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Abstract

Motivation: Searching for active connected subgraphs in biological net-
works has shown important to identifying functional modules. Most existing
active modules identification methods need both network structural informa-
tion and gene activity measures, typically requiring prior knowledge database
and high-throughput data. As a pure data-driven gene network, weighted gene
co-expression network (WGCN) could be constructed only from expression pro-
file. Searching for modules on WGCN thus has potential values. While tradi-
tional clustering based modules detection on WGCN method covers all genes,
unavoidable introducing many uninformative ones when annotating modules.
We need to find more accurate part of them.

Results: We propose a fine-grained method to identify active modules on
the multi-layer weighted (co-expression gene) network, based on a continuous
optimization approach (AMOUNTAIN). The multilayer network are also con-
sidered under the unified framework, as a natural extension to single layer
network case. The effectiveness is validated on both synthetic data and real-
world data. And the software is provided as a user-friendly R package.
Availability: Available at https://github.com/fairmiracle/ AMOUNTAIN
Contact: s.heQcs.bham.ac.uk

Supplementary information: Supplementary data are available at Bioin-
formatics online.
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1 Introduction

As a well-known fact, a group of genes may get involved into a biological pro-
cess other than act alone [3], thus identifying a group of genes and associating
it with certain biological functions is of important. In this paper, we define
a functional module in a biological network as a subnetwork which may
involve a common function in biological processes. Another important but
different concept is topological module, may also be referred as community,
within which the interactions are much more intensive compared with those
outside [I5]. Topological modules have been studied intensively and the mod-
ular structure is easy to be detected in general sense, but functional modules
are of real interest [3].

Although a function module may overlap with a topological module, only
using the network structural information is not enough to find the function
modules. The topology of a biological network does not always precisely re-
flects the function or even disease-determined regions [3], which are the real
concerns in biology. To bridge the gap between the topological module and
functional module, searching for active modules, i.e. connected regions of the
molecular interaction network showing striking changes in molecular activity
or phenotypic signatures that are associated with a given cellular response [2§],
has become a central challenge in system biology. Active modules were shown
to be able to reveal regulatory mechanisms [19], which closely to function
modules, i.e., these modules might connect multiple function modules. The
activities of network nodes are usually measured by high-throughput omics
data. In recent years, many active module identification algorithms have been
developed to solve this problem, and most of them are applied on a skeleton
networks plus muscle paradigm. The skeleton networks like protein-protein
interaction networks or metabolic networks are constructed from prior knowl-
edge database [19, 27, [10]. However, compared with increasing vast amount of
high-throughput omics data, the speed of constructing reliable and complete
skeleton networks, which heavily rely on experiment and human validation, is
quite slow. For some non-model species, or even some new model species such
as Daphnia, the PPI network even does not exist. The lack of reliable skeleton
networks posts a challenge to the detection of active module to reveal certain
key mechanisms in the biological systems.

In contrast, gene co-expression network is a pure data-driven gene network,
which could be constructed only from expression profile. In such networks a
nodes is a single gene and an edge is the correlation relationship between a
pair of genes. And a weighted gene co-expression network is a fully connected
graph. Modules in such networks are also considered to participate into some
biological process [44], and those modules with significant biological meaning


https://doi.org/10.1101/056952
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/056952; this version posted June 3, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

are essentially functional modules.

As the first but crucial step for modules functional annotation analysis,
module identification on gene networks is an important but less studied topic.
Traditional module detection on gene co-expression networks was based on
gene clustering, i.e. putting similar genes based on their correlations or edge
weights into clusters as modules [44]. The coarse-grained clustering technique
basically covers all genes in the network. As a results, the identified func-
tional module including those genes show very little activities, which might
not be very informative to reveal the biological mechanisms. We hypothesize
that by identifying active modules which consider gene activities in the co-
expression network, more precise biological mechanisms would be obtained.
How to rigorously define active modules in such weighted network is still an
open problem, but the module itself should be be more compact and infor-
mative compared with random subnetwork or clusters from two perspectives:
1) From the topological view, active modules are supposed enjoy high mod-
ule scores measured by nodes and edges. 2) From the functional view, active
modules are supposed to be more significantly associated with some biologi-
cal process. The active modules identification on gene co-expression network
is also a new problem, especially for the multilayer gene networks. A better
understanding of modules in such network is expected to establish a pipeline
from pervasive gene expression data to reasonable biological interpretation on
a systemic level.

As a generalization of the single network, there are various reasons to model
the interactions in living organisms as multilayer networks. Different layers
may represent different time points, multiple conditions or various species.
Modules across multiple layers in this report may reveal some properties of
weighted gene co-expression networks such as time-invariant component genes,
general responsive functional modules, and species conservation biological pro-
cess. Similar but more general topics are also called multiplex networks [29] 22].
An existing work [24] mined recurrent heavy subgraphs in multi-slice networks,
where each network shares the same set of genes without interactions between
them. Conversed modules identification examples include [48, 13] which will
be mentioned later. Inspired by [24], we develop a unified optimization frame-
work to identify active modules on the multi-layer weighted co-expression gene
network (AMOUNTAIN), and the layers could cover all three cases mentioned
above.
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2 Methods

In the early settings, active module identification was proposed to find signif-
icantly changed subnetwork in modular interaction networks [19]. Most fol-
lowing works developed methods based on the ”skeleton+muscle” paradigm,
where the "skeleton” is basic molecular interaction network constructed from
prior knowledge database, and the ”muscle” comes from the widely available
high-throughput data which measure the genes activities. In general the skele-
ton biological network is represented as an undirected graph G = (V, E), where
nodes in V represents components like genes (or gene products), proteins or
metabolites, and edges in E represents the interaction between two nodes.
Each node i is assigned a single score to denote the activity of correspond-
ing component in certain condition, such as fold-change or p-value of gene
expression level. The simplified problem of finding highest score module in
unweighted network, which consider the subnetwork score is the sum of each
node’s score, is formally defined as following:

Problem 1. Given a graph G = (V, E) with vertices weights z € R"™ for each
v € V, find a connected subnetwork S = (Vs, Eg) of G with mazimal weight

f(S) = Z’UEVS -

This combinatorial optimization problem is also called Maximum-Weight
Connected Subgraph Problem (MWCSP), which is equivalent to finding a
maximum weight clique in a weighted graph, being referred as a famous NP-
complete problem [20]. The proof is provided as supplementary materials of
Ideker et al. [I9]. As effective tools to solve combinatorial problems, meta-
heuristic algorithms have been widely applied to search satisfied solutions. The
original paper [19] proposed to use simulated annealing, a generic probabilistic
metaheuristic to solve this problem. Other methods include extended simu-
lated annealing [17], greedy algorithm [40}, [41], graph-based heuristic algorithm
[34], genetic algorithm [27] and some exact approaches based on integer linear
programming [33, [10} 46, 2].

2.1 Single-layer network

Compared with increasing vast amount of high-throughput data, the speed of
constructing or confirming precise molecular interactions, which heavily rely
on experiment and human validation, is quite slow. With only gene expression
data, we could build gene co-expression network (GCN). We generalize the
idea of active modules in problem to GCN case, and consider the node
score as gene importance criterion in gene co-expression network, which can
be evaluated by the expression level changes (such as fold change or other
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more comprehensive statistics) under certain conditions. Meanwhile the net-
work structure is also determined by gene expression data and expressed as
a weighted network. In practice, we get a bit more different problem to find
a subgraph of size k (otherwise it corresponds to a trivial case containing all
nodes) which aims to has both maximal node weights and closely connected
to has large edge weights, formally defined as:

Problem 2. Given a complete graph G = (V, E), with vertex weight z,, € R for
each v € V' and edge weights W = [w;;] for each edge (i,7), find a subgraph T
of size k with large vertices weight ) ;. z; and also edges weights Z”ET Wij.

Problem is actually a simplified problem of (K7, K3)-Recurrent Heavy
Subgraph (RHS) problem [24] but with additional node scores. (K7, K2)-
RHS considers multiple co-expression networks, which is also discussed in de-
tails at next section. The module can be represented by membership vector
x € {0,1}", where z; = 1 means i-gene belongs to the module. Thus the
optimization is naturally expressed as:

max S = x! Wx + \z’ x

X

Subject to

z; € {0,1}, i=1,..n.

The NP-hardness can be proved by reducing the well-known NP-complete
problem k-clique to this problem, for the details of the proof refer to the
supplementary materials. Although integer programming methods [33], 10, [46]
can be applied, it may cause high computational complexity and be lack of
theoretical guarantee w.r.t running time and accuracy. Alternatively, if we
relax the integer constraints of x to continuous constraints [42] 24] and control
the module size by introducing a vector norms of x, it becomes a nonnegative
and equality constrained quadratic programming (QP) problem , which can
be solved by various existing continuous optimization techniques in polynomial
time.

min F(x) = —x? Wx — Az’ x
x€RY
Subject to, (2)
fx) =1,
where f(x) is the vector norm. The {p-norm (p > 0) of x is defined as

(3 i) P,
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The choice of vector norm has an impact on how to solve the problem .
For example, the £y-norm can produce a sparse solution which is consistent
with the fact that only a few members belong to the module. The ¢;-norm
is widely used as an alternative to ¢y since the optimal solution of the latter
corresponds to a combinatorial problem [II]. The f2-norm is also widely used
for closed-form solution but cannot lead to a sparse solution. A linear combi-
nation of /1 and fy, i.e. (1 — a)||x||1 + «||x||? is also called elastic net penalty
[49], when the objective is least square and o = 0 corresponds to lasso [3§]
and a = 1 corresponds to ridge regression. Elastic net is considered to enjoy
the characteristics of both lasso and ridge regression. Besides, the /,,-norm
is max{xy,x2,...,xn} which makes the values in vector smooth and all the
entries are roughly identical. All the mentioned vector norms and the exist-
ing corresponding optimization techniques may be applied in the problem
as long as the constraints of vector norms can reveal some essence of module
membership in weighted co-expression network. While the fundamental one is
f1-norm since the module size needs to be constrained, otherwise, the problem
becomes trivial with all nodes included in the target module.

The ¢1-norm constraint of optimization problem can be converted to
f(x) =7 x;since z; > 0. This problem has been intensively studied in math-
ematical programming [7, 4] and could be solved by a lot of existing method.
But only using /;-norm constraint tends to produce very sparse solution for
problem , even a vector x which contains only one non-zero element may be
the optimal solution. [24] used the mixed norm ¢y o (x) = a||x||o+ (1 —a)||x||0o
(0 < a < 1) to encode the characteristics of gene membership, where the op-
timal vector should contain equal non-zero values and the rest zero values. In
practise £y o was approximated by £, 2(x) = a|x||, + (1 —a)|x|]2 (0 < p < 1),
and they solved the non-convex problem with only edge weights by Multi-
Stage Convex Relaxation (MSCR) [45].

It is a natural idea to use the elastic net penalty [49] to control the sparsity
and achieve desirable membership, i.e. f(x) = (1 — a)||x||1 + a/x|*>. And a
general strategy follows the gradient projection method [25] and generate a
sequence to approximate the accurate solution like

x4 = T () — 0T F (M), )
where Il¢ is the Fuclidean projection of a vector on convex set C', defined as
(14): .
Mc(g) = arg min o |[x — g3 s.t. (1 —a)|x|l +alx|* <t, (4)
x€R? 2

where g is a constant vector and ¢ is the radius which has little impact on the
solution in practice. The step size a®) in k-step should satisfy the following
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condition in order to make the objective function:
FxF)) = P(x®)) < oV F(xF)T (x B+ — x(k)), (5)

where o is a small positive constant. Searching for optimal a*) is time con-
suming. Here we adopt the same as in [25] that scale a®) by a fixed factor 8
until o®) satisfies . Thus the algorithm is guaranteed to converge.

Solving subproblem involves a root finding procedure [16] which can
be done in linear time, and the total iterative procedure can be improved up
by Nesterov’s method [30], which replace the current step x(*) in ) with a
linear combination of previous two steps, s®) = x®) 4 ¢, (x(®) — x(k—1 ) where
t; is another parameter to make it convergence. Nesterov’s method has been
shown to have optimal convergence rate for first-order method. Refer to the
supplementary material the details about how to solve the convex optimization
problem with Elastic net penalty.

The Euclidean projections optimization for problem is summarized as
algorithm

Algorithm 1 Euclidean projections optimization

Input: Network edge weight W € R™ " node score z € R" and initial solution
x(0) ¢ R?
Output: Module indicator vector x
1: repeat
2: Update g in (4)) by the gradient of F(x) in (2).
3: Solve optimal x in by algorithm in supplementary material.
4: until Convergence or reach maximal iterations

Generally we may want to identify multiple modules from one network.
Similar to [47, 26], we can find N modules by running algorithm [I| NV times,
with each time simply extracting the resulted module from background net-
work. The resulting sequences of modules may indicates the importance in
terms of node activities and correlation similarities, in a descending order.
The general procedure for identifying N modules from given gene expression
profile can be summarized as algorithm

2.2 Two-layer network

The biological system has been modeled as a multi-layer network before [5],
while more detailed analysis on multi-layer networks raises up in recent years
[21], after the intensive research on single layer networks. The multi-layer net-
work provides a general framework to model temporal and spatial change of
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Algorithm 2 Active modules identification of GCN

Input: Gene expression profile X € R™*? number of modules M
Output: M modules
1: Construction: Use certain algorithm to construct pair-wise gene network G.
2: Nodes scores: Calculate the fold-change or other gene statistics according to
experimental design.
for iterations less than M do
Solving: Find solution x for using algorithm ([1)
Musk: Delete the nodes in x and corresponding edges from G.
end for

interactions for cellular networks, and contributing three aspects for current
computational biology research: 1) Modeling dynamic properties for biological
process as multiple snapshots, 2) Modeling different responses to multiple con-
ditions of the same species and 3) The identification of conserved genes across
species as well as specific genes.

Although the behaviors of living organisms were considered to be dynamic,
traditional network-based methods primarily focused on static network, which
is a snapshot of the real case. Multi-layer networks provide a powerful tool
for modeling this time series networks, with each layer standing for a time
point. The differential analysis on this time series networks may reveal several
important concepts related to time changing on cells belongs to certain species
or tissues, such as the key components that were not be affected or some
vanishing structures.

The integration of genomic techniques into environmental toxicology has
shown potential application values to develop exposure biomarkers and inves-
tigate the mode of toxicity [31]. Representing the interaction of a set of genes’
response under different conditions as multiple layer network may shed light
no this evolutionary conservation of living organism.

Besides the dynamic change of networks in the same set of components,
a multi-layer network can also capture the core set across species, such as
conserved active modules [37, 9]. By constructing a multi-layer network with
each layer representing one species, we may find similar patterns in a species
that has relatively more prior information, thus to gain biological knowledge
of interested species. Finding conserved modules may also improve our un-
derstanding about the evolutionary biological procedure by highlighting the
similarities and differences in key patterns between species [4§].

Although [24] was proposed for multiple gene co-expression networks, which
is similar to multi-layer networks. They can be distinguished from two aspects:
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1)Multiple networks share exactly the same set of nodes while multi-layer
networks do not necessarily to, which makes later can be applied in multi-
ple species orthology. 2)Multi-layer networks consider inter-layer interactions
while multiple networks do not to.

Another related work is xHeinz [I3], which mines cross-species network
modules using an integer linear programming approach. It extends the single
network module identification algorithm heinz [I0] to two species case and
takes the same optimization technique for the problem. As discussed before,
this kind of algorithm requires the skeleton interaction network plus high-
throughput data, which is the main difference between our work. The network
node scoring function in xHeinz is inherited from that in heinz, which re-
quires the parameters estimation in a beta-uniform mixture (BUM) model.
While our algorithm simply uses the fold-change information since node score
is only part of the whole objective. In theory we can also use the adjusted
log-likelihood ratio score in heinz. The optimization methodology we adopt
is also straightforward, while xHeinz relies on external integer programming
solver CPLEX.

Being similar to single layer network situation, an active module in a two
layers-network can be represented as a connection of two modules in two dif-
ferent networks G = (V1, E1) and G = (Va, E3). The inter-layer interactions
were measured by A = [a];; € R™*™ where ny and no are the numbers of
nodes in G and Gs. The basic two layer network module identification prob-
lem is formally defined as

Problem 3. Given two complete graphs G1 = (V1, E1) and Gy = (Va, E»),
with vertices weights z1, € R for each v € V| and zo, € R for each v € Vs.
And edges weights W1 for edges in G1 and Wo for edges in Go. The inter-
layer interactions were measured by A = [a];; € R™*™2. The goal is to find
two subgraphs Th € G1 and Ty € Go which both have large vertices weights and
edges weights as well as intensive interaction with each other.

We use two two variables x and y to represent the memberships of active
modules in two different networks, x; = 1 means the i-th node in the first
network is in the module. Thus the optimization problem can be expressed as
an extension to ,

min _ F=-x"Wix - Mzl x -y Way
xeR! yeR"?
—/\ngy — \3xT Ay
Subject to (6)
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where f1(x) and f(y) are the vector norms on two vectors respectively. For
simplicity we use the same Elastic net penalty f(x) = a||x|j1 + (1 — «)|x||3 or
mix norm penalty f(x) = o|x||, + (1 — a)||x||2 for both x and y. The general
idea for solving @ is alternating optimization, i.e. a iteratively optimize one
variable while fixing another each time [25]. When optimizing one variable, it
has the same form as in . Each iteration in the procedure can be simply
expressed as:

e Find x**1 such that F(x* 1) y®)) < p(x®) y(*)) and,
e Find y**1 such that F(x* D yktD)) < p(x(E+D v (k)

The complete algorithm to find multiple modules in the two-layer network
shares the same structure of algorithm There is another parameter A3
in @ controlling how much degree the inter-layer links affect the resulting
modules. Take multi-species for example, large A3 can leads to conserved
modules across different species which may reveal some gene conservation in
response to certain changes. Conversely, small A3, e.g A3 = 0 makes the inter-
layer information playing no role, thus leading to two independent module
identification processes. If we have multiple layers more than two, the rational
keeps the same. As long as each layer has different set of nodes, alternating
optimization can be used as the same way as in two-layer networks. Otherwise
a more compact tensor computational paradigm [24] can be more efficient
without inter-layer links consideration.

3 Results

3.1 Synthetic data

Several related works have used artificially generated data [34, 40} 23] B3] in
order to test their algorithms in single network module identification. Being
different from previous networks, the simulated networks here should have clear
topological structure as well as node scores. We follow [24] to construct gene
co-expression networks for simulation study. Let n be the number of genes, and
edge weights as well as node score follow the uniform distribution in range [0, 1].
A module contains k genes inside which the edge weights as well as node score
follow the uniform distribution in range [0, 1], where 6 = {0.5,0.6,0.7,0.8,0.9}.
Figure [1| shows the weighted co-expression network when n = 100, £ = 20 and
red nodes indicate module members and wider edges mean larger similarities.
Visualization is based on gqgraph [14].

With ground-truth in hand, we can define the following performance mea-
surement for the problem . From the topological view, the accuracy for
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® module
@ background

Figure 1: Simulated weighted gene co-expression network.

each single module identification is considered as a binary classification prob-
lem. The performance is defined by the 2 x 2 confusion matrix, including the
number of genes correctly detected (True positive, tp), the number of genes in
identified module but not in the real module (False positive, fp), the number
of genes in the real module but not in the identified module (False negative,
fn), and the number of genes neither in identified module or in the real module
(True negative, tn).

tp
tp+ fn

tp
tp+ fp
Precision - Recall

Recall =

Precision =

(7)

F=

" Recall + Precision’

We conduct the simulation study on a relatively large network when n =
10000, and we consider a sparse case where one module contains k& = 100
genes and node score follow the uniform distribution in range [0, 1], where
0 = 0.5. The algorithm which uses mixed norm in is outperformed by
our algorithm [1] using elastic net penalty, in terms of both the running time
and predictive accuracy. By choosing proper parameters from grid search
combining & = {0.1 ~ 0.9} in elastic net penalty and A = 2{=5~%} in , we
can almost exactly find the target model nodes. The optimal o = {0.3 ~ 0.4}
and A = 207°~~1} for this network which makes F' = 1. Figure [2 shows how
these parameters affect F-score @ in this case. A similar result is also found
in two-layer network simulation.
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log2(lambda)

Figure 2: Parameters selection for algorithm (1| on large network.

3.2 Real-world data for single layer network

We mainly use gene expression datasets from Gene Expression Omnibus (GEO)
[12] as real-world data examples. GSE3635 and GSEGSE5283 are two expres-
sion profiling by array from Saccharomyces cerevisiae. The original goal of the
dataset is study the the regulation of transcription factor YOX1 and YHP1
during the cell cycle of Saccharomyces cerevisiae [32], with deleted YOX1 and
YHP1 deleted. The wild-type and mutant cells were collected at 0, 10, 20, 30,
40, 50, 60, 70, 80, 90, 100, 110, and 120 minutes after synchronization with
alpha factor. We take the formal as control group and second as experimental
group since they share the same set of genes. And we assume the biological
processes with YOX1 and YHP1 deleted was measured by gene expression
values. The goal is to find several set of genes, referred as modules identifica-
tion using algorithm [T, which are closely related to these biological processes.
The gene expression values has been normalized as log ratio using Rosetta
Resolver, we only need to deal with missing or invalid values. The strategy
is simple, discarding probes with more than 20% missing values or NAs and
repalcing missing or NAs positions in a valid probe with mean value of the rest
samples of that probe. We donot pick up signigicantly expressed genes using
linear model like many other methods, since the algorithm requres as complete
information about gene correlation and gene activities only contribute part of
the whole objective.

First, algorithm [1| requires the a weighted gene coexpression network as
input. We employ the same differential analysis method of gene pairs as [1§].
The difference of coexpression, also the edge score of gene ¢ and j between two
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conditions a (control) and b (experimental) was quantified by,
a—b __ b a b a
W7 = (R — Ry;) x maz (| Ry, | Ri1), (8)

where Rﬁ-’j is the correlation between gene ¢ and j under condition b. The node
score which reflects the gene expression activity degree is measured by the
ratio of expression level under two conditions,

a—=b _ % Z;n:l D%
b R XDy
where Di-’j is the gene expression value of gene ¢ in j-th sample under condition
b, and m, n are the number of sample in condition b and a respectively. Here
we let N = 10 in algorithm. The parameter A represents the trade-off between
edges weight and nodes weight which seems to play a slight role in performance.
Here we simply fix A = 1 and use a binary search method to select « for elastic
net penalty which controls the sparsity of the module. See supplementary text
section 4 for usage of parameter selection. Here we desire each module size
with around 100 200 genes. These modules are provided as gene list (S1.xlsx).
We performed functional enrichment analysis of these modules. The basic
of functional enrichment of a module is to assign the biological process an-
notations in Gene Ontology [1] to the genes (proteins) in that module. The
probability that a module of size n have the same function as an existing func-
tional module can be calculated by a hypergeometric distribution with Gene
Ontology Term Findelﬂ The P-value is calculated by the following formula,

" () ()
p=>) ~fopets (10)
=1 (n)
where N is the total number of genes (proteins) within the genome and M
is the total number of genes (proteins) within a category. A low p-value in-
dicates genes have high overlap with enriched functional categories thus are
biologically significant. Results show that module identification using algo-
rithm[I]can find consistent biological processes only from expression data which
help to understand the underlying mechanisms related to biological conditions.
Since YOX1 and YHP1 are important transcription factors in the regulation
of the cell cycle, the identified modules are enriched by corresponding bio-
logical processes such as single-organism cellular process (GO:0044763), cellu-
lar macromolecule metabolic process (GO:0006139) and nucleobase-containing
compound metabolic process (G0O:0044260). Furthermore, the enriched GO
terms are less significant as they are later identified, which corresponds with

the algorithmic settings.
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thttp:/ /www.yeastgenome.org/help/analyze/go-term-finder#pvalue
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3.3 Real-world data for two-layer network

Inspired by xHeinz [I3], we chose two expression data for two species mus
musculus and homo sapiens: GSE43955 and GSE35103 for multilayer case.
The original studies [43] and [39] reported the expression profiles identification
controlled by the differentiation of Th17 cell. Here we expect the proposed
algorithm could find consistent results from a two-layer gene co-expression
network. Each layer of the network is constructed from the gene expression of
a species, and the edge weights and node weights are defined by and @]) as
well. In each layer the two conditions are with or without Th17. Specifically,
we use the expression value of two conditions in different time points to check
whether the effect may vary alone the time. The inter-layer connections are
defined by the orthology information, obtained from Ensembl 84@ We use
the associated gene name as the unique identifier for each gene (node) in both
human and mouse, and the corresponding orthologos mapping table are em-
bedded into this two-layer network. After gene expression data pre-processing
and orthologos selection, we get 19332 genes in human layer and 13656 genes
in mouse layer. There are 8066 links between two layers, standing for confident
orthologous mapping pairs.

As the same in single layer case, we use the binary search for parameter « in
elastic net penalties to get the desired modules size for both layers. It turns out
to be a grid search process in order to get two desired modules at the same time.
Here we only consider the large Ag in (2)) which aims to find a conserved module
across these two species. We use samples from all conditions to construct the
basic weighted co-expression networks for two species, but different expression
values under different time to define node activities. Because correlation based
network construction requires as many samples while gene activities are closely
related to certain conditions, including the exposed time period.

Figure 3| shows the most active module (the first identified) for human and
mouse at the time point 2 hours, visualized by muxViz [8]. The conserved
module is acquired when Az = 1000 in , where inter-layer links mean the
orthologous gene pairs. The gene lists of two modules are attached in table
file (S2.xlsx). Gene ontology enrichment analysis indicate that there are sev-
eral GO terms such as response to virus (GO:0009615) and cellular response
to type I interferon (GO:0071357) are significantly enriched for mouse, while
GO terms like response to endoplasmic reticulum stress (GO:0034976) and
topologically incorrect protein (GO:0035966) for human. Both modules shows
some cellular response to topologically incorrect protein (GO:0035967) or virus
(GO:0051607), which is closely related to the functional role of Th17 differen-

2http://www.ensembl.org/
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tiation played in pathogenesis of autoimmune and inflammatory diseases [39].

Conserved module

Mouse

Human

The first identified module across human and mouse

Figure 3: Conserved modules for human and mouse. Visualized by muxViz [§]

Besides the early stage of Th17, we also explore the characteristics of other
time points (12h 24h, 48h and 72h). Figure |5/ shows the most active module
(the first identified) for human across these four time points. We can see
that some shared genes show activity along the time and play important roles
in these networks. All gene lists are attached in table file (S3.xlsx). Gene
ontology enrichment analysis show that all modules are significantly related to
several biological processes, which are consistent with previous studies [].

A Active module for human
The first identified module in different time points g g

12h
24h
48h
72h

Figure 4: Active modules for human across time points. Visualized by muxViz [§]

The first active modules identified in each time points themselves show
some differences, indicating that modification of Th17 would consistently have
an impact on the cell along the time. From the algorithmic point view, when
fixing Az in we need to seek the optimal parameters in the elastic penalties
for both species. i.e fi(x) = aq||x||p, + (1 —a1)|x[|2 and fo(y) = as|ly|l, + (1 —
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a2)|lyll2. The grid search uses a binary search for each to seek a combination
of two as for desired modules. Table [1| shows the results,

| 12h [ 24h [ 48h | 72h

oy | 0.675 | 0.675 | 0.563 | 0.563
as | 0.042 | 0.028 | 0.018 | 0.028

Table 1: Best parameters for equation 1}

We use an integrative gene list enrichment analysis tool Enrichr for human
[6], which does not only provide the pathway and gene ontology enrichment
analysis, but also has a visualization tool with each. Figure [5| shows top GO
items enriched by the most active modules different in different time points
and their relationships, check supplementaty file part 3 for other time points
(Figure S1-S3). Although these modules have a lot genes in common, func-
tions enriched by the first identified module changed slightly along the time.
Structural constituent of ribosome (GO:0003735) appeared frequently as a top
enriched term in all time points, served as a fundamental function.

tenance of fidelity invelved in DNA-dependent DNA replication (GO:0045005)
0:0006412)

ned break repair (GO:0006302)
cell cycle G1/S phase transition (CO:DD44843)

hydrogen e transport (GO: 1902600)

DNA repair (G0:D0062 81}
respiratory electron transport chain (G002 2804}
G1/S transition of mitotic cell cycle (GO:0000082)

neration of precursor metabolites and energy (GO:0006081)

electron transport chain (GO:0022300)

Figure 5: GO terms network of the identified module at 12h

4 Discussion and Conclusion

There have been many works discussing about key individual components such
as transcription factors which play important roles in a biological process.
Popular tools such as limma [35] uses statistical models to find significantly
expressed genes, which almost becomes a standard pre-processing for further
study. Take Th17 cell differentiation for example, previous works [36], 43, [39)]
reveals important transcription factors involved and related mechanism. Our
model is designed not for individual gene detection tasks such transcription
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factors identification or gene prioritization, but for providing a complementary
from modular perspective. Modules identified from genome-wide network may
reveal system-level properties of related biological mechanism. The goal of
algorithm [1] is to establish a computational approach that only uses gene ex-
pression data from different conditions, to find biological modules which show
significant responses caused by expression changes.

The continuous optimization method, especially the convex optimization
also offers high efficient computational tools other than widely used heuristic
algorithms [19] 48] or discrete optimization [10, 13] for active modules identifi-
cation. Furthermore, convex optimization methods always enjoy the guarantee
with respect to running time and accuracy. On the one hand, this guarantee
makes the solution more reliable even unique given precise input. On the other
side, the so-called optimal solution fully relies on algorithmic input which poses
a higher demand on data preprocessing and model assumption. Take the real-
word data studies in section and for example, slight differences on
how to compute node scores or edge weights may lead totally different results.
Conversely the uncertainty in heuristic algorithms may offer flexibility about
model assumption and algorithmic input. In other words, the gap between
computational model and real case does exist. From the software design and
implementation view, open source and user-friendly tools have more advan-
tages. A large number of reliable open source libraries can be easily found for
mature convex optimization techniques. And it is not difficult to implement
the core part of them. In contrast, the implementation of specific purpose
heuristic algorithms or integer programming is challenging.

This paper describes a general continuous optimization based active mod-
ules identification method for multilayer gene coexpression networks. With
proper replacement of node (gene) similarity matrix and node activities, the
proposed methods can be easily extended to other applications. The idea of
formulating the conserved modules identification across multiple layers under
a uniform framework can also be enriched with more sophisticated considera-
tions, such as multiple data source fusion instead of using single gene expression
profiles. Future works may be more integrated with specific applications.
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