶, while for the alternative 
model we estimated power at an 𝛼 threshold of 5x10-7, to account for the 100,000 tests performed.  
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The metabolite data 

Circulating metabolites were profiled by liquid chromatography-tandem mass spectrometry 
(LC-MS) in prediagnostic plasma from 453 prospectively-identified pancreatic cancer cases and 898 
controls. These subjects were drawn from four U.S. cohort studies: the Nurses Health Study (NHS), 
Health Professionals Follow-up Study (HPFS), Physicians Health Study (PHS) and Women’s Health 
Initiative (WHI). Two controls were matched to each case by year of birth, cohort, smoking status, 
fasting status at the time of blood collection, and month/year of blood collection. Metabolites were 
measured in the laboratory of Dr. Clary Clish at the Broad Institute using the methods described in 
Wang et al.44 and Townsend et al.45 A total of 133 known metabolites were measured; 50 were 
excluded from analysis because of poor reproducibility in samples with delayed processing (n=32), 
CV>25% (n=13), or undetectable levels for >10% subjects (n=5). The remaining 83 metabolites 
showed good reproducibility in technical replicates or after delayed processing.45 Among those, 79 
had no missing data and were considered further for analysis. Additional details of these data have 
can be found here46. Genotypic data was also available for some of these participants. A subset of 
645 individuals from NHS, HPFS and PHS had genome-wide genotypes data as part of PanScan 
study47. Among the remaining participants, 547 have been genotyped for 668 SNPs chosen to tag 
genes in the inflammation, vitamin D, and immune pathways. To maximize sample size we focused 
our analysis on these 668 SNPS which were therefore available in a total of 1,192 individuals. In-
sample minor allele frequency of these variants range from 1.1% to 50%. We first applied standard 
linear regression testing each SNP for association with each metabolite while adjusting for five 
potential confounding factors: pancreatic cancer case-control status, age at blood draw, fasting 
status, self-reported race, and gender. We then applied the MC approach while also including the 
five confounding factors as covariates. 
 

The gEUVADIS data 

 The gEUVADIS data34 consists of RNA-seq data for 464 lymphoblastoid cell line (LCL) 
samples from five populations in the 1000 genomes project. Of these, 375 are of European ancestry 
(CEU, FIN, GBR, TSI) and 89 are of African ancestry (YRI). In these analyses we considered only the 
European ancestry samples. Raw RNA-sequencing reads obtained from the European Nucleotide 
Archive were aligned to the transcriptome using UCSC annotations matching hg19 coordinates. 
RSEM (RNA-Seq by Expectation-Maximization)48 was used to estimate the abundances of each 
annotated isoform and total gene abundance is calculated as the sum of all isoform abundances 
normalized to one million total counts or transcripts per million (TPM). For each population, TPMs 
were log2 transform and median normalized to account for differences in sequencing depth in each 
sample. A total of 29,763 total genes were initially available. We removed those that appear to be 
duplicates or that had low expression value (defined as log2(TPM)<2 in all samples). After filtering, 
13,484 genes remain. The genotype data was obtained from 1000 Genomes Project Phase 1 data 
set. We restricted the analysis to the SNPs with a MAF≥5% that were within ±50kB from the gene 
tested for cis-effect. A total of 11,694 genes had at least one SNP that match these criteria.  

When running the MC approach, we performed a pre-filtering of the candidate covariates. 
More specifically, for each gene analyzed –referred further as the target gene– we restrained the 
number of candidate covariates (i.e. gene other than the target) to be evaluated. First, we aimed at 
avoiding genes which expression is more likely to be associated with some of the SNPs tested 
because of a cis-effect, as such genes are more likely to induce false signal. Thus, all genes in close 
physically proximity with the target genes (≤1Mb) were excluded. Second, we aimed at reducing the 
number of candidate covariates (13,484 minus 1, a priori), as most of them are likely uninformative 
and also because our simulation showed that for small sample size, the MC approach would have 
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reduced robustness if the number of candidate covariates is too large. To do so we performed an 
initial screening for association between the target and all others genes and used further the top 50 
showing the strongest squared-correlation with the target.  

Because of a dramatic number of true associations, the main cis-eQTL screening showed 
strong genomic inflation factors (Figure S6, 𝜆𝐿𝑅=2.21, 𝜆𝑀𝐶=2.30). Therefore, to assess the validity of 
the MC approach, we repeated the analyses above, but tested each gene’s expression with sets of 
SNPs chosen on a different chromosome, in order to preserve both the expression correlation and 
the SNPs correlation. This analysis almost corresponds to a null, although some trans effect might 
be captured in this experiment. The 𝜆𝐺𝐶  was slightly inflated ( 𝜆𝐿𝑅 =1.01 and 𝜆𝑀𝐶 =1.05, 
Supplementary Fig. 7-8) but did not display any strong outlier. 

 

 

Variance explained in multiple regressions 

We plotted in Figure 2b-c the variance of a set of outcomes 𝒀 = (𝑌1, … 𝑌𝐾) that can be 
explained by covariates in the data –i.e. how much of the variance of 𝑌𝑖  can be explained by 𝑌𝑗≠𝑖. For 

illustration purposes we also approximate the individual contribution of each 𝑌𝑗≠𝑖  covariate. In 

brief, we standardized all variables and estimated 𝛽𝑗
2, the proportion of variance of the outcome 

explained by each 𝑌𝑗≠𝑖 from the models 𝑌𝑖~𝛽𝑗𝑌𝑗≠𝑖, and 𝑟𝑚𝑜𝑑𝑒𝑙
2 , the total variance of 𝑌𝑖  explained by all 

𝑌𝑗≠𝑖 jointly, from the model 𝑌𝑖~𝜷𝒀𝑗=1…𝐾,𝑗≠𝑖. Then, we derived 𝑣𝑖𝑗  the relative contribution of each 

𝑌𝑗≠𝑖 to the variance of 𝑌𝑖  as follows: 

 

𝑣𝑗𝑖 =
𝛽𝑗

2

∑ 𝛽𝑘
2

𝑘≠𝑖 

× 𝑟𝑚𝑜𝑑𝑒𝑙
2  

 

This is only an approximation of the real contribution of each variable, since the interdependence 
between the covariates implies instability of all estimates. Indeed adding or removing covariates 
often leads to changes of the 𝛽𝑗. 
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Figure Legends 

 

Figure 1. Variance components of adjusted variables  

We illustrate the components of the variance of an outcome 𝑌 before and after adjusting for other 
variables. The predictor of interest, 𝑋, is displayed in red. In (a), the adjusting variables (U1 and U2) 
are true causal factors that have direct effects on 𝑌, therefore adjusting 𝑌 for U1 and U2 reduce the 
variance of 𝑌. In (b) the true factors are not measured but a variable 𝐶 influenced by U1 and U2  is 
measured. Adjusting Y for C again reduces the residual variance of Y, but also introduces in the 
residual of 𝑌 a component of the variance specific to C. In (c) the covariate shares factors with Y, as 
in the previous scenario, but is also influenced by 𝑋. When the effect of 𝑋 on C is concordant with 
the effect of 𝑋 on Y (e.g. positive correlation between C and Y, and effect of 𝑋 on Y and C in the same 
direction) this can induce loss in power, as the adjustment for C decreases the contribution of 𝑋 to 
the residual of Y. In (d) Y is not associated with the predictor and adjusting for C can induce false 
association signal by introducing some effect of 𝑋 in the residual of Y. 
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Figure 2. Example of shared variance in real data and equivalent increase in sample size. 

Equivalent increase in sample size as a function of the variance of the outcome explained by 
covariates assuming initial sample sizes ranging from 100 to 10,000 (a). Distribution of variance 
explained by other variables for the 79 metabolites from the PANSCAN study (b), and a random 
sub-sample of expression abundance estimates from 79 genes in the gEUVADIS study (c). The 
relative contribution of covariates to the total variance explained is illustrated with different sets of 
colors for each bar. 
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Figure 3. Conditional and unconditional distribution  

Example of selection interval based on the distribution of 𝛿, the estimated effect between the 
predictor 𝑋 and the covariate 𝐶 under the null hypothesis of no association between 𝑋 and 𝐶 (𝛿 =
0) and no association between 𝑋 and the outcome 𝑌 (𝛽 = 0). (a) presents the standard 95% 

confidence interval (green area) corresponding to p-value <0.05 unconditional on 𝛽̂. (b) and (c) 
show the composite interval of derived by the MC approach that merges and weights the expected 

unconditional (blue area) and conditional (pink area) distribution of 𝛿 while considering a 
correlation between 𝑌 and 𝐶 of 0.5 (b) and 0.8 (c). Plots were drawn assuming all variables are 

standardized, using a sample size of 10,000, an overall variance of 𝑌 explained of 0.7, 𝛽̂ = 0.035 and 
a multivariate test of association between all covariates and 𝑌 with a p-value (𝑝𝑀𝑈𝐿) of 0.3 . 
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Figure 4. Power and robustness. 

We simulated series of 100,000 datasets including 10 (a), 40 (b) and 80 (c) outcomes under a null 
model (upper panels), where a predictor of interest is not associated with a primary outcome but is 
associated with either 0%, 15% or 35% of the other outcomes with probability 0.75, 0.2 and 0.05 
respectively, and under the alternative (lower panels), where the predictor is associated with the 
primary outcome only. The variance of the primary outcome that can be explained by the other 
outcomes was randomly chosen in [25%, 50%, 75%] with equal probability. In each replicate we 
applied four tests of association between the primary outcome and the predictor: a standard 
marginal univariate test (LR); the optimally adjusted test (OPT) that includes as covariates only the 
outcomes not associated with the predictor ; the MC test (MC) ; and a univariate test that include as 
covariate all outcomes with a p-value for association with the predictor above 0.1 (FT). For the null 
models we derived the genomic inflation factor 𝜆𝐺𝐶, while for the alternative model we estimated 
power at an 𝛼 threshold of 5x10-7, to correct for 100,000 tests. 
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Figure 5. Analysis of the gEUVADIS data 

We performed a genome-wide cis-eQTL mapping of 11,694 genes in 375 individuals from the 
gEUVADIS study. Analysis was performed using standard linear regression (LR) and the Musical 
Chair (MC) approach. Both consisted in running a linear regression adjusted for 10 PEER factors, 
while the MC analysis also included 0 to 50 additional covariates per SNP/gene pair tested. We 
compared the –log10(p-value) of the most significant SNP per gene obtained by each approach. For 
illustration purposes we shrunk the plots at –log10(p-value)=30. We considered a stringent 
significance threshold of 1.4x10-8 to account for the approximately 3.5millions test and derived the 
number of gene showing at least one cis-eQTL with LR only (blue), MC only (red), both approaches 
(green) or neither (grey). 
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Table 

 

Table 1. Identified signals from the association test between 79 metabolites and 668 
candidate SNPs. 

 

Chr SNP Gene Outcome P-value Known from study 

    
PLR PMC SSincr  

1 rs477992 PHGDH serine 6.2x10-5 1.4x10-7 2.15 KORA+TwinsUK6 / FHS29  

2 rs2216405 
near CPS1, 
LANCL1 

glycine 4.1x10-26 2.3x10-33 1.56 KORA+TwinsUK6 / FHS29 

serine 3.7x10-5 6.4x10-10 1.76 KORA+TwinsUK6 / FHS29  

creatine 7.6x10-8 4.8x10-9 1.34 KORA+TwinsUK6  / FHS29 

acetylglycine 2.2x10-8 3.1x10-9 1.44 KORA+TwinsUK6 

2 rs780094 GCKR alanine 6.1x10-5 4.0x10-8 2.06 KORA+TwinsUK6 / FHS29 / Finish27  

4 rs1352844 GC lactose 6.1x10-7 6.3x10-6 2.06 
 

10 rs7094971 SLC16A9 
carnitine 2.9x10-10 1.1x10-15 2.01 KORA+TwinsUK6 / FHS29  

acetylcarnitine 1.4x10-6 9.4x10-13 2.36 KORA+TwinsUK6 

12 rs2657879 GLS2 glutamine 3.1x10-5 4.2x10-10 2.50 KORA+TwinsUK6 / Finish27  

16 rs6499165 SLC7A6 lysine 2.6x10-5 7.5x10-10 3.00 KORA+TwinsUK6 

There was 79 metabolites tested for association with 668 SNPs, so a total of 52104 tests. P-value threshold accounting for 
multiple testing is 9.5x10-7. Significant p-values are indicated in bold. 

Abbreviation: PLR is the p-value for the standard unadjusted univariate test of each single phenotype with each single SNP; 

PMC is the p-value from the MC algorithm; SSincr is the equivalent sample size increase achieved after adjusting for 
covariates selected by the MC algorithm. 

Sample size of the replication was 8,330, 7,824, and 2,076 for Finnish27, KORA+TwinsUK6,28, and FHS29 studies, respectively 
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