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Abstract

HIV has a high mutation rate, which contributes to its ability to evolve quickly. However, we know little
about the fitness costs of individual HIV mutations in vivo, their distribution and the different factors shaping
the viral fitness landscape. We calculated the mean frequency of transition mutations at 870 sites of the pol
gene in 160 patients, allowing us to determine the cost of these mutations. As expected, we found high costs
for non-synonymous and nonsense mutations as compared to synonymous mutations. In addition, we found
that non-synonymous mutations that lead to drastic amino acid changes are twice as costly as those that do
not and mutations that create new CpG dinucleotides are also twice as costly as those that do not. We also
found that G→A and C→T mutations are more costly than A→G mutations. We anticipate that our new
in vivo frequency-based approach will provide insights into the fitness landscape and evolvability of not only
HIV, but a variety of microbes.

Author summary

HIV’s high mutation rate allows it to evolve quickly. However, most mutations probably reduce the virus’
ability to replicate – they are costly to the virus. Until now, the actual cost of mutations is not well
understood. We used within-patient mutation frequencies to estimate the cost of 870 HIV mutations in
vivo. As expected, we found high costs for non-synonymous and nonsense mutations. In addition, we found
surprisingly high costs for mutations that lead to drastic amino acid changes, mutations that create new
CpG sites (possibly because they trigger the host’s immune system), and G→A and C→T mutations. Our
results demonstrate the power of analyzing mutant frequencies from in vivo viral populations to study costs
of mutations. A better understanding of fitness costs will help to predict the evolution of HIV.

1 Introduction1

The human immunodeficiency virus (HIV) replicates with an extremely high mutation rate and exhibits2

significant genetic diversity within an infected host, often referred to as a “mutant cloud” or “quasispecies” [1–3

7]. Although mutations are crucial for all adaptive processes, they can have fitness costs. Thus, to understand4

the evolution of HIV, it is important to know the fitness costs of mutations in vivo. Fitness costs influence the5

probability of evolution from standing genetic variation (often referred to as pre-existing mutations). Fitness6

costs also determine the effects of background selection (i.e., the effects of linked deleterious mutations on7

neutral or beneficial mutations) and thus affect optimal recombination rates. All of these processes affect8

drug resistance and immune escape in HIV [8–12]. Moreover, in addition to a better understanding of9

evolutionary processes in HIV and in general, a detailed knowledge of mutation costs could help us discover10

new functional elements in the HIV genome.11

In infinitely large populations, deleterious mutations are present at a constant frequency equal to u/s,12

where u is the mutation rate from wild-type to the mutant and s is the selection coefficient that reflects the13

negative fitness effect, or cost, of the mutation [13, 14]. In natural populations of finite size, however, the14

frequency of mutations is not constant; instead it fluctuates around the expected frequency of u/s, because15

of the stochastic nature of mutation and drift [13]. Due to these stochastic fluctuations of frequencies, it16

is impossible to accurately infer the strength of selection acting on individual mutations (i.e., their cost)17

from a single observation of a single (finite size) population. This is why most approaches based on the18

frequencies of mutations have to aggregate mutations in groups so that a distribution of frequencies (the19

”site frequency spectrum”) can be analyzed and compared between groups of mutations. This approach can20

therefore never lead to fitness estimates of individual mutations. Alternative approaches to assess fitness21

effects are mostly based on (1) phylogenetic or entropy-based approaches which use between-population22

or between-species differences (substitutions) as opposed to within-population variation [15–21] or (2) they23

use in vitro systems to measure fitness effects (e.g., times series or competition experiments in cell culture24

[22–26]). These approaches have their limitations. The phylogenetic approaches estimate fitness costs over25

very long timescales, and it is unclear how relevant those estimates are for current viral populations. The26

entropy-based methods focus on fairly small subsets of common mutations and exclude the vast majority of27
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mutations because they are rare. Regarding the approaches based on in vitro systems, it is unclear whether28

fitness costs are similar to in vivo fitness costs.29

HIV has unique properties that allow us to study fitness effects in vivo: It is fast evolving [27–31] and leads30

to persistent infections [32–34]. This means that genetic diversity accumulates quickly and independently31

in every host, and samples from different patients can thus be treated as independent replicate populations32

[35, 36]. By aggregating data on the exact same mutation from many patients, the mean frequency of the33

mutation will approach u/s and can therefore be used to estimate its fitness cost, because the fluctuations34

in mutation frequencies represent an ergodic process [37]. Based on this logic, we present a novel approach35

that uses observed mutation frequencies in many HIV-infected patients to determine the fitness effects of36

mutations in vivo. For this analysis, we assume that there are no epistatic interactions and that selection37

coefficients and mutation rates do not vary between patients. A variation of this approach was employed in38

parallel to us by Zanini et al. to estimate HIV fitness values from nine infected patients [31]. Reassuringly39

our basic results overlap with Zanini et al.; here we also report on novel genomic insights obtained by our40

method.41

In the current study, we demonstrate the utility of this new approach. We focus on transition mutations42

(A↔G and C↔T) in 870 sites of the pol gene, which encodes HIV’s protease protein and part of the43

reverse transcriptase (RT) protein, in 160 patients infected with HIV-1 subtype B. Transitions are much44

more common in HIV than transversions [29], and thus sufficient data are available for these mutations; we45

focus on the pol gene because it is highly conserved and its products experience less direct contact with the46

immune system than the exposed product of the much more variable envelope (env) gene [32,33]. Finally, we47

excluded mutations at drug resistance-related sites, because the samples we use came from patients receiving48

several different treatments. Accordingly, we expect that the mutations that we did include in our study are49

deleterious.50

We report that this proof-of-concept of our in vivo frequency-based approach allowed us to quantify51

known properties of mutational fitness costs (such as differences between synonymous, non-synonymous and52

nonsense mutations), and it also revealed novel insights into the evolutionary constraints of the HIV genome53

(such as the surprising cost of mutations that form a CpG site and of G→A and C→T mutations). The54

fitness effects are surprisingly independent of the location in the gene (although we do find a small difference55

between mutations in RT versus mutations in protease). Because we study a large number of mutations,56

it was possible to determine how characteristics of mutations affected their costs in more detail than has57

previously been possible. Our results demonstrate the power of analyzing mutant frequencies from in vivo58

viral populations to study the fitness effects of mutations.59

2 Results60

2.1 Data are consistent with model assumptions61

An important assumption for the proposed method is that the mutation frequencies are drawn from indepen-62

dent populations (each patient harbors an independent HIV population) that are in mutation-selection-drift63

equilibrium. This assumption could be violated if the subtype B epidemic in the United States is not in64

mutation-selection-drift equilibrium and if samples were taken soon after a person was infected. In that case,65

several patient samples may share high frequency variants of a mutation, which violates the assumption of66

independence. To minimize the potential confounding effect of shared high frequency variants, we removed67

all site/patient combinations where the mutant frequency of the sample from the first time point for a patient68

was not 0% . This filtering step removed 6% of the data.69

A further assumption of our approach is that within-patient populations are in mutation-selection-drift70

balance. We tested whether the data were consistent with this assumption. For each site, we used the71

mean frequency of the mutant and the mutation rate estimate from Abram et al [29, 38] to estimate the72

selection coefficient. With this point estimate of the selection coefficient, the nucleotide-specific mutation73

rate estimate from Abram et al [29, 38] and a population size of N = 5, 000, we ran individual-based74

simulations to create 160 population frequencies for the given mutation (following [35]). Next, we sampled75

from these simulated populations using the sample sizes of the real data. The resulting simulated sample76

frequencies were then compared with the observed sample frequencies using a Mann-Whitney test. At 91%77

of the sites, the simulated frequencies were not significantly different than the observed frequencies, using 5%78
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significance level. The remaining 9% may be governed by epistasis or may be adaptive, or may have different79

fitness effects in different patients, so that mutation-selection balance may not describe the dynamics of80

these mutations well. We repeated this analysis for a range of population sizes and found very similar results81

(results not shown). This result gives us confidence that the mutation-selection-drift equilibrium describes82

the actual dynamics in the patients well (see figure 1).83
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Figure 1: Different frequency patterns of synonymous, non-synonymous and nonsense muta-
tions. As expected, in the HIV pol gene, synonymous mutations occurred more frequently than non-
synonymous mutations, which occurred more frequently than nonsense mutations, which were not observed
at all. A) First row: Single-site frequency spectrum for three sites in the HIV protease protein (sites 172,
173 and 174). Second row: simulated data based on estimated selection coefficients. B) Mean mutation
frequencies for all sites, ordered by mutation frequency.
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2.2 A clear difference between the costs of synonymous, non-synonymous and84

nonsense mutations85

Now that we are confident that our main model assumptions hold, we compared mutation frequencies86

for the three main classes of mutations: synonymous, non-synonymous and nonsense mutations. As an87

example, we show the observed and simulated frequency spectra at all three nucleotides of codon 58 of the88

protease protein, which comprises nucleotides 172 through 174 (Fig. 1A). The transition mutation at the first89

position (172) creates a premature stop codon. As expected for a lethal mutation, this nonsense mutation90

was never observed in the data and thus has a frequency of zero in all patients. A transition mutation at91

the second codon position (173) leads to an amino acid change (glutamine to arginine), and also creates a92

CpG dinucleotide. This mutation was found at low frequencies in some patients (between 0 and 4%). The93

average frequency was 0.001, suggesting a selection coefficient of 0.011. A synonymous mutation at the third94

position of the codon (174) was observed at a wide range of frequencies (mean frequency 0.008, estimated95

selection coefficient 0.007, see Fig. 1A). The simulated data for all three nucleotides are shown in blue in96

the second row of the figure.97

The pattern that synonymous mutations are found at higher frequencies than non-synonymous mutations,98

which were found at higher frequencies than nonsense mutations was seen in the entire dataset. To illustrate99

this, we ordered all sites according to observed mutation frequencies and plotted the three categories of100

mutations in three colors (Fig. 1B). The distributions of the mean frequencies for each of the three main101

categories of mutations were significantly different (one-sided two-sample Wilcoxon test, p < 2.2 · 10−16 for102

nonsense vs non-synonymous mutations and for non-synonymous vs synonymous mutations; Fig. 1B). All103

nonsense mutations had an average frequency of zero, and so did some non-synonymous mutations. Most104

non-synonymous mutations had a lower frequency than synonymous mutations (80% of non-synonymous105

mutations were present at a frequency lower than 0.002, whereas 82% of synonymous mutations were present106

at a frequency higher than 0.002). This difference in distributions probably reflects the higher cost of non-107

synonymous mutations, which are more likely to directly affect virus replication. This analysis therefore108

provides a proof of principle that our approach works: The observed frequencies reflect the relative costs we109

would expect for these broad categories of mutations.110

2.3 GLM shows costs associated with mutations that create new CpG dinu-111

cleotides, G-A and C-T mutations and mutations that lead to drastic amino112

acid changes.113

To determine how various mutation characteristics affect observed frequencies of synonymous and non-114

synonymous mutations, we fit a generalized linear model (GLM). Nonsense mutations are excluded for this115

analysis because they were never observed (all frequencies were zero). The advantage of using a GLM is that116

we can directly analyze raw counts as opposed to frequencies. This approach automatically gives more weight117

to patients for whom we have more sequences, and it allows us to investigate several effects simultaneously118

(see Methods). The effects we considered were 1. whether a site is part of protease vs. reverse transcriptase,119

2. the shape value (an experimentally determined measure of RNA secondary structure [39]), 3. the ancestral120

nucleotide (A, C, G or T), 4. whether a mutation is synonymous or non-synonymous, 5. whether a mutation121

would create a new CpG site and 6. whether a mutation leads to a drastic amino acid change or not. Amino122

acid changes were considered drastic when the transition changes the encoded amino acid from one major123

amino acid group (positively charged, negatively charged, uncharged, hydrophobic and special cases) to124

another (see Methods). The GLM results are shown in Table 1 and Fig 2. We used estimated mutation rates125

from Abram et al [29,38] and the mutation-selection formula (f = u/s) to translate the observed frequencies126

into selection coefficients (costs).127

As we saw previously, non-synonymous mutations have lower frequencies than synonymous mutations128

(line 9 in Table 1, p < 0.001), which means that they are more costly. We will now look into synonymous129

and non-synonymous mutations in more detail.130
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Figure 2: Predicted and observed mutation frequencies for different mutation classes. Mutation
frequencies as predicted by the generalized linear model (large dots) and observed frequencies (small dots).
The horizontal lines show the standard errors from the GLM. The graph shows the model predictions for
synonymous and non-synonymous mutations that do not involve a drastic amino acid change and either form
CpG sites (blue) or do not (green). In addition, for non-synonymous mutations, predictions are shown for
mutations that involve a drastic amino acid change and either form CpG sites (light red) or do not (yellow).

CpG sites131

Among synonymous mutations, a strong effect was associated with whether or not a mutation created a132

new CpG dinucleotide site. A→G mutations and T→C mutations that created new CpG sites were found133

at significantly lower frequencies than A→G mutations and T→C mutations that did not (p < 0.001,134

line 7 in Table 1) (note that G→A and C→T mutations cannot create new CpG sites). Using model-135

predicted frequencies and known mutation rates, we find that CpG-creating synonymous mutations are 2136

times more costly (selection coefficient appr. 0.004 for both A→G mutations and T→C mutations), than137

the corresponding non-CpG-creating synonymous mutations (selection coefficient appr. 0.002 for both A→G138

mutations and T→C mutations). This finding is consistent with the hypothesis that CpG sites are costly139

for RNA viruses because they trigger the host antiviral cellular response [40–44].140

Non-synonymous mutations that create CpG sites are also found at lower frequencies than non-synonymous141

mutations that do no create CpG sites (Fig. 2). However, the effect of creating a CpG site is not as strong142

in non-synonymous sites as it is in synonymous sites leading to a positive GLM coefficient (lines 13 and 14143

in Table 1, p < 0.001. The difference in frequencies shows that, among mutations that do not lead to a144

drastic amino acid change, A→G mutations that create a CpG site are approximately one-and-a-half times145

more costly than those that do not (0.0039 vs 0.0028).146

Ancestral nucleotide147

We also found an effect of the nucleotide in the consensus sequence (i.e., the presumed ancestral nucleotide):148

synonymous G→A mutations were observed at higher frequencies than the other mutations (line 6 Table149

1), but given their high mutation rate, their frequencies were actually lower than expected. We could not150

test whether this effect was significant using the GLM framework, but a one-sided two-sample Wilcoxon151

test showed that the difference in estimated selection coefficients for G→A mutations and non-CpG-forming152

A→G mutations was highly significant (p = 5 · 10−9). Indeed, the estimated selection coefficients based153

on model predictions suggested that synonymous G→A mutations are two-and-a-half times as costly as154
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Table 1: Predictors of frequencies for mutations in the pol gene, estimated using a generalized
linear model (GLM). The intercept (*) is estimated for synonymous, non CpG-forming A→G mutations
in protease with shape value 0. The predicted frequency for such mutations is therefore e−5.2 which equals
0.0055, as indicated in the last column(**). Row 2-15 of the table lists the effects of changing attributes
of the mutation, which is why A→G mutations are not explicitly listed in the table. To estimate predicted
frequencies for a particular class of mutations from the table, the relevant coefficient estimates must be
summed, then exponentiated. For example, the predicted frequency of a synonymous, A→G mutation in
protease with shape value 0 that would create a CpG site is e−5.2−0.664 (taken from line 7), alternatively,
one could calculate this predicted frequency as 0.0055 ∗ (1− 0.49) = 0.0028. For a site that is CpG forming
and non-synonymous, we have to add the estimates from lines 9 and 13 to get e−5.2−0.664−0.345+0.358 or
0.0055 ∗ (1 − 0.49) ∗ (1 − 0.29) ∗ (1 + 0.43) = 0.0029. For the continuous shape parameter, the value of the
shape parameter for a given site should be multiplied by 0.168 (line 2) and then exponentiated, e.g., for a
shape value of 0.5, the predicted frequency is e−5.2−0.5∗0.664 = 0.0060.

Estimate Std. Error z value Pr (> | z |) Effect

1 (Intercept) -5.199* 0.035 -147.037 0.000 0.0055**
2 In reverse transcriptase 0.096 0.023 4.223 0.000 +10%
3 Shape 0.168 0.037 4.556 0.000 +18%

4 T→C 0.013 0.039 0.339 0.734 +1%
5 C→T 0.104 0.054 1.940 0.052 +11%
6 G→A 0.720 0.040 18.134 0.000 +105%
7 CpG-forming -0.664 0.058 -11.520 0.000 −49%
8 T→C:CpG-forming 0.029 0.093 0.315 0.753 +3%

9 Non-syn -0.345 0.037 -9.460 0.000 −29%
10 T→C:Non-syn -0.375 0.062 -6.017 0.000 −31%
11 C→T:Non-syn -1.036 0.083 -12.456 0.000 −65%
12 G→A:Non-syn -1.124 0.058 -19.496 0.000 −65%
13 Non-syn:CpG-forming 0.358 0.090 3.995 0.000 +43%
14 T→C:Non-syn:CpG-forming 0.330 0.153 2.156 0.031 +39%
15 Drastic amino acid change -0.691 0.034 -20.394 0.000 −50%

non-CpG-forming A→G mutations (0.0048 vs 0.002). For synonymous C→T mutations, their frequency is155

not significantly different from the frequency of synonymous, non-CpG-forming A→G mutations (see line 5156

in Table 1), but because their mutation rate is about double the mutation rate of A→G mutations, their157

estimated cost is two times as high as for non-CpG-forming A→G mutations (0.0039 vs 0.002 , p = 4 ·10−05),158

see Fig. 2 and Fig. S5. We find qualitatively similar results when we use mutation rates from [31].159

Among non-synonymous mutations, we also found a strong effect of the ancestral nucleotide: C→T and160

G→A mutations are both more costly than A→G and T→C mutations (Fig. 2). Again, we could not161

use the GLM framework to test whether this difference was significant, but one-sided two-sample Wilcoxon162

tests showed that the difference in estimated selection coefficients was highly significant (p = 4 · 10−6 for163

C→T and p = 3 · 10−5 for G→A mutations when compared with A→G mutations). We estimated that,164

among non-synonymous mutations that do not involve a drastic amino acid change nor create a CpG site,165

C→T mutations are five-and-a-half times more costly than A→G mutations (0.0157 vs 0.0028), and G→A166

mutations are seven times more costly than A→G mutations (0.021 vs 0.0028), see Fig. 2 and Fig. S5.167

Drastic amino acid changes168

Mutations that led to a drastic amino acid change were found at lower frequency than mutations that did169

not (p < 0.001). For example, A→G mutations that result in a drastic amino acid change are roughly twice170

as costly as A→G mutations that do not (0.0057 vs 0.0028). We observed similar fold changes for the other171

possible transitions (Fig. 2).172
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Other effects173

Mutations in the RT portion of the gene had slightly higher frequencies than those in the protease portion174

(p < 0.001, line 2 in Table 1), suggesting that they are somewhat less costly. Similarly, our model predicts175

a small but significant effect of the shape value (p < 0.001, line 3 in Table 1), an experimentally determined176

measure of RNA secondary structure [39]. Specifically, sites with a higher shape value (i.e., those less likely to177

be part of an RNA structure) were associated with higher mutation frequencies (suggesting lower mutational178

costs), presumably because the secondary structure of the RNA molecule plays a functional role in HIV179

replication [39] (see Table 1).180

2.4 Effects not captured by the GLM181

Outliers. We asked whether we could use our results to find individual sites at which mutations are more182

costly than expected based on our current knowledge of the HIV genome. However, if we do a simple outlier183

analysis and focus on, say, the 5% most costly sites overall in our dataset, we will find that these are all184

the nonsense mutations, plus some mutations that lead to drastic amino acid changes and create CpG sites.185

Such analysis by itself is not very interesting, since our GLM analysis already revealed these results. Instead,186

we first grouped the sites in nine groups according to the GLM results (see Methods) and then to look at the187

outliers (5% highest selection coefficient values) within each of these groups. We made a table of all outliers188

(see Suppl. materials). We found that a few amino acids show up in the outlier list more than once, but189

this is not surprising, given that our dataset only comprises a few hundred amino acids. The vast majority190

of these sites do not have a known function; a select few are near the active site of the protein. In future191

work, it will be worth following up on those positions in pol.192

Amino acid identity. The nature of the amino acid change (drastic or not) and the ancestral nucleotide193

in the consensus sequence both had an effect on costs. In addition, we found that many of the most costly194

non-synonymous mutations were associated with a small number of amino acid changes starting from glycine195

(G) and proline (P). This is consistent with our knowledge of protein structure: glycine and proline are often196

unique and irreplaceable, as the only cyclic and smallest amino acid, respectively. The triplets that encode197

these two amino acids are C and G rich (CCN for proline and GGN for glycine) which may partially explain198

why G→A and C→T mutations are costly. Fig 3 shows the cost of non-synonymous changes ordered by199

ancestral and mutant amino acid. Contrary to our results, Zanini et al. [31] (figure S7) found other amino200

acids (tryptophan (W), tyrosine (Y), cysteine (C), and also proline (P)) to contribute most to the cost,201

but this difference is likely due to the fact that they considered all possible mutations including nonsense202

mutations and synonymous mutations, which lowers the average cost of amino acids encoded by codons with203

synonymous mutations and increases the cost of amino acids encoded by codons with nonsense mutations.204

For example, tryptophan (encoded by only one codon, TGG) has no synonymous mutations and two of the205

three possible transitions lead to a stop codon, which makes it very costly compared to other amino acids206

in the Zanini analysis [31]. This might explain the discrepancy between our analyses.207

No effect of location in the pol gene. We were interested to see whether fitness costs were distributed208

evenly along the pol gene or whether some parts of the gene harbored clusters of sites with particularly high209

cost mutations as was found by other studies [17]. We plotted the fitness cost point estimates along the length210

of the pol gene (i.e., the sites for which we have data) (see Fig. 4). We colored sites according to whether211

the transition mutation we considered was synonymous or non-synonymous, and the latter group was split212

into G-A and C-T mutations in light red and A-G and T-C mutations in dark pink. Visually, it is clear that213

there is no strong effect of location on fitness cost. There are no clear stretches of particularly high or low214

costs. We tested whether there was a statistically significant effect of location using a randomization test215

and we did this separately for synonymous and non-synonymous mutations using a sliding window approach216

(see Methods). We found no effect of location, although sites within the same codon did have correlated217

fitness costs.218

2.5 Parameters for gamma distribution of fitness effects219

In addition to the characteristics that determine the fitness costs of individual mutations, we investigated the220

distribution of fitness effects (DFE). This distribution is of interest to the evolutionary biology community221

because it affects standing genetic variation, background selection, and optimal recombination rates [16].222
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Figure 3: Distribution of estimated selection coefficients by amino acid replacements. Many of
the most costly mutations are concentrated at a few amino acids (e.g., P (proline) and G (glycine)). The
selection coefficients shown are calculated directly from mean mutation frequencies and mutation rates using
the mutation-selection balance formula, f = u/s.

Moreover, the DFE affects the evolvability of a population: A DFE weighted toward neutral and adaptive223

mutations may reflect a population with more capacity to evolve. Many viruses, however, have been found224

to have a DFE composed mainly of deleterious and lethal mutations. To determine the DFE of the pol gene225

in HIV, we used the fitness cost point estimates for synonymous and non-synonymous mutations (including226

nonsense mutations) for each of the ancestral nucleotides (Fig. 5). Overall, there were few very deleterious227

and lethal mutations, except for non-synonymous C→T and G→A mutations and nonsense mutations. This228

is, at least partly due to the fact that we only consider transition mutations. We also estimated parameters229

for the gamma distribution that best describes the entire DFE (Table 2). These parameters can be used230

in studies of background selection and in other studies that involve simulations of evolving populations.231

We performed this analysis also for two other datasets with pol sequences for multiple patients (the Zanini232

dataset [45] and the Lehman [46], see Methods and suppl. materials).233

-2.25in0in

Table 2: Parameters for the gamma distribution of fitness effects for transition mutations in pol
in 160 HIV-infected patients from the Bacheler et al. dataset, reflecting scale (κ) and shape
(θ). The ’fraction lethal’ is the fraction of the mutations that had a mean frequency smaller than or equal
to the mutation rate, so that they are estimated to be lethal.

Mut Rates from Abram 2010 Mut rates from Zanini 2016
Num. sites Fraction lethal κ θ κ θ

870 0.082 0.334 0.275 0.327 0.333
(0.066, 0.099) (0.257, 0.411) (0.265, 0.289) (0.267, 0.388) (0.321, 0.348)
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Figure 4: Estimated selection coefficients for transition mutations along the pol gene. Point
estimates for the selection coefficients for each transition mutation along the pol gene. Synonymous mutations
are shown in yellow, non-synonymous mutations are shown in light red (C→T or G→A mutations) and dark
pink (T→C or A→G mutations), nonsense mutations are shown in black. This plot illustrates that estimated
selection coefficients do not appear to be affected by location in the gene. Note that these histograms include
mutations that create CpG sites and those that don’t, which means that the effect that G→A and C→T
mutations are more costly than non-CpG forming A→G mutations is not visible in this figure.
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Figure 5: Distribution of fitness costs as estimated from mutation frequencies using the
mutation-selection balance formula (f = u/s). Most synonymous mutations (left panel) have very
low selection coefficients. For non-synonymous mutations (right panel), selection coefficients are higher, es-
pecially for C→T and G→A mutations. Dashed vertical lines indicate median selection coefficients. Note
that the scales of the y-axes differ between the individual plots.
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2.6 Relationship between mutation frequencies within patients and within the234

global subtype B epidemic235

Next, we wanted to determine how well the observed within-patient mutation frequencies correspond with236

worldwide HIV mutation frequencies. All sequences in the Bacheler et al dataset belonged to HIV-1 subtype237

B, which is the most studied HIV-1 clade. We assembled a comparison set of HIV-1 subtype B sequences238

from treatment-naive patients using the Stanford HIV Drug Resistance database (HIVdb); this set contained239

23,742 protease sequences and 22,785 reverse transcriptase sequences [47]. Fig 11 shows the correlation240

between average within-patient mutation frequencies from the 160 patients analyzed in this study and global241

mutation frequencies calculated from the HIVdb dataset. A high correlation coefficient was detected when242

comparing all 870 sites (Spearman’s rank correlation coefficient ρ = 0.68), showing concordance between243

mutation frequencies within patients and in the global subtype B epidemic. Similarly, Zanini et al [31]244

found that fitness costs were anti-correlated with subtype diversity (Spearman’s rank correlation coefficient245

ρ = −0.59)246

Discussion247

Our fitness cost inference approach is based on the simple but highly powerful notion that mutation fre-248

quencies are in mutation-selection balance. We began by validating the approach. First, as expected, we249

found a clear separation of observed frequencies for synonymous, non-synonymous and nonsense mutations250

(Fig. 1). Second, we found that inferred costs of drastic amino-acid alterations were higher than those of251

non-drastic changes (Fig. 2). This matches biological knowledge, and has been observed when analyzing252

long-term evolution [48,49]. To the best of our knowledge this is the first report that physicochemical differ-253

ences in amino-acids directly affect short term evolution as occurring during within-host evolution (but see254

[50]). These validations allowed us to focus on novel insights obtained by the method. First, we found that255

mutations that created new CpG dinucleotides were twice as costly as mutations that did not. Although256

it has been known for a while that CpG sites are depleted in genomes of HIV [42, 51, 52] and other RNA257

viruses [40–43], this is the first report suggesting strong selection operating against the de novo creation of258

CpG sites via mutation, to the extent that even one more CpG causes a fitness cost. Indeed, just recently it259

has been reported that HIV viruses with multiple CpGs in their genome are actively detected by an innate260

immune enzyme called ZAP, leading to inhibition of viral replication [44]. Our results hence suggest that this261

line of defence is particularly potent in driving the evolution of HIV, at the resolution of single nucleotide262

changes. Our next surprising finding was the substantial difference in fitness cost depending on which of263

the four nucleotides was altered. In particular, G→A and C→T mutations were two to seven times more264

costly than A→G mutations (discussed below). Thus, although we analyzed only a small part of the HIV265

genome using a dataset with limited sequencing depth, we succeeded in recovering and quantifying many266

known properties of mutational fitness costs, as well as discovering novel findings. Our data also allowed267

us to estimate parameters of DFEs, which will be useful for future studies on the evolutionary dynamics of268

HIV populations (Fig. 5, Table 2). Finally, we found that within-patient frequencies and global frequencies269

in the subtype B clade were very similar (Spearman’s rank correlation coefficient ρ = 0.68), suggesting that270

fitness costs are largely similar both within patients and across the pandemic.271

Comparison with other studies in viruses272

In general, our results are consistent with those from a recent study on HIV-1 evolution by Zanini et al273

[31], based on a dataset described previously by the same authors [45]. Notably, both studies found a clear274

separation between synonymous and non-synonymous mutation frequencies, and these frequencies correlated275

well with global HIV diversity. Our study went on to find several novel insights. It should be noted that the276

proportion of lethal mutations estimated in our study (5.9%) is low compared to proportions from [31] and277

from in vitro studies on viral coding sequences (reviewed in [53]). For example, Sanjuan et al [22] found that278

40% of random mutations in the RNA vesicular stomatitis virus were lethal. Similarly, a study by Rihn et279

al [54] of the HIV capsid found that 70% of non-synonymous mutations were lethal, which corresponds to280

around 47% of all mutations [54].281
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Several factors could explain why we found a lower proportion of lethal mutations as compared to other282

studies. First, even observed variants may represent inviable viruses, and for many sites in our dataset, the283

bootstrapped confidence intervals include lethality (data not shown). Second, we only considered transition284

mutations, whereas transversions may be more frequently lethal, as they are more often non-synonymous,285

more likely to lead to drastic amino acid changes, and more likely to create premature stop codons, due to286

the nature of the genetic code. Third, sequencing or amplification (PCR) errors may obscure our results.287

Many low-frequency variants in our dataset were only observed once, and it is possible that some of these288

were not true variants; we may thus have underestimated the percentage of lethal mutations. Fourth, we289

looked only at one gene, and this gene may have a different fitness landscape than other parts of the viral290

genome. Finally, different environments (in vitro vs in vivo) or different genetic backgrounds (usually one291

genetic background in the in vitro studies vs many in in vivo studies) may explain the observed differences.292

Future studies with more sequences and more sites will have better power to determine the true proportion293

of lethal mutations in HIV in vivo.294

High costs of G→A and C→T mutations295

Among synonymous and non-synonymous mutations, we found G→A mutations to be two-and-a-half to296

seven times more costly than A→G mutations. C→T mutations were found to be two to five and a half297

times more costly than A→G mutations. We suggest three hypotheses to explain these initially surprising298

results: 1. They could be an artifact caused by spurious mutation rate estimates, 2. This could be due to299

mutation bias present in HIV genomes, 3. This could represent a form of APOBEC3 hypermutation. We’ll300

discuss these in the following paragraphs.301

(1) Mutation rates estimates. We note that synonymous G→A mutations are present in our data at302

higher frequencies than A→G mutations (see Fig. 2. Naively, this would suggest that they are less costly.303

However, the G→A mutation rate is estimated to be so high that the observed frequencies are actually lower304

than expected, which, in our model translates to high costs. Synonymous C→T are equally frequent as305

A→G mutations, but, because they have a higher mutation rate, we conclude that they must be associated306

with higher costs. Hence, the mutation rate estimates are key to these results. We have two sources for307

mutation rate estimates from two very different studies, Abram et al [29, 38] (in vitro estimates from cell308

culture) and Zanini et al [31] (in vivo estimates based on accumulation of synonymous mutations). Notably,309

in both of these studies, G→A mutations occur at a higher rate than other transition mutations, although310

in the Zanini study this difference is less pronounced (Fig. 12). Using mutation rates from one or the other311

study does not change our findings qualitatively. If however G→A and C→T mutation rate estimates are312

overestimated in both studies, we cannot rule out that fitness costs of these mutations are lower than what313

we estimate.314

(3) Second, the effect of costly G→A and C→T mutations might be related to a strong mutation bias315

in the HIV genome. G→A mutations are roughly five times more common than A→G mutations according316

to [29] and two and a half times more common according to [31] (Fig. 12 and Table 6). C→T mutations317

are twice as common as A→G mutations in according to both studies (see Table 6). Specifically, the G→A318

bias may have led, over long evolutionary timescales, to the well known A bias in the HIV genome [55, 56].319

Due to the strong mutation bias, sites at which having an A or G does not affect viral fitness would become320

A-biased over time. Thus, A sites would be enriched for (nearly) neutral sites, and G sites would be depleted321

of neutral sites, which could lead to G→A mutations being more costly, on average, than A→G mutations.322

A similar effect may be at play for C→T mutations, since here is also a T bias in the HIV genome, though323

it is not as strong as the A bias.324

(3) APOBEC3 hypermutation. The effect of costly G→A mutations may be related to the activity of325

APOBEC3 enzymes, which hypermutate the HIV genome, leading to an increased proportion of G→A mu-326

tations [57–60]. We checked whether our sequences are dramatically affected by APOBEC3 hypermutation.327

Visual inspection of neighborjoining trees for each patient showed that there were no pol sequences that328

were hypermutated. This is probably because hypermutated viruses are mostly non-viable, and unlikely to329

show up when genetic material from viral particles is sequenced, which is what the current study is based330

on. However, APOBEC3 may also have a milder effect of slightly increasing the number of G→A mutations331

in the genome. The G→A mutations we observe could be linked to other G→A mutations in the genome,332

outside the sequenced region of pol. Together, these G→A mutations could be more deleterious than a single333
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A→G mutation (which we use for comparison). This could explain why the observed G→A mutations in334

our study are more costly.335

Study limitations336

One limitation of our study is that we focused on a small region of the HIV genome, namely 870 sites of337

the pol gene [61]. Because the patients in the Bacheler et al study were treated with a variety of antiviral338

treatments, we had to exclude drug resistance positions, as they would have been under positive selection in339

some of the patients. To study the costs of resistance mutations, it would be necessary to analyze samples340

from untreated patients [31]. Furthermore, is unknown how long the patients in our dataset were infected341

before samples were collected. If samples were taken soon after infection, genetic diversity in the viral342

population may have been low, and frequencies of some mutations may have been lower than the expected343

f = u/s, resulting in overestimates of the selection coefficients. A second limitation is that we assumed344

one mutation rate for all A→G mutations, and one rate for all C→T mutations, etc. However, evidence345

exists that mutation rates vary along the genome, which would mean that selection coefficient estimates for346

individual mutations may be unreliable [62,63].347

Finally, our in vivo frequency-based approach did not allow us to study epistatic interactions between348

mutations. Recent work on HIV, however, shows that epistatic interactions may be important. For example,349

such interactions play a role in determining the mutational pathway that the virus uses to escape cellular350

immunity [64] and to develop drug resistance [25, 65, 66]. It is currently unclear how the costs of mutations351

as determined in this study depend on their genetic background and further studies need to be designed that352

combine the strengths of our approach to study costs of virtually all mutations in vivo, with the strengths353

of other approaches to study epistatic effects between common mutations.354

Outlook355

The current study should be seen as a proof of concept of our in vivo frequency-based approach. Our356

results demonstrate the power of analyzing mutant frequencies from in vivo viral populations to study the357

fitness effects of mutations. We hope that soon this method will be applied to the entire HIV genome and358

the genomes of other fast-evolving microbes. For HIV specifically, we expect that patient samples with359

high viral loads will be sequenced much more deeply than in any of the studies analyzed in this article.360

Transversion mutations can then be analyzed in addition to transition mutations. Such a dataset will allow361

us to get a more fine-grained and precise picture of the costs of mutations at individual sites across the362

entire HIV genome, including for mutations in other genes and non-coding regions of the virus and for drug363

resistance mutations in pol and elsewhere. Because our method makes it possible to estimate in vivo costs,364

the results will contribute to our understanding of drug resistance evolution and immune escape and may365

also contribute to vaccine design.366

Methods367

Description of the data/filtering368

We used sequences from a dataset collected by Bacheler et al. [61], a study that focused on patients in three369

clinical trials of different treatments, all based on efavirenz (a non-nucleoside RT inhibitor) in combination370

with NRTIs (nucleoside RT inhibitors) and/or protease inhibitors. The treatments in this study were not371

very effective, in part because some patients were initially prescribed monotherapy, which almost always372

lead to drug resistance, and in part because patients had previously been treated with some of the drugs,373

so their viruses were already resistant to some components of the treatment. Viral loads in these patients374

were typically not suppressed, which made it possible to sequence samples even during therapy. We have375

previously used part of this dataset to study soft and hard selective sweeps [35].376

The Bacheler et al. [61] samples were cloned and Sanger-sequenced. For each patient, all available377

sequences were treated as one sample, even when they came from different time points. Patients with less378

than five sequences were excluded from the analysis, leaving us with a median of 19 sequences per patient for379

160 patients (3,572 sequences in total). Sequences were 984 nucleotides long and were composed of the 297380
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nucleotides that encode the HIV protease protein and the 687 that encode the beginning of RT. We excluded381

75 drug resistance–related sites [67] and 39 protease sites that overlap with gag, leaving 287 synonymous,382

555 non-synonymous and 28 nonsense mutations, for a total of 870 sites. Sequences were retrieved from383

Genbank under accession numbers AY000001 to AY003708.384

Calculation of mutation frequencies385

To identify mutations, we compared the sequences to the HIV-1 subtype B reference sequence, also known386

as the HXB2 sequence (Genbank accession K03455). We will refer to this reference sequence as the wildtype387

(WT) or ancestral sequence. To make sure that mutations in founding viruses with which patients got388

infected not skew our results, we added a filtering step. For each patient, sites are only included if all389

sequences from the first sampling time point for that patient carry the same nucleotide as the reference B390

WT sequence. This filtering step removed 6% of the data. We only considered transition mutations (A↔G391

and C↔T), excluding transversion mutations. For example, for a site with an A in the reference sequence,392

the frequency of a transition mutation was calculated for each patient as the number of sequences with a G393

divided by the number of sequences with a G or an A. Sequences with a C or a T were thus not considered394

at all if the reference sequence had an A in that position. In addition, if, in a given sequence, there was395

more than one mutation in a triplet, this triplet was removed for that specific sequence, so that all mutations396

could be clearly classified synonymous, non-synonymous or nonsense. Occasionally this meant that a sample397

from a patient had to be excluded for a given site, so for some mutations we had fewer than 160 frequencies398

to analyze.399

Selection coefficients were estimated for each mutation by dividing the nucleotide-specific mutation rate400

by the observed average frequency (based on the mutation-selection balance formula f = u/s). We used401

mutation rates as estimated by Abram et al. [29, 38].402

Sliding window approach to determine location effect403

This analysis aims to determine whether sites that are in close proximity to each other have more similar404

fitness costs than expected. If the window size is 10, then we first consider the first 10 non-synonymous sites405

in the pol gene and we calculate the mean fitness effect of the mutations in that window (window mean).406

We then slide with step size 1 to sites 2 to 11 and again calculate the window mean fitness effect etc. In407

this manner we slide from the beginning to the end of the sequence and once we have all window means, we408

calculate the variance of the window means. If high cost sites are clustered spatially, than the mean fitness409

is high in some windows but low in others and the variance of the window means will be relatively high. We410

compared the variance of window means with the null expectation of no spatial clustering. To obtain a null411

expectation, we randomized the location of all positions, while keeping the sequence the same (e.g., each412

non-synonymous G-A mutation would be swapped with another non-synonymous G-A mutation). For the413

resulting randomized datasets we also calculated the variance of the window means. We then compared the414

range of variances obtained from 1000 randomizations with the variance from the real data. For synonymous415

sites, the observed variance of window means was never significantly higher than the variance of window416

means of randomized datasets, for a wide range of window sizes (2-100), which shows that there is no evidence417

for any location effect for synonymous sites, in other words, there are no stretches of low or high fitness cost418

mutations.419

For non-synonymous sites, we found that the variance of window means for the real data was often higher420

than the variance of window means for the randomized data, which suggests that, for non-synonymous sites,421

there are stretches of the pol gene with higher fitness costs and stretches with lower fitness costs. We422

hypothesized that this was due to the fact that two neighboring nucleotides within a codon, will affect the423

same amino acid, and if that amino acid is important for the fitness of the virus, then mutations at both of424

the nucleotides will be particularly costly. To test this, we did a randomization test where we kept codons425

in tact, but randomized their location. For example, a codon that encodes for asparagine could be swapped426

with another codon that encodes for asparagine. We found that after this codon by codon randomization,427

we find the same variance of window means as we find in the original dataset. This shows that the location428

effect we see is mostly due to neighboring sites within codons.429
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Generalized linear model analysis430

Using a generalized linear model (GLM), we predicted mutant frequencies for certain categories of mutations431

(e.g., synonymous, non-CpG-forming, A→G mutations) and then used the mutation-selection formula (f =432

u/s) to predict the costs of these groups of mutations (see Fig. 10). Specifically, we fit a GLM where the433

response variable is whether a given nucleotide is WT or mutant, and this response variable is assumed to434

follow a binomial distribution, using the glm package in the R language [68]. The model we fit includes the435

nucleotide in the consensus sequence, its experimentally determined SHAPE value [39], whether or not the436

position was in the RT protein and the types of changes resulting from a transition at that position. These437

changes included whether a transition was non-synonymous, lead to a drastic amino acid change or formed438

a new CpG site. We used the following groups of amino acids and assumed that a change from one group to439

another was ’drastic’: positive-charged (arginine (R), histidine (H), lysine (K)), negative-charged (aspartic440

acid (D) and glutamic acid (E)), uncharged (serine (S), threonine (T), asparagine (N) and glutamine (Q)),441

hydrophobic groups (alanine (A), isoleucine (I), leucine (L), phenylalanine (F), methionine (M), tryptophan442

(W), tyrosine (Y) and valine (V)), the special amino acids (cysteine (C), glycine (G) and proline (P)).443

We also fit interactions between the ancestral nucleotides, whether a transition was non-synonymous, and444

whether the transition formed a CpG site.445

Note that for the GLM, actual counts were considered as opposed to frequencies. That is, if we have 20446

sequences for patient 1, and at a given nucleotide, we observe 2 As and 18 Gs, we used those counts. This447

approach automatically gives more weight to patients for whom we have more sequences. Each position in448

each sequence from each patient was treated as an independent observation.449

The GLM coefficients reported in table 1 can be used to predict the probability that a mutation is450

observed at a given site. For example, the intercept = (−5.2) means that a synonymous, non-CpG-forming451

mutation in protease at a site with A as WT has an probability of exp(−5.2) = 0.055 to be mutated, so its452

predicted frequency is 0.055. For a similar site that has T as WT, we need to add 0.013 to the exponent and453

find a probability of exp(−5.2 + 0.013) = 0.056.454

To explicitly test whether two categories of mutations with different mutation rates had different selection455

coefficients, we used a one-sided two-sample Wilcoxon test (also known as a Mann-Whitney test). This was456

necessary because a GLM can only test whether a mutant of a certain category is more likely to be present457

than a mutant of another category (i.e., has a higher frequency). We were interested, however, in whether458

a mutant of a certain category is more costly than a mutant of another category. For example, synonymous459

C→T mutations occur at a similar frequency as synonymous, non-CpG forming A→G mutations (see Table460

1, line 5), but because their mutation rates are quite different, we estimate that their costs are different. (see461

Fig. 10).462

Outlier analysis463

We grouped the sites first in nine groups according to the GLM results and then listed outliers (5% highest464

selection coefficient values) in each group.465

The groups used were:466

• synonymous, non-G, non-CpG467

• synonymous, non-G, CpG468

• synonymous, G469

• non-syn, A or T, no-CpG, no-drastic AA change470

• non-syn, A or T, CpG, no-drastic AA change471

• non-syn, A or T, no-CpG, drastic AA change472

• non-syn, A or T, CpG, drastic AA change473

• non-syn, C or G, no-CpG, no-drastic AA change474

• non-syn, C or G, no-CpG, drastic AA change475
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Estimating a gamma distribution to fit the distribution of fitness effects476

We fit a gamma distribution to the DFE (based directly on averaged frequencies at 870 sites and the477

mutation-selection balance formula f = u/s). Transitions that were never observed (frequency of 0) were478

not considered when fitting the gamma distribution. The most likely shape and scale parameters for the479

data were found using the subplex algorithm implemented in the R package nloptr [69] (see Table 2).480

Bootstrapped confidence intervals were created by resampling the data with replacement and re-estimating481

the gamma distribution parameters. Selection coefficients were estimated using the mutations rates given in482

Abram et al. [29, 38] and Zanini et al. [31].483

Comparison with the global epidemic484

A large HIV-1 sequence dataset was retrieved from the HIVdb (http://hivdb.stanford.edu/pages/485

geno-rx-datasets.html) [47]. This dataset contains a single sequence per patient. Protease and RT486

sequences were downloaded in separate files. Sequences that met the following criteria were included in the487

analysis: treatment-naive host status and classification as HIV-1 subtype B. In total, 23,742 protease and488

22,785 RT sequences were collected. Average mutation frequencies for each site were calculated as explained489

above (e.g., including only transitions, excluding triplets with more than one mutation). Spearman’s rank490

correlation coefficient (ρ) was used to quantify the correlation between within-patient and global mutation491

frequencies.492

Additional datasets493

In order to test how transferable our method is, we repeated parts of our analysis with the Zanini et al.494

dataset [45] and the Lehman et al. dataset [46].495

The Zanini [45] samples came from nine patients. There were multiple samples per patient (72 samples496

in total), typically collected at least a few months apart. Thus we followed Zanini et al in treating those497

samples as if they were completely independent. The sequencing method used was Illumina. We downloaded498

mutation frequencies for each sample (http://hiv.tuebingen.mpg.de/data/) and averaged frequencies499

across all 72 samples. The Zanini data cover the whole HIV genome, but we only considered the regions that500

overlap with the Bacheler data [61]. In addition, the Zanini data [45] contain sequences for different HIV501

subtypes (B, C and CRF01-AE); we only considered sites that were conserved between subtypes B, C and502

CRF01-AE and excluded resistance related sites so that 758 sites were analyzed. Mean mutation frequencies503

for all sites, ordered by mutation frequency are shown in Figure S1. The distribution of fitness effects is504

shown in Figure S3 and the estimated gamma distribution parameters in Table 5.505

The Lehman samples were 454-sequenced. The samples were collected at seroconversion and one month506

later, but we only included the time point one month after seroconversion in our analysis, as we expected507

that the samples from the earliest time point would contain almost no genetic diversity. The sequences span508

approximately 540 sites in the RT protein. The Lehman data [46] contained HIV subtypes B, C and A;509

we only considered sites that were conserved between subtypes B, C and A and excluded resistance related510

sites, so that 415 sites were analyzed. Mean mutation frequencies for all sites, ordered by mutation frequency511

are shown in Figure S2. The distribution of fitness effects is shown in Figure S4 and the estimated gamma512

distribution parameters in Table 5. The Lehman dataset [46] was downloaded from the NCBI website using513

accession number SRP049715 (www.ncbi.nlm.nih.gov/sra/?term=SRP049715).514
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Table 3: List of outlier sites with highest selection coefficients in protease. All sites were grouped
in 9 groups, then the 5% highest selection coefficients were recorded in each group.

WT MUT num HXB2 WTAA MUTAA bigAAChange CpG EstSelCoeff
49 g a 49 2301 G R 1 0 1.00
67 c t 67 2319 L L 0 0 0.02
79 g a 79 2331 G R 1 0 1.00
88 g a 88 2340 D N 1 0 1.00
99 a g 99 2351 L L 0 0 0.03

100 g a 100 2352 E K 1 0 1.00
112 t c 112 2364 L L 0 0 0.01
118 g a 118 2370 G R 1 0 1.00
124 t c 124 2376 W R 1 1 0.07
131 c t 131 2383 P L 1 0 1.00
141 a g 141 2393 I M 0 0 1.00
186 a g 186 2438 I M 0 0 0.09
202 g a 202 2454 G R 1 0 1.00
207 t c 207 2459 H H 0 0 0.03
218 g a 218 2470 G D 1 0 1.00
232 g a 232 2484 G R 1 0 1.00
235 c t 235 2487 P S 1 0 1.00
236 c t 236 2488 P L 1 0 1.00
270 g a 270 2522 L L 0 0 0.05
272 c t 272 2524 T I 1 0 1.00
278 t c 278 2530 I T 1 0 0.04
280 g a 280 2532 G S 1 0 1.00
287 c t 287 2539 T I 1 0 1.00
291 a g 291 2543 L L 0 0 0.02
293 a g 293 2545 N S 0 0 0.05

Figure 6: Fig S1: Mutation frequency for the Zanini dataset [45]. Mutation frequency for 758 pol
sites from the Zanini dataset [45], ordered by mutation frequency.
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Table 4: List of outlier sites with highest selection coefficients in reverse transcriptase. All sites
were grouped in 9 groups, then the 5% highest selection coefficients were recorded in each group.

WT MUT num HXB2 WTAA MUTAA bigAAChange CpG EstSelCoeff
301 a g 4 2554 I V 0 1 0.03
324 a g 27 2577 P P 0 1 0.02
337 c t 40 2590 P S 1 0 1.00
340 g a 43 2593 G R 1 0 1.00
344 t c 47 2597 M T 1 1 0.05
349 g a 52 2602 G S 1 0 1.00
355 a g 58 2608 K E 1 0 1.00
371 c t 74 2624 P L 1 0 1.00
377 c t 80 2630 T I 1 0 1.00
390 a g 93 2643 I M 0 0 1.00
409 t c 112 2662 C R 1 1 0.05
415 g a 118 2668 E K 1 0 1.00
438 t c 141 2691 I I 0 0 0.01
440 c t 143 2693 S L 1 0 1.00
442 a g 145 2695 K E 1 0 0.04
464 a g 167 2717 Y C 1 0 0.04
475 g a 178 2728 V I 0 0 1.00
485 t c 188 2738 I T 1 0 0.05
486 a g 189 2739 I M 0 0 0.03
518 t c 221 2771 L S 1 0 0.07
530 g a 233 2783 R K 0 0 1.00
535 c t 238 2788 L F 0 0 1.00
583 c t 286 2836 H Y 1 0 1.00
587 c t 290 2840 P L 1 0 1.00
592 g a 295 2845 G R 1 0 1.00
603 g a 306 2856 K K 0 0 0.08
607 a g 310 2860 K E 1 0 0.05
609 a g 312 2862 K K 0 0 0.01
611 c t 314 2864 S L 1 0 1.00
641 a g 344 2894 Y C 1 0 0.04
647 c t 350 2900 S L 1 0 1.00
652 c t 355 2905 P S 1 0 1.00
666 c t 369 2919 D D 0 0 0.01
680 c t 383 2933 T I 1 0 1.00
689 c t 392 2942 T I 1 0 1.00
745 c t 448 2998 P S 1 0 1.00
760 g a 463 3013 G R 1 0 1.00
771 a g 474 3024 A A 0 1 0.02
774 a g 477 3027 I M 0 0 0.03
786 c t 489 3039 S S 0 0 0.02
802 g a 505 3055 E K 1 0 1.00
806 c t 509 3059 P L 1 0 1.00
824 c t 527 3077 P L 1 0 1.00
825 a g 528 3078 P P 0 1 0.02
875 t c 578 3128 L S 1 0 1.00
949 g a 652 3202 D N 1 0 1.00
951 c t 654 3204 D D 0 0 0.01
973 c t 676 3226 P S 1 0 1.00
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Table 5: Table S1: Parameters for the gamma distribution of fitness costs for the Bacheler,
Zanini and Lehman datasets [45,46,61]. Parameters for the gamma distribution of fitness costs for pol
mutations based on mutation frequencies the Bacheler, Zanini and Lehman datasets, reflecting scale (κ) and
shape (θ). The ”fraction lethal” is the fraction of the mutations that had a mean frequency smaller than or
equal to the mutation rate, so that they are estimated to be lethal.

Sites Scale Shape Scale Shape Lethal

Bacheler 870 0.334 0.275 0.327 0.333 0.082
(0.257, 0.411) (0.265, 0.289) (0.267, 0.388) (0.321, 0.348) (0.066, 0.099)

Zanini 758 0.041 0.645 0.114 0.571 0
(0.037, 0.045) (0.605, 0.687) (0.098, 0.129) (0.535, 0.61) (0, 0)

Lehman 415 0.172 0.273 0.245 0.301 0.029
(0.107, 0.249) (0.25, 0.305) (0.182, 0.317) (0.278, 0.33) (0.014, 0.046)

Figure 7: Fig S2: Mutation frequency for the Lehman dataset [46]. Mutation frequency for 621
reverse transcriptase sites from the Lehman dataset [46], ordered by mutation frequency.
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Figure 8: Fig S3: Distribution of fitness costs for the Zanini dataset [45]. Distribution of fitness
costs for non-synonymous and synonymous mutations for the Zanini dataset [45]. Nonsense mutations are
included in the non-synonymous mutations. Note that the scale of the y-axis differs between the graphs.
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Figure 9: Fig S4: Distribution of fitness costs for the Lehman dataset [46]. Distribution of fitness
costs for non-synonymous and synonymous reverse transcriptase mutations from the Lehman dataset [46].
Nonsense mutations are included in the non-synonymous mutation category. Note that the scale of the y-axis
differs between the graphs.

Figure 10: Fig S5: Estimated selection coefficients for different mutation classes. Selection co-
efficients for transitions at every nucleotide site in the pol sequence show that CpG-forming mutations are
more costly than non-CpG-forming mutations and that mutations that involve a drastic amino acid change
are more costly than mutations that do not. Selection coefficients were estimated using a generalized linear
model and sequence data from 160 HIV-infected patients. Shown are predicted selection coefficients for
synonymous (left) and non-synonymous (right) mutations that do not involve a drastic amino acid change
and either create CpG sites (blue) or do not (green). For non-synonymous mutations, predictions are also
shown for mutations that do involve drastic amino acid changes and either create CpG sites (light red) or
do not (yellow).
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Figure 11: Fig S6: Correlation of within-patient mutation frequencies and global between-
patient subtype B mutation frequencies. A correlation (Spearman’s rank correlation coefficient ρ =
0.68) exists between average pol mutation frequencies at the within-patient level (in the 160 patients analyzed
in this study) and mutant frequencies in the global subtype B epidemic (23,742 protease and 22,785 reverse
transcriptase consensus sequences from the HIVdb [47]). Values shown on a log scale. Non-synonymous
mutations are shown in dark pink, synonymous mutations in yellow.
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Figure 12: Fig S7: Mutation rate estimates per replication from Abram et al. [62] as calculated
by Rosenbloom et al. [38] and mutation rate per day from Zanini et al. [31].
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Table 6: Table S2: Mutation rate estimates per replication from Abram et al. [62] as calculated
by Rosenbloom et al. [38] and mutation rate per day from Zanini et al. [31].

Nucleotide substitution Abram estimate Zanini estimate
1 T→C 1.11E-05 1.00E-05
2 T→A 1.34E-05 3.00E-06
3 T→G 3.60E-06 3.00E-06
4 C→T 2.41E-05 1.20E-05
5 C→A 6.46E-06 5.00E-06
6 C→G 1.70E-07 5.00E-07
7 A→T 7.93E-07 7.00E-07
8 A→C 5.29E-07 9.00E-07
9 A→G 1.11E-05 6.00E-06

10 G→T 8.46E-07 2.00E-06
11 G→C 8.46E-07 1.00E-07
12 G→A 5.48E-05 1.60E-05
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