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Abstract

In the noisy cellular environment, gene products are subject to inherent random fluctuations in

copy numbers over time. How cells ensure precision in the timing of key intracellular events, in

spite of such stochasticity is an intriguing fundamental problem. We formulate event timing as a

first-passage time problem, where an event is triggered when the level of a protein crosses a critical

threshold for the first time. Novel analytical calculations are preformed for the first-passage time

distribution in stochastic models of gene expression, including models with feedback regulation.

Derivation of these formulas motivates an interesting question: is there an optimal feedback strategy

to regulate the synthesis of a protein to ensure that an event will occur at a precise time, while

minimizing deviations or noise about the mean. Counter-intuitively, results show that for a stable

long-lived protein, the optimal strategy is to express the protein at a constant rate without any

feedback regulation, and any form of feedback (positive, negative or any combination of them)

will always amplify noise in event timing. In contrast, a positive feedback mechanism provides

the highest precision in timing for an unstable protein. These theoretical results explain recent

experimental observations of single-cell lysis times in bacteriophage λ. Here, lysis of an infected

bacterial cell is orchestrated by the expression and accumulation of a stable λ protein up to a

threshold, and precision in timing is achieved via feedforward, rather than feedback control. Our

results have broad implications for diverse cellular processes that rely on precise temporal triggering

of events.
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I. INTRODUCTION

Timing of events in many cellular processes, such as cell-cycle control [1–4], cell differenti-

ation [5, 6], sporulation [7, 8], apoptosis [9–11], development[12, 13], temporal order of gene

expression [14–16], depend on regulatory proteins reaching critical threshold levels. Trigger-

ing of these events in single cells are influenced by fluctuations in protein levels that arise

naturally due to noise in gene expression [17–26]. Increasing evidence shows considerable

cell-to-cell variation in timing of intracellular events among isogenic cells [27–29], and it is

unclear how noisy expression generates this variation. Characterization of controls strate-

gies that buffer stochasticity in event timing are critically needed to understand reliable

functioning of diverse intracellular pathways that rely on precision in timing.

Mathematically, noise in the timing of events can be investigated via the first-passage

time (FPT ) framework, where an event is triggered when a stochastic process (single-cell

protein level) crosses a critical threshold for the first time. There is already a rich tradi-

tion of using such first-passage time approaches to study timing of events in biological and

physical sciences [30–43]. Following this tradition, exact analytical expression for the FPT

distribution are computed in experimentally validated and commonly used stochastic mod-

els of gene expression. These results provide novel insights into how expression parameters

shape statistical fluctuations in event timing.

To investigate control mechanisms for buffering noise in timing, we consider feedback

regulation in protein synthesis, where the expression rate varies arbitrarily with the protein

count. Such feedback can be implemented directly through auto-regulation of gene promoter

activity by its own protein [44–47] or indirectly via intermediate states [48]. It is important

to point out that while the effects of such feedback loops on fluctuations in protein copy

number are well studied [49–53], their impacts on stochasticity in event timing have been

overlooked. We specifically formulate the problem of controlling precision in event timing

as follows: what optimal form of feedback regulation ensures a given mean time to an

event, while minimizing deviations or noise about the mean. It turns out that for certain

minimal models of stochastic expression this optimization problem can be solved analytically,

providing counter-intuitive insights. For example, in many cases negative feedback regulation

is found to amplify noise in event timing, and in some cases, the optimal form of feedback is

to not have any feedback at all. The robustness of these result are analyzed in the context
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FIG. 1. Modeling event timing as a first-passage time problem. Left : Model schematic with

a gene transcribing mRNAs, which is further translated into proteins. The rate of transcription is

assumed to be regulated by the protein level, creating a feedback loop. Right : The timing of an

intracellular event is formulated as the first-passage time for the protein level to reach a critical

threshold. Sample trajectories for the protein level over time obtained via Monte Carlo simulations

are shown, and they cross the threshold at different times due to stochasticity in gene expression.

The histogram of the event timing based on 5, 000 trajectories is shown on the top.

of different noise mechanisms, such as intrinsic versus extrinsic noise in gene expression [54–

57]. Finally, we discuss in detail how our results explain recent experimental observations

of single-cell lysis times in bacteriophage λ, where precision in timing is obtained without

any feedback regulation.

II. STOCHASTIC MODEL FORMULATION

Consider a gene that is switched on at time t = 0 and begins to express a timekeeper

protein. The intracellular event of interest is triggered once the protein reaches a critical

level in the cell. We describe a minimal model of protein synthesis that incorporates two key

features – expression in random bursts and feedback regulation (Fig. 1). Let x(t) ∈ {0, 1, . . .}

denote the level of a protein in a single cell at time t. When x(t) = i, the gene is transcribed

at a Poisson rate ki. Any arbitrary form of feedback can be realized by appropriately

defining ki as a function of i. For example, increasing (decreasing) ki’s correspond to a

positive (negative) feedback loop in protein production, and a fixed transcription rate implies

no feedback. Assuming short-lived mRNAs, each mRNA degrades instantaneously after
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producing a burst of B protein molecules [58–62]. In agreement with experimental and

theoretical studies [63–65], B is assumed to follow a geometric distribution

P(B = j) =
bj

(b+ 1)j+1 , b ∈ (0,∞), j = {0, 1, 2, ...}, (1)

where b denotes the mean protein burst size and the symbol P is the notion for probability.

Finally, each protein molecule degrades with a constant rate γ. The time evolution of x(t)

is described through the following probabilities of occurrences of burst and decay events in

the next infinitesimal time (t, t+ dt]

P (x(t+ dt) = i+B|x(t) = i) = ki dt, (2a)

P (x(t+ dt) = i− 1|x(t) = i) = iγdt. (2b)

Note that in this representation of gene expression as a bursty birth-death process, the

mRNA transcription rate ki is the burst arrival rate, while the rate at which proteins are

translated from an mRNA determines the mean protein burst size b. Next, we formulate

event timing through the first-passage time framework.

III. COMPUTING EVENT TIMING DISTRIBUTION

The time to an event is the first-passage time for x(t) to reach a threshold X starting from

a zero initial condition x(0) = 0 (Fig. 1). It is mathematically described by the following

random variable

FPT := min{t : x(t) ≥ X|x(0) = 0}, (3)

and can be interpreted as the time taken by a random walker to first reach a defined point.

Our goal is to obtain closed-form expressions for the FPT statistics in terms of underlying

model parameters. Note that if the protein did not decay, then x(t) accumulates over time

and the FPT distribution is obtained by observing

P (x(t) ≥ X) = P (FPT ≤ t) . (4)

However, with protein degradation, the FPT calculation needs careful consideration so as

to avoid counting multiple crossings of the threshold.

To compute the FPT we imagine the bursty birth-death process on a finite state-space

[0, 1, . . . , X], where the states represent the protein count (Fig. 2). All states denoting
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FIG. 2. Illustration of a bursty birth-death process for computing the first-passage

time: States [0, 1, . . . , X] represent the protein population counts, and arrows represent transition

between states due to burst and decay events. The destination of a forward jump (a birth event)

is decided by the burst size while each degradation event reduces the protein count by one. The

process terminates when the protein level reaches the absorbing-state X and the first-passage time

is recorded.

x(t) ≥ X are combined into a single absorbing state X. In this model, the probability of

the protein level reaching X in the small time window (t, t+ dt) is the probability of being

in state i at time t, and a jump of size X − i or larger occurs in (t, t + dt). Using the fact

that for a geometrically distributed burst size B,

P (B ≥ X − i) =

(
b

b+ 1

)X−i
(5)

and rate of burst arrival is ki when x(t) = i, the probability density function (pdf) of the

first-passage time is giving by

fFPT (t) =
X−1∑
i=0

ki

(
b

b+ 1

)X−i
pi(t)dt, (6a)

pi(t) = P (x(t) = i) (6b)

The pdf can be compactly written as a product

fFPT (t) = UP(t), (7a)

U =
[
k0
(

b
b+1

)X
k1
(

b
b+1

)X−1 · · · kX−1 b
b+1

]
, (7b)

P(t) =
[
p0(t) p1(t) · · · pX−1(t)

]>
, (7c)
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where U is a row vector of kiP (B ≥ X − i) and P(t) is a column vector of pi(t). The time

evolution of P(t) is given by the linear dynamical system

Ṗ = AP (8)

derived from the Chemical Master Equations (CME) corresponding to the bursty birth-

death process [66, 67]. It turns out that, in this case the matrix A is a Hessenberg matrix

whose ith row and jth column element is given by

aij =



0, j > i+ 1

(i− 1)γ, j = i+ 1

−ki−1 b
b+1
− (i− 1)γ, j = i

ki−1
bi−j

(b+1)i−j+1 , j < i

(9)

i, j ∈ {1, . . . , X}. Solving (8) and using (7a) yields the following pdf for the first-passage

time

fFPT (t) = UP(t) = U exp(At)P(0), (10)

where P(0) =
[
1 0 · · · 0

]T
is vector of probabilities at t = 0 that follows from x(0) = 0.

While this pdf provides complete characterization of the event timing, we are particularly

interested in the lower-order statistical moments of FPT . Next, we exploit the structure of

the A matrix to obtain analytical formulas for the first and second order moments of the

first-passage time.

IV. MOMENTS OF THE FIRST-PASSAGE TIME

From (10), the mth order uncentered moment of the first-passage time is given by

〈FPTm〉 = U

(∫ ∞
0

tm exp(At)

)
P(0). (11)

Since the matrix A is full-rank with negative eigenvalues (see section S1 of the SI), the above

integral can be computed as

〈FPTm〉 = (−1)m+1m! U
(
A−1

)m+1
P(0). (12)
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Using the inverse of a Hessenberg matrix, we obtain the following first two moments of FPT

(see section S2 of the SI)

〈FPT 〉 =
1

k0
+

1

b

X∑
i=1

ki−1
ki−1 + (i− 1)γ

(
1

ki−1
+

X∑
j=i+1

1

kj−1

j−1∏
l=i

kl
kl + lγ

(b+ 1)lγ

bkl−1

)
, (13a)

〈
FPT 2

〉
=

2

b2

X∑
i=1

ki−1
ki−1 + (i− 1)γ

(
ξi
ki−1

+
X∑

r=i+1

ξr
kr−1

r−1∏
l=i

kl
kl + lγ

(b+ 1)lγ

bkl−1

)
, (13b)

where δi−1 represents the Kronecker delta which is one if i = 1 and zero otherwise, and

ξi = b ηi +
i∑

j=1

ηj, ηi =
b

k0
δi−1 +

ki−1
ki−1 + (i− 1)γ

(
1

ki−1
+

X∑
j=i+1

1

kj−1

j−1∏
l=i

kl
kl + lγ

(b+ 1)lγ

bkl−1

)
.

(14)

These results represent the first analytical computations of the FPT statistics for a bursty-

birth death process with a random burst size and a state-dependent burst arrival rate (i.e.,

feedback regulation in transcription).

We investigate the complex formulas in (13) for some limiting cases. For a stable long-

lived protein (γ = 0) and a constant transcription rate (no feedback; ki = k), moment

expressions reduce to

〈FPT 〉 =
1

k

(
X

b
+ 1

)
≈ X

bk
, (15a)

CV 2
FPT =

b2 +X + 2bX

(b+X)2
≈ 1 + 2b

X
, (15b)

where CV 2
FPT represent the noise in the first-passage time as quantified by its coefficient of

variation squared. The approximate formulas in (15) are valid for a high event threshold

compared to the mean protein burst size (X/b � 1). These formulas reveal important

insights, such as, the noise in FPT is invariant of the transcription rate k. Moreover,

〈FPT 〉 and CV 2
FPT can be independently tuned — increasing the event threshold and/or

reducing the burst size will lower the noise level. Once CV 2
FPT is sufficient reduced, k can

be modulated to adjust the mean event timing to any desired value. Next, we explore how

feedback regulation of the transcription rate impacts noise in timing, for a given X and b.

V. OPTIMAL FEEDBACK STRATEGY

Having derived the FPT moments, we investigate optimal forms of transcriptional feed-

back that schedule an event at a given time with the highest precision. Mathematically, this
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corresponds to an constraint optimization problem: find transcription rates k0, k1, · · · , kX−1
that minimize 〈FPT 2〉 for a fixed 〈FPT 〉. We first consider a stable protein whose half-life

is much longer than the event timescale, and hence, degradation can be ignored (γ = 0).

A. Optimal feedback for a stable protein

When the protein of interest does not decay (γ = 0), the expressions for the FPT

moments take much simpler forms

〈FPT 〉 =
1

k0
+

1

b

X−1∑
i=0

1

ki

=
1

k0

(
1 +

1

b

)
+

1

k1b
+

1

k2b
. . . (16a)

〈
FPT 2

〉
=

2

b2

(
τ0
bk0

+
X−1∑
i=0

τi
ki

)
, τi :=

b

ki
+

X−1∑
j=i

1

kj
. (16b)

Note that in (16a) the contribution of k0 (transcription rate when there is no protein) is quite

different from the other transcription rates ki, i ∈ {1, 2, · · · , X − 1}. For instance, when the

event threshold is large compared to the mean burst size (X � b), then the term 1/k0 can

be ignored and 〈FPT 〉 ≈
∑X−1

i=0 1/bki. In contrast, if the burst size is large (b � X) then

〈FPT 〉 ≈ 1/k0, as a single burst event starting from zero protein molecules is sufficient for

threshold crossing. Similar observation for different contributions of k0 can be made about

(16b).

It turns out that, for these simplified formulas, the problem of minimizing 〈FPT 2〉 given

〈FPT 〉 can be solved analytically using the method of Lagrange multipliers (see section S3

of the SI for details). The optimal transcription rates are given by

k0 =
1 + b

1 + 2b

2b+X

b 〈FPT 〉
, (17a)

ki =
1 + 2b

1 + b
k0 =

2b+X

b 〈FPT 〉
, for 1 ≤ i ≤ X − 1, (17b)

and all rates are equal to each other except for k0. Intuitively, the difference for k0 comes

from the fact that it contributes differently to the FPT moments as compared to other rates.

Note that for a small mean burst size (b� 1), k0 = ki, whereas k0 = ki/2 for a sufficiently

large b. Despite this slight deviation in k0, for the purposes of practical implementation,
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FIG. 3. For a stable protein, no feedback provides the lowest noise in event timing for a

fixed mean FPT . Protein trajectories obtained using the Stochastic Simulation Algorithm (SSA)

for a stochastic gene expression model with positive feedback (left), no feedback (middle), negative

feedback (right) [68]. The threshold for event timing is assumed to be 500 protein molecules and

feedback is implement by assuming a transcription rate of the form ki = c1 ± c2i, where c2 = 0

(no feedback), c2 = 0.05 min−1 (positive feedback), c2 = −0.05 min−1 (negative feedback). For

a given value of c2, the mean FPT is kept constant (40 minutes) by changing the parameter c1.

The mRNA half-life is assumed to be 2.7 min, and proteins are translated from mRNAs at a rate

0.5 min−1, which corresponds to a mean burst size of b = 2. Histograms on the top represent

distribution of FPT from 10, 000 Monte Carlo simulations.

the optimal feedback strategy in this case is to have a constant transcription rate (i.e., no

feedback in protein expression).

We illustrate the above result via Monte Carlo simulations of stochastic gene expression

models that explicitly include mRNA dynamics (Fig. 3). Here, feedback is implemented

using linear transcription rates

ki = c1 + c2i, (18)

where c2 = 0 (no feedback), c2 > 0 (positive feedback), c2 < 0 (negative feedback), and |c2|

is referred to as the feedback strength. As expected from theory, a no feedback strategy

outperforms negative/positive feedbacks in terms of minimizing deviations in FPT around

a given mean event time (Fig. 3). While similar results were obtained for implementing

transcription rates using Hill functions (see section S4 of the SI), we prefer to use linearized

rates as they have a fewer number of parameter and a clearer notion of feedback strength.
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B. Optimal feedback for an unstable protein

Now consider the scenario where protein degradation cannot be ignored over the event

timescale (γ 6= 0). Unfortunately, the expressions of the FPT moments in (13) are too

convoluted for the optimization problem to be solved analytically, and the effect of different

feedbacks is investigated numerically. Our strategy is as follows: choose a certain feedback

strength c2 in (18), appropriately tune c1 using (13b) for the desired mean event timing, and

explore the corresponding noise in FPT as measured by its coefficient of variation squared

CV 2
FPT (additional details in section S5 of the SI). Counter-intuitively, results show that

for a given value of γ, a negative feedback loop in gene expression has the highest CV 2
FPT ,

and its performance deteriorates with increasing feedback strength (Fig. 4A). In contrast,

CV 2
FPT first decreases with increasing strength of the positive feedback, and then increases

after an optimal feedback strength is crossed (Fig. 4A). Thus, when the protein is not stable,

precision in timing is attained by having a positive feedback in protein synthesis with an

intermediate strength.

We next explore how the minimal achievable noise in event timing, for a fixed 〈FPT 〉,

varies with the protein decay rate γ. Our analysis shows that the minimum CV 2
FPT obtained

via positive feedback increases monotonically with γ, and CV 2
FPT → 1 as γ →∞ (Fig. 4B).

Recall that the coefficient of variation of an exponentially distributed random variable is

exactly equal to one. Thus, as the protein becomes more and more unstable, the timing

process becomes memoryless yielding exponentially distributed first-passage times. A few

interesting observations can be made from Fig. 4B: i) Higher protein burst sizes result in

much larger CV 2
FPT and a faster approach to CV 2

FPT = 1 as γ → ∞; ii) The difference in

CV 2
FPT for optimal feedback and no feedback is indistinguishable when the protein is stable

(γ = 0) or highly unstable (γ →∞); and iii) For a range of intermediate protein half-lives,

the optimal feedback strategy provides an order of magnitude better suppression of CV 2
FPT ,

as compared to no feedback regulation. Taken together, these observations suggest that the

timescale of protein turnover and the extent of bursty expression sets a fundamental limit

to how much statistical fluctuations in FPT can be buffered.

Consistent with our above analysis, we find that a positive feedback mechanism provide

the highest precision in timing in more complex stochastic expression models that explicitly

include mRNA dynamics (Fig. 4C). An interesting point to note is that the protein trajec-
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FIG. 4. For an unstable protein, positive feedback provides the lowest noise in event

timing for a fixed mean FPT . (A) Noise in timing (CV 2
FPT ) as a function of the feedback

strength |c2| for different control strategies. The value of c1 is changed in (18) so as to keep 〈FPT 〉 =

40 mins fixed. The performance of the negative feedback worsens with increasing feedback strength.

In contrast, positive feedback with an optimal value of c2 provides the highest precision in event

timing. Other parameters used are γ = 0.05 min−1, X = 500 molecules, b = 2. The optimal value

attained via positive feedback is much higher than the minimal value of CV 2
FPT for a stable protein

(dashed line). (B) The minimum CV 2
FPT obtained via positive feedback increases monotonically

with the protein degradation rate. For comparison purposes, CV 2
FPT obtained without any feedback

(c2 = 0) is also plotted. (C) Monte Carlo simulations of protein trajectories under different forms

of feedback control. A positive feedback outperforms the other feedback strategies in terms of

minimizing statistical fluctuations in event timing. Histograms of the first-passage times obtained

from 10, 000 Monte Carlo runs are shown on top. For these simulations X = 500 molecules,

γ = 0.05 min−1, mRNA half-life is assumed to be 2.7 min, proteins are translated from mRNAs at

a rate 0.5 min−1, and c2 = 0 (no feedback), c2 = 0.05 min−1 (positive feedback), c2 = −0.05 min−1

(negative feedback).
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tories for the optimal positive feedback case look fairly linear, and similar to the trajectories

seen in the no feedback case when γ = 0 (compare rightmost plot in Fig. 4C with middle plot

in Fig. 3). One way to think about this is to consider protein synthesis in the deterministic

limit described by the following ordinary differential equation

dx(t)

dt
= b(c1 + c2x)− γx, x(0) = 0 (19)

with mean protein burst size b and a linear feedback form (18). If the feedback strength is

chosen as

c2 ≈
γ

b
(20)

then the time evolution of x(t) would be linear over time in (19). Indeed, our detailed

stochastic analysis shows that the optimal feedback strength that minimizes CV 2
FPT in the

stochastic model is qualitatively similar but not identical to (20) (see section S5 of the SI).

VI. DISCUSSION

We have systematically investigated ingredients essential for precision in timing of bio-

chemical events at the level of single cells. Our approach relies on modeling even timing as

the first-passage time for a stochastically expressed protein to cross a threshold level. This

framework was used to uncover optimal strategies for synthesizing the protein that ensures a

given mean time to event triggering (threshold crossing), with minimal fluctuations around

the mean. The main contributions and insights can be summarized as:

1. Novel analytical calculations for the first-passage time in stochastic models of gene

expression, with and without feedback regulation.

2. If the protein half-life is much longer than the timescale of the event, the highest

precision in event timing is attained by having no feedback, i.e., express the protein

at a constant rate (Fig. 3).

3. In the absence of feedback, the noise in event timing is given by (15) and determined by

the molecular threshold (X) and the protein burst size (b). Once X and b are chosen

for a tolerable noise level, the mean time to the event can be adjusted independently

through the transcription rate k.
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4. If the protein half-life is comparable or shorter than the timescale of the event, then

positive feedback provides the lowest noise in event timing (Fig. 4A). Moreover, neg-

ative feedback always amplifies noise around the mean time.

5. The minimum achievable noise in timing increases with the protein decay rate γ and

approaches CV 2
FPT = 1 as γ →∞ (Fig. 4B).

How robust are these findings to alternative noise sources and key modeling assumptions?

For example, the model only considers noise from low-copy number fluctuation in gene prod-

uct levels, and ignores any form of “extrinsic noise” that arises from cell-to-cell differences

in gene expression machinery [55, 69]. To incorporate such extrinsic noise, we alter the

transcription rate to kiZ, where Z is drawn from an a priori probability distribution at the

start of gene expression (t = 0), and remains fixed till the threshold is reached. Interestingly,

the optimal feedback derived in (17) does not change even after adding extrinsic noise to

the transcription rate or the protein burst size (see section S6 of the SI). Another important

model feature is geometrically distributed protein burst sizes, which follows from the as-

sumption of exponentially distributed mRNA lifetimes. We have also explored the scenario

of perfect memory in the mRNA degradation process, which results in a mRNA lifetime

distribution given by the delta function. In this case, the protein burst size is Poisson and

the optimal feedback strategy is fairly close to having no feedback for a stable protein (see

section S7 of the SI). Next, we discuss the biological implications of our findings in the con-

text of phage λ’s lysis times, i.e., the time taken by the virus to destroy infected bacterial

cells.

A. Connecting theoretical insights to λ lysis times

Phage λ has recently emerged as a simple model system for studying event timing at

the level of single cells [27, 28]. After infecting E. coli, λ expresses a protein, holin, which

accumulates in the inner membrane. When holin reaches a critical threshold concentration,

it undergoes a structural transformation, forming holes in the membrane [70]. These holes

allow other lysis proteins (endolysin and spanin) to access and rupture the cell wall [71].

Subsequently the cell lysis and phage progeny are released into the surrounding medium.

Since hole formation and cell rupture are nearly simultaneous, lysis timing depends on de
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novo expression and accumulation of holin in the cell membrane up to a critical threshold

[70–72]. Data reveals precision in the timing of lysis – individual cells infected by a single

virus lyse on average at 65 mins, with a standard deviation of 3.5 mins, implying a coefficient

of variation of ≈ 5%. Such precision is expected given the existence of an optimal lysis time

[73–77]. Intuitively, if λ lysis is early then there are no viral progeny. In contrast, if λ lysis

is late then the infected cell could die before lysis is effected, trapping the virus with it.

The threshold for lysis is reported to be a few thousand holin molecules [78]. Moreover,

the holin mean burst size (average number of holins produced in a single mRNA lifetime)

is estimated as b ≈ 1 − 3 [78]. Based on our FPT moment calculations in (15), such a

small protein burst size relative to the event threshold will yield a tight distribution of lysis

times. Interestingly, (15) provides insights for engineering mutant λ that lyse, on average,

at the same time as the wild type, but with much higher noise. This could be done by

lowering the threshold for lysis through mutations in the holin amino acid sequence [28],

and also reducing the holin mRNA transcription or translation rate so as to keep the same

mean lysis time. It is important to point out that since holin proteins are long-lived and do

not degrade over relevant timescales [79], λ’s lysis system with no known feedback in holin

expression provides better suppression of lysis-time fluctuation compared to any feedback

regulated system.

B. Additional mechanism for noise buffering

The surprising ineffectiveness of feedback control motivates the need for other mechanisms

to buffer noise in event timing. Intriguingly, λ uses feedforward control to regulate the

timing of lysis. Feedforward control is implemented through two proteins with opposing

functions: holin and antiholin [80–82]. In the wild-type virus both proteins are expressed

in a 2:1 ratio (for every two holins there is one antiholin) from the same mRNA through

a dual start motif. Antiholin binds to holin and prevents holin from participating in hole

formation, creating an incoherent feedforward circuit (Fig. 5). Synthesis of antiholin leads

to a lower burst size for active holin molecules, and increases the threshold for the total

number of holins needed for lysis – both factors functioning to lower the noise in event

timing. Consistent with this prediction, variants of λ lacking antiholin are experimentally

observed to exhibit much higher intercellular variation in lysis times as compared to the
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FIG. 5. An incoherent feedforward circuit in λ’s lytic pathway: Bacteriophage λ lysis the

infected host cell by expressing a membrane protein, holin (H). The protein slowly accumulates on

the cell membrane over time and forms holes when a critical concentration threshold is reached.

The mRNA encoding holin also expresses antiholin (AH), which binds to holin and prevents it

from participating in hole formation creating a feedforward circuit.

wild-type virus [28, 83]. In summary, λ encodes a multitude of regulatory mechanisms (low

holin burst size; no feedback regulation; feedforward control) to ensure that single infected

cells lyse at an optimal time, in spite of the inherently stochastic expression of lysis proteins.

These results illustrate the utility of the first-passage time framework for characterizing noise

in the timing of intracellular events. Finally, analytical results and insights obtained here

have broader implications for timing phenomenon in chemical kinetics, ecological modeling

and statistical physics.

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 3, 2016. ; https://doi.org/10.1101/056945doi: bioRxiv preprint 

https://doi.org/10.1101/056945
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUPPLEMENTARY INFORMATION

S1. ON SOME PROPERTIES OF THE MATRIX A

In this section, we discuss some properties of the matrix A given in equation (9) of the

main text.

S1-a. A is a Hurwitz matrix

The matrix A is given by

A =



− bk0
b+1

γ · · · 0

bk0
(b+1)2

−
(
bk1
b+1

+ γ
)
· · · 0

...
...

...
...

bX−2k0
(b+1)X−1

bX−3k1
(b+1)X−2 · · · (X − 1)γ

bX−1k0
(b+1)X

bX−2k1
(b+1)X−1 · · · −

(
bkX−1

b+1
+ (X − 1)γ

)


. (S1.1)

In order to prove that A is a Hurwitz matrix, we prove that the following two conditions

hold true [84, pp. 48–49]:

1. The diagonal elements aii < 0 for i = 1, 2, · · · , X,

2. max
1≤j≤X

X∑
i=1
j 6=i

∣∣∣∣aijajj
∣∣∣∣ < 1.

Condition 1 here is satisfied here as aii = − bki−1

b+1
− (i − 1)γ < 0. The left hand side of

Condition 2 for any column j = 1, 2, · · · , X is

X∑
i=1
j 6=i

∣∣∣∣aijajj
∣∣∣∣ =

(j − 1)γ
bkj−1

b+1
+ (j − 1)γ

+
bkj−1
b+ 1

X∑
i=j+1

(
b
b+1

)i−j
bkj−1

b+1
+ (j − 1)γ

(S1.2)

=
(j − 1)γ

bkj−1

b+1
+ (j − 1)γ

+

bkj−1

b+1

(
1−

(
b
b+1

)X−j)
bkj−1

b+1
+ (j − 1)γ

(S1.3)

=

bkj−1

b+1

(
1−

(
b
b+1

)X−j)
+ (j − 1)γ

bkj−1

b+1
+ (j − 1)γ

< 1. (S1.4)

Thus, the matrix A is Hurwitz, i.e., the eigenvalues of A have negative real part.
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S1-b. A is an invertible matrix

We will find the inverse of the matrix A thus proving that it is invertible.

Let us use A0 to denote the matrix A when γ = 0. The lower triangular matrix A0 is

given by

A =



− bk0
b+1

0 · · · 0

bk0
(b+1)2

− bk1
b+1

· · · 0
...

...
...

...

bX−2k0
(b+1)X−1

bX−3k1
(b+1)X−2 · · · 0

bX−1k0
(b+1)X

bX−2k1
(b+1)X−1 · · · − bkX−1

b+1


. (S1.5)

We claim that the inverse of A0 is given by the following matrix

A−10 = −1

b



b+1
k0

0 · · · 0 0

1
k1

b+1
k1
· · · 0 0

1
k2

1
k2
· · · 0 0

...
...

...
...

...

1
kX−2

1
kX−2

· · · b+1
kX−2

0

1
kX−1

1
kX−1

· · · 1
kX−1

b+1
kX−1


. (S1.6)

This claim can be quickly verified by multiplying the matrices which results in identity

matrix. Next, to determine A−1, we observe that when γ 6= 0, the matrix A can be written

as

A = A0 + Ae, (S1.7)

where Ae is given by

Ae =



0 γ · · · 0 0

0 −γ · · · 0 0

0 0
. . . 0 0

...
...

...
...

...

0 0 · · · −(X − 2)γ (X − 1)γ

0 0 · · · 0 −(X − 1)γ


. (S1.8)

Therefore the inverse of the matrix A can be written as

A−1 = (A0 + Ae)
−1 =

(
I + A−10 Ae

)−1
A−10 . (S1.9)
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Note that Ae is a bidiagonal matrix with the ith diagonal element as −(i− 1)γ, 1 ≤ i ≤ X

while the jth super-diagonal elements as jγ, 1 ≤ j ≤ X−1. As we have already determined

the expression of A−10 in (S1.6), the expression of A−10 Ae can be determined as

− 1

b



b+1
k0

0 · · · 0 0

1
k1

b+1
k1
· · · 0 0

1
k2

1
k2
· · · 0 0

...
...

...
...

...

1
kX−2

1
kX−2

· · · b+1
kX−2

0

1
kX−1

1
kX−1

· · · 1
kX−1

b+1
kX−1





0 γ · · · 0 0

0 −γ · · · 0 0

0 0
. . . 0 0

...
...

...
...

...

0 0 · · · −(X − 2)γ (X − 1)γ

0 0 · · · 0 −(X − 1)γ


(S1.10)

=



0 − (b+1)γ
bk0

· · · 0 0

0 γ
k1

· · · 0 0

0 0
. . . 0 0

...
...

...
...

...

0 0 · · · (X−2)γ
kX−2

− (X−1)(b+1)γ
bkX−2

0 0 · · · 0 (X−1)γ
kX−1


. (S1.11)

Thus, the matrix I + A−10 Ae is a bidiagonal matrix with its diagonal elements 1 + (i−1)γ
ki−1

=

ki−1+(i−1)γ
ki−1

for i = 1, 2, · · · , X. The super diagonal elements are given by − j(b+1)γ
bkj−1

for j =

1, 2, · · · , X − 1. Using the result for inverse of a bidiagonal matrix derived in [85], we can

write the (i, j) element of inverse of E := I + A−10 Ae as follows

e′i,j =


0 if i > j,

ki−1

ki−1+(i−1)γ , if i = j,

ki−1

ki−1+(i−1)γ
∏j−1

l=i

(
kl

kl+lγ
l(b+1)γ
bkl−1

)
, if i < j.

(S1.12)

Alternatively, in matrix form

E−1 =


1 k1

k1+γ
(b+1)γ
bk0

· · ·
∏X−1

l=1

(
kl

kl+lγ
l(b+1)γ
bkl−1

)
0 k1

k1+γ
· · · k1

k1+γ

∏X−1
l=2

(
kl

kl+lγ
l(b+1)γ
bkl−1

)
...

...
...

...

0 0 · · · kX−1

kX−1+(X−1)γ

. (S1.13)

We can compute A−1 by calculating E−1A−10 . Here, we do not give explicit form of A−1 as

it is not required for calculations in this document. Nevertheless, it validates that A is an

invertible matrix.
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S2. EXPRESSION OF mth MOMENT OF FIRST-PASSAGE TIME

In this section, we make use of the properties discussed in the previous section to deter-

mine the moments of the first-passage time. As discussed in the main text (equation (12)),

the distribution of first-passage time (FPT ) is given by the following

fFPT (t) = U exp(At)P(0). (S2.1)

Therefore, a moment of mth order can be calculated as

〈FPTm〉 =

∫ ∞
0

tmU exp(At)P(0)dt (S2.2)

= U

(∫ ∞
0

tm exp(At)dt

)
P(0). (S2.3)

Let us consider

∫ ∞
0

tm exp(At)dt. Integrating by parts

∫ ∞
0

tm exp(At)dt = tmA−1 exp(At)

∣∣∣∣∣
∞

0

−mA−1
∫ ∞
0

tm−1 exp(At)dt. (S2.4)

The first part of on the right hand side goes to zero as long as exp(At) goes to zero faster than

the polynomial term tm which is true since the matrix A is a Hurwitz matrix, i.e., the eigen-

values of A have negative real parts. Using am as a notion to represent

∫ ∞
0

tm exp(At)dt,

we can write the following recursive relationship

am = −mA−1am−1. (S2.5)

Thus, am = (−1)mm!(A−1)ma0. Further,

a0 =

∫ ∞
0

exp(At)dt = A−1 exp(At)

∣∣∣∣∣
∞

0

= −A−1. (S2.6)

Therefore am = (−1)m+1m!(A−1)m+1. Substituting this in (S2.3) gives the following for a

general mth moment of FPT

〈FPTm〉 = (−1)mm!U(A−1)m+1P(0). (S2.7)

S2-a. Calculation of UA−1

As we saw in equation (S2.7), calculation of the moments will have a term of the form

UA−1. Here we provide the calculation of this term.
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Consider two matrices G and H such that Ae = GH where G is a X ×X − 1 matrix

G = γ



−1 0 0 · · · 0 0

1 −2 0 · · · 0 0

0 2 −3 · · · 0 0

0 0 3 · · · 0 0
...

...
...

...
...

0 0 0 · · · X − 2 −(X − 1)

0 0 0 · · · 0 X − 1


, (S2.8)

while H is a X − 1×X matrix

H =



0 −1 0 · · · 0 0

0 0 −1 · · · 0 0
...

...
...

...
...

0 0 0 · · · −1 0

0 0 0 · · · 0 −1


. (S2.9)

Using the matrix inversion lemma, A−1 can be written as

A−1 = (A0 + GH)−1 , (S2.10)

= A0
−1 −A−10 G

(
I + HA−10 G

)−1
HA0

−1. (S2.11)

Let us look at the expression UA−10 G.

UA−10 G = −
[
1 1 · · · 1

]



−1 0 · · · 0

1 −2 · · · 0

0 2 · · · 0

0 0 · · · 0
...

...
...

...

0 0 · · · −(X − 1)

0 0 · · · X − 1


, (S2.12)

= −
[
0 0 · · · 0

]
. (S2.13)

Therefore, we can conclude that UA−1 is in fact equal to UA−10 which could be calculated

by multiplying U and A−10 .
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UA−10 = −1

b



k0
(

b
b+1

)X
k1
(

b
b+1

)X−1
k2
(

b
b+1

)X−2
...

kX−2
(

b
b+1

)2
kX−1

(
b
b+1

)



T

b+1
k0

0 · · · 0 0

1
k1

b+1
k1
· · · 0 0

1
k2

1
k2
· · · 0 0

...
...

...
...

...

1
kX−2

1
kX−2

· · · b+1
kX−2

0

1
kX−1

1
kX−1

· · · 1
kX−1

b+1
kX−1


(S2.14)

= −1

b



bX

(b+1)X−1 +
∑X−1

l=1

(
b
b+1

)l
bX−1

(b+1)X−2 +
∑X−2

l=1

(
b
b+1

)l
bX−2

(b+1)X−3 +
∑X−3

l=1

(
b
b+1

)l
...

b2

b+1
+ b

b+1

b



T

(S2.15)

= −1

b

[
b b b · · · b b

]
= −

[
1 1 1 · · · 1 1

]
. (S2.16)

S2-b. Calculation of the first-two first-passage time moments

Mean FPT The mean FPT’s expression can be written as

〈FPT 〉 = UA−2P(0) = UA−10 E−1A−10 P(0). (S2.17)

The expression of A−10 P(0) is just the first column of A0. Therefore

E−1A−10 P(0) =

− 1

b


1 k1

k1+γ
(b+1)γ
bk0

· · ·
∏X−1

l=1

(
kl

kl+lγ
l(b+1)γ
bkl−1

)
0 k1

k1+γ
· · · k1

k1+γ

∏X−1
l=2

(
kl

kl+lγ
l(b+1)γ
bkl−1

)
...

...
...

...

0 0 · · · kX−1

kX−1+(X−1)γ




b+1
k0

1
k1
...

1
kX−1

 (S2.18)

= −1

b


b+1
k0

+ 1
k1

k1
k1+γ

(b+1)γ
bk0

+ · · ·+ 1
kX−1

∏X−1
l=1

(
kl

kl+lγ
l(b+1)γ
bkl−1

)
1
k1

k1
k1+γ

+ 1
k2

k1
k1+γ

k2
k2+2γ

2(b+1)γ
bk1

+ · · ·+ 1
kX−1

k1
k1+γ

∏X−1
l=2

(
kl

kl+lγ
l(b+1)γ
bkl−1

)
...

1
kX−1

kX−1

kX−1+(X−1)γ

. (S2.19)
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Since the vector UA−10 = −
[
1 1 1 · · · 1 1

]
, UA−10 E−1A−10 P(0) is essentially negative sum

of the elements of E−1A−10 P(0). Therefore we have the expression of mean FPT is given by

〈FPT 〉 =
1

k0
+

1

b

X∑
i=1

(
1

ki−1

ki−1
ki−1 + (i− 1)γ

+

X∑
j=i+1

1

kj−1

(
ki−1

ki−1 + (i− 1)γ

j−1∏
l=i

(
kl

kl + lγ

l (b+ 1) γ

bkl−1

)))
. (S2.20)

a. Second order moment The second order moment is given by

〈
FPT 2

〉
= −2UA−3P(0) = −2UA−10 E−1A−10 E−1A−10 P(0). (S2.21)

Let us use the notation ηi defined as

ηi :=
ki−1

ki−1 + (i− 1)γ

(
1

ki−1
+

X∑
j=i+1

1

kj−1

j−1∏
l=i

kl
kl + lγ

l (b+ 1) γ

bkl−1

)
+

b

k0
δi−1. (S2.22)

Using (S2.19), we can write

E−1A−10 P(0) = −1

b



η1

η1
...

ηX−2

ηX−1


. (S2.23)

Therefore

A−10 E−1A−10 P(0) =

(
1

b

)2



b+1
k0

0 · · · 0 0

1
k1

b+1
k1
· · · 0 0

...
...

. . .
...

...

1
kX−2

1
kX−2

· · · b+1
kX−2

0

1
kX−1

1
kX−1

· · · 1
kX−1

b+1
kX−1





η1

η2
...

ηX−1

ηX


(S2.24)

=

(
1

b

)2



(b+1)η1
k0

η1+(b+1)η2
k1
...∑X−2

i=1 ηi+(b+1)ηX−1

kX−2∑X−1
i=1 ηi+(b+1)ηX

kX−1


. (S2.25)

23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 3, 2016. ; https://doi.org/10.1101/056945doi: bioRxiv preprint 

https://doi.org/10.1101/056945
http://creativecommons.org/licenses/by-nc-nd/4.0/


Using the notion ξi =
∑i−1

j=1 ηi + (b+ 1) ηi, we can write E−1A−10 E−1A−10 P(0) as

(
1

b

)2


1 k1

k1+γ
(b+1)γ
bk0

· · ·
∏X−1

l=1

(
kl

kl+lγ
l(b+1)γ
bkl−1

)
0 k1

k1+γ
· · · k1

k1+γ

∏X−1
l=2

(
kl

kl+lγ
l(b+1)γ
bkl−1

)
...

...
...

...

0 0 · · · kX−1

kX−1+(X−1)γ




ξ1
k0

ξ2
k1
...

ξX
kX−1

 (S2.26)

=

(
1

b

)2



ξ1
k0

+ ξ2
k1

k1
k1+γ

(b+1)γ
bk0

+ · · ·+ ξX
kX−1

∏X−1
l=1

(
kl

kl+lγ
l(b+1)γ
bkl−1

)
ξ2
k1

k1
k1+γ

+ · · ·+ ξX
kX−1

k1
k1+γ

∏X−1
l=2

(
kl

kl+lγ
l(b+1)γ
bkl−1

)
...

ξX
kX−1

kX−1

kX−1+(X−1)γ

. (S2.27)

As UA−10 is merely negative summation of the elements of the column vector it pre-multiplies

to, the second order moment of FPT can be given by following explicit formula

〈
FPT 2

〉
= 2

(
1

b

)2 X∑
i=1

ki−1
ki−1 + (i− 1)γ

(
ξi
ki−1

+
X∑

r=i+1

ξr
kr−1

(
r−1∏
l=i

(
kl

kl + lγ

l (b+ 1) γ

bkl−1

)))
.

(S2.28)

S3. OPTIMAL FEEDBACK WHEN PROTEIN DOES NOT DEGRADE

As mentioned in the main text, our objective is to minimize 〈FPT 2〉 such that 〈FPT 〉

is fixed. For calculation purposes, we will denote this constraint as 〈FPT 〉 = topt. Let m

represents the Lagrange’s multiplier, then we define the following objective function

φ :=
〈
FPT 2

〉
+m (〈FPT 〉 − topt) . (S3.1)

The optimization problem is solved in two steps. First, we determine the critical points.

Second, we find the critical point corresponding to a global minimum.

Determining the critical points requires the following system of equations to be solved

∂ 〈FPT 2〉
∂ki

= m
∂ 〈FPT 〉
∂ki

, 0 ≤ i ≤ X − 1, (S3.2)

〈FPT 〉 = topt. (S3.3)

The expressions of the first-two moments of FPT when protein does not degrade are given
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by equation (16) in the main text. These are

〈FPT 〉 =
1

k0
+

1

b

X−1∑
i=0

1

ki
, (S3.4)

〈
FPT 2

〉
=

2

b2

(
τ0
bk0

+
X−1∑
i=0

τi
ki

)
, where (S3.5)

τi :=
b

ki
+

X−1∑
j=i

1

kj
. (S3.6)

The optimization problem in equations (S3.2),(S3.3) requires calculation of the first order

derivatives of 〈FPT 〉 and 〈FPT 2〉. The derivatives of 〈FPT 〉 with respect to ki’s are given

by

∂ 〈FPT 〉
∂k0

=
b+ 1

b

(
− 1

k20

)
;
∂ 〈FPT 〉
∂ki

=
1

b

(
− 1

k2i

)
, 1 ≤ i ≤ X − 1. (S3.7)

Similarly, the derivative of 〈FPT 2〉 are

∂ 〈FPT 2〉
∂k0

= 2

(
1

b

)2
(
−2 (b+ 1)2

k30
− b+ 1

k20

X−1∑
j=1

1

kj

)
, (S3.8)

∂ 〈FPT 2〉
∂ki

= 2

(
1

b

)2

b+ 1

k0
+

2 (b+ 1)

ki
+

X−1∑
j=1
j 6=i

1

kj

(−1

k2i

)
, 1 ≤ i ≤ X − 1. (S3.9)

Therefore, the system of equations to be solved becomes

2

(
1

b

)2
(
−2 (b+ 1)2

k30
− b+ 1

k20

X−1∑
j=1

1

kj

)
= m

b+ 1

b

(
− 1

k20

)
, (S3.10)

2

(
1

b

)2

b+ 1

k0
+

2 (b+ 1)

ki
+

X−1∑
j=1
j 6=i

1

kj

(−1

k2i

)
= m

1

b

(
− 1

k2i

)
, 1 ≤ i ≤ X − 1, (S3.11)

1

b

(
b+ 1

k0
+

X−1∑
j=1

1

kj

)
= topt. (S3.12)

Furthermore, we want the solution such that none of the transcription rate is zero. This
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simplifies the system of equations to

2

b

(
2 (b+ 1)

k0
+

X−1∑
j=1

1

kj

)
= m, (S3.13)

2

b

b+ 1

k0
+

2 (b+ 1)

ki
+

X−1∑
j=1
j 6=i

1

kj

 = m, 1 ≤ i ≤ X − 1, (S3.14)

1

b

(
b+ 1

k0
+

X−1∑
j=1

1

kj

)
= topt. (S3.15)

Solution to these equations is given by

k0 =
(b+ 1)(2b+X)

(2b+ 1)btopt
(S3.16)

ki =
2b+ 1

b+ 1
k0 =

2b+X

btopt
, 1 ≤ i ≤ X − 1, (S3.17)

m =
2 (b+ 1) (4b+X + 1)

(2b+ 1) bk0
=

2topt(4b+X + 1)

2b+X
. (S3.18)

We have calculated the critical point for the optimization problem. However, it needs to be

checked whether its an minimum or maximum. For this purpose, we consider the bordered

Hessian as follows.

Dφ =



∂2φ
∂m2

∂2φ
∂m∂k0

∂2φ
∂m∂k1

· · · ∂2φ
∂m∂kX−1

∂2φ
∂k0∂m

∂2φ
∂k20

∂2φ
∂k0∂k1

· · · ∂2φ
∂k0∂kX−1

∂2φ
∂k1∂m

∂2φ
∂k1∂k0

∂2φ
∂k21

· · · ∂2φ
∂k1∂kX−1

...
...

...
...

∂2φ
∂kX−1∂m

∂2φ
∂kX−1∂k0

∂2φ
∂kX−1∂k1

· · · ∂2φ
∂k2X−1


. (S3.19)

We will show that all the principal minors of this matrix are negative. To start with, let us

first determine the second order derivatives of 〈FPT 〉.
∂2 〈FPT 〉

∂k20
=

∂

∂k0

− (b+ 1)

bk20
=

2 (b+ 1)

bk30
, (S3.20)

∂2 〈FPT 〉
∂k0∂ki

=
∂

∂k0

1

b

(
− 1

k2i

)
= 0, 1 ≤ i ≤ X − 1, (S3.21)

∂2 〈FPT 〉
∂ki∂k0

=
∂

∂ki

− (b+ 1)

bk20
= 0, 1 ≤ i ≤ X − 1, (S3.22)

∂2 〈FPT 〉
∂ki∂kj

=
∂

∂ki

−1

bk2j
= 0, 1 ≤ i, j ≤ X − 1, i 6= j (S3.23)

∂2 〈FPT 〉
∂k2i

=
∂

∂ki

(
− 1

bk2i

)
=

2

bk3i
, 1 ≤ i ≤ X − 1, (S3.24)
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Similarly, the derivatives for 〈FPT 2〉 are given by

∂2 〈FPT 2〉
∂k20

=
∂

∂k0

(
2

(
1

b

)2
(
−2 (b+ 1)2

k30
− b+ 1

k20

X−1∑
j=1

1

kj

))

= 2

(
1

b

)2
(

6 (b+ 1)2

k40
+

2 (b+ 1)

k30

X−1∑
j=1

1

kj

)
, (S3.25)

∂2 〈FPT 2〉
∂k0∂ki

=
∂

∂k0

2

(
1

b

)2

b+ 1

k0
+

2 (b+ 1)

ki
+

X−1∑
j=1
j 6=i

1

kj

(−1

k2i

)
= 2

(
1

b

)2
b+ 1

k20k
2
i

, 1 ≤ i ≤ X − 1, (S3.26)

∂2 〈FPT 2〉
∂ki∂k0

=
∂

∂ki

(
2

(
1

b

)2
(
−2 (b+ 1)2

k30
− b+ 1

k20

X−1∑
j=1

1

kj

))

= 2

(
1

b

)2
b+ 1

k20k
2
i

, 1 ≤ i ≤ X − 1, (S3.27)

∂2 〈FPT 2〉
∂ki∂kj

=
∂

∂ki

2

(
1

b

)2

b+ 1

k0
+

2 (b+ 1)

kj
+

X−1∑
l=1
l 6=j

1

kl

(−1

k2j

)
= 2

(
1

b

)2
1

k2i k
2
j

, 1 ≤ i, j ≤ X − 1, i 6= j, (S3.28)

∂2 〈FPT 2〉
∂k2i

=
∂

∂ki

2

(
1

b

)2

b+ 1

k0
+

2 (b+ 1)

ki
+

X−1∑
j=1
j 6=i

1

kj

(−1

k2i

)
= 2

(
1

b

)2
(

2 (b+ 1)

k0k3i
+

6 (b+ 1)

k4i
+

2

k3i

X−1∑
j=1

1

kj

)
, 1 ≤ i ≤ X − 1. (S3.29)

We can now determine the elements of the bordered Hessian matrix in equation (S3.19)

computed at the solution given by equations (S3.16)-(S3.17).

∂2φ

∂m2
=
∂2 (〈FPT 2〉+m (〈FPT 〉 − topt))

∂m2
= 0, (S3.30)
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∂2φ

∂m∂k0
=

∂2φ

∂k0∂m
=
∂ 〈FPT 〉
∂k0

=
b+ 1

b

(
− 1

k20

)
. (S3.31)

∂2φ

∂m∂ki
=

∂2φ

∂ki∂m
=
∂ 〈FPT 〉
∂ki

=
1

b

(
− 1

k2i

)
. (S3.32)

∂2φ

∂k20
=
∂2 (〈FPT 2〉+m (〈FPT 〉 − topt))

∂k20
(S3.33)

= 2

(
1

b

)2
(

6 (b+ 1)2

k40
+

2 (b+ 1)

k30

X−1∑
j=1

1

kj

)
+m

2 (b+ 1)

bk30
(S3.34)

=
4(b+ 1)2(10b+ 2X + 3)

(2b+ 1)b2k0
4 (S3.35)

∂2φ

∂k2i
=
∂2 (〈FPT 2〉+m (〈FPT 〉 − topt))

∂k2i
(S3.36)

= 2

(
1

b

)2
(

2 (b+ 1)

k0k3i
+

6 (b+ 1)

k4i
+

2

k3i

X−1∑
j=1

1

kj

)
+m

2

bk3i
(S3.37)

=
4(b+ 1)4(9b+ 2X + 4)

(2b+ 1)4b2k0
4 . (S3.38)

∂2φ

∂k0ki
=

∂2φ

∂kik0
=
∂2 (〈FPT 2〉+m (〈FPT 〉 − topt))

∂k0∂ki
(S3.39)

= 2

(
1

b

)2
b+ 1

k20k
2
i

(S3.40)

=
2(b+ 1)3

(2b+ 1)2b2k0
4 (S3.41)

∂2φ

∂kjki
=

∂2φ

∂kikj
=
∂2 (〈FPT 2〉+m (〈FPT 〉 − topt))

∂kj∂ki
(S3.42)

= 2

(
1

b

)2
1

k2jk
2
i

(S3.43)

=
2 (b+ 1)2

(2b+ 1)2 b2k40
(S3.44)
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It can be noted elements of Dφ are from a set six quantities. Defining

q1 :=
b+ 1

b

(
− 1

k20

)
, q2 :=

1

b

(
− 1

k20

)
,

q3 :=
4(b+ 1)2(10b+ 2X + 3)

(2b+ 1)b2k0
4 , q4 :=

2(b+ 1)3

(2b+ 1)2b2k0
4 ,

q5 :=
4(b+ 1)4(9b+ 2X + 4)

(2b+ 1)4b2k0
4 , q6 :=

2 (b+ 1)2

(2b+ 1)2 b2k40

(S3.45)

we can write Dφ as

Dφ =



0 q1 q2 · · · q2
q1 q3 q4 · · · q4
q2 q4 q5 · · · q6
...

...
...

. . .
...

q2 q4 q6 · · · q5


. (S3.46)

Let us denote by K(n) the principal minor of the matrix Dφ of size n×n. It can be easily

seen that K(1) = 0, K(2) = 0− q21 < 0 and K(3) = −q22q3 + 2q1q2q4− q21q5. For 4 ≤ n ≤ X,

we perform the following two elementary operations on Dφ

• colr = colr − colr−1

• rowr = rowi − rowr−1

for r = n, n− 1, ..., 1. This yields

K(n) = 2(q5 − q6)K(n− 1)− (q5 − q6)2K(n− 2), 4 ≤ n ≤ X. (S3.47)

The solution to the above recursive equation is given by

K(n) = −(q5 − q6)n−3
(
(n− 2)

(
q22q3 − 2q1q2q4 + q21q6

)
+
(
q21q6 + q21q5

))
. (S3.48)

It can be easily checked that K(n) is negative because q5 > q6, q
2
2q3− 2q1q2q4 + q21q6 > 0 and

q21q6 + q21q5 > 0. This proves that the critical point indeed corresponds to a minimum.

S4. OPTIMAL FEEDBACK STRATEGY IN PRESENCE OF PROTEIN DEGRA-

DATION

In previous sections, we have derived analytical expression of the optimal feedback strat-

egy that minimizes 〈FPT 2〉 such that 〈FPT 〉 is constant. As the expressions of 〈FPT 〉
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FIG. S4.1. Optimal feedback strategy for unstable protein. The optimal transcription rates obtained

via numerical optimization for different values of degradation rate are shown. The event threshold

is assumed to be 10 molecules, and the mean FPT is constrained to be 1 minute.

and 〈FPT 2〉 in equations (S2.20) and (S2.28) are too convoluted to solve for optimal tran-

scription rates analytically, we take a numerical approach. For this purpose, we fixed the

threshold X = 10 molecules, and mean burst size b = 1 molecules. Using numerical solvers,

we searched the parameter space of the transcription rates ki, i ∈ {0, 1, ..., 9} for various

values of the protein degradation rate γ. As shown in Fig. S4.1, when γ = 0, the tran-

scription rates are equal except for the first one. This is consistent with the expressions

in (S3.16)-(S3.17). Further, as the protein degradation rate is increased, the transcription

rates first increase and then decrease, suggesting a mixed feedback strategy.

To keep the results biologically meaningful, we assume that the feedbacks are implements

as Hill functions. One simplest implementation of this would be a linear form of the feedback

ki = c1 + c2i, (S4.1)

as considered in the analysis in the main text. Here, we show the results for having a

nonlinear form of Hill functions wherein a positive feedback is implemented as below

ki = kmax

(
r + (1− r) (ci)H

1 + (ci)H

)
, (S4.2)
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FIG. S4.2. Optimal feedback strategy in form of a Hill function. The transcription rates are

assumed to follow the Hill funciton forms as given by (S4.2) (positive feedback) and (S4.3) (negative

feedback). For a negative feedback, CV 2
FPT increases as the feedback strength increased. For a

positive feedback, CV 2
FPT first decreases as feedback strength increases, hits a minimum at a certain

feedback strength, and increases after that. The parameters used are b = 1 molecule, r = 0.05,

and H = 1.

where kmax is represents the maximum possible transcription rate, 0 < r < 1 is a constant

corresponding to the minimum transcription rate (kmaxr), c is the feedback strength (note

that ki = kmax/2 when i=1/c), and H denotes the Hill coefficient. Similarly, a negative

feedback is implemented via

ki = kmax

(
r +

1− r
1 + (ci)H

)
. (S4.3)

The results of these Hill function implementations are same as shown in the main text for

the linear form of transcription rates. We show one example of this in Fig. S4.2. One can see

that when the protein degradation is allowed, the negative feedback leads to increase in noise

as its feedback strength is increased. For the positive feedback, the noise hits a minimum for

a certain feedback strength. Here the mean FPT is kept constant by appropriately tuning

the parameter kmax.

One can see that there are more parameters in these forms of feedback, and various

parameters (or their combinations) can be tuned to keep the mean fixed for a given feedback
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strength, the resulting analysis is complex. This is the rationale behind using the simplest

possible form (linear) of the feedback which gives useful insight.

S5. OPTIMAL FEEDBACK STRENGTH FOR LINEAR FORM OF FEEDBACK

IN PRESENCE OF PROTEIN DEGRADATION

In this section, we explore the optimal feedback strength c2 as the protein degradation

rate is varied. As in the main text, the feedbacks are assumed to follow a linear form given

by ki = c1 ± c2i.

When the protein does not decay, as expected from theory, we get the optimal c2 = 0. As

protein decay is considered, a positive feedback acts as the optimal feedback strategy. The

optimal c2 multiplied by the mean burst size b takes values close to the degradation rate γ

as shown in Fig. S5.1 (left). Interestingly, the protein trajectories generated by the optimal

(positive) feedback in the case of protein degradation mimic those generated by the optimal

feedback (no feedback) when protein did not decay. For their average dynamics to follow

each other, a deterministic analysis reveals that as ẋ = b(c1 + c2x)− γx, bc2 should be equal

to γ. The slight difference between them appears to be due to the fact that a stochastic

mean and a deterministic mean usually differ from each other.
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FIG. S5.1. Difference between the degradation rate γ and optimal feedback strength c2

multiplied by the mean burst size b: Left : The quantities are plotted for a range of degradation

rates. It can be seen that they remain close to each other for increase in the degradation rate, and

for several burst sizes. Right : The difference between the quantities is plotted as γ is changed.

For a given mean burst size b, the difference bc2 − γ increases with increase in γ. For a given

degradation rate, this difference also increases as the mean burst size b is increased.
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We also explored the difference bc2 − γ as γ varies. Intriguingly, if the mean burst size

b is kept constant, we observe that the difference increases for increase in γ. Further, for a

given degradation rate, increasing b leads to increase in the difference bc2 − γ. The reason

for this is not clear to us yet, though it appears that in this case the stochastic description

of the dynamics shows more deviations from the deterministic dynamics.

S6. OPTIMAL FEEDBACK FOR STABLE PROTEIN IN PRESENCE OF EX-

TRINSIC NOISE

In this section, assuming that the protein does not degrade, we investigate how the

optimal regulation strategy deviates from a no feedback in presence of a static extrinsic

noise. We consider two possibilities here: one, the extrinsic noise affects the mean burst

size; two, the extrinsic noise affects the transcription rate. For the first case, we assume that

the mean burst size is drawn from an arbitrary positive-valued distribution. The second case

is analyzed by assuming that a factor Z multiplies with the transcription rates resulting in

an effective transcription rate when x(t) = i to be kiZ.

S6-a. Optimal feedback when the mean burst size is drawn from a distribution

Let us assume the mean burst size a random variable with probability density function

fb(β). Thus, the number of proteins in a burst are geometrically distributed with mean b

where b itself is a random variable. The mean FPT can be computed as

〈FPT |b = β〉 =
1

β

(
β + 1

k0
+

X−1∑
i=1

1

ki

)
, (S6.1)

=⇒ 〈FPT 〉 =

(
1 +

〈
1

b

〉)
1

k0
+

〈
1

b

〉X−1∑
i=1

1

ki
. (S6.2)

Similarly, the second order moment of FPT is given by

〈
FPT 2|b = β

〉
=

(
1

β

)2
(
β + 1

k0

(
β + 1

k0
+

X−1∑
i=1

1

ki

)
+

X−1∑
i=1

1

ki

(
β + 1

ki
+

X−1∑
j=i+1

1

kj

))
,

(S6.3)
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=⇒
〈
FPT 2

〉
=

(〈
1

b2

〉
+ 2

〈
1

b

〉
+ 1

)
1

k20
+

(〈
1

b2

〉
+

〈
1

b

〉)(
1

k0

X−1∑
i=1

1

ki
+

X−1∑
i=1

1

k2i

)

+

〈
1

b2

〉X−1∑
i=1

1

ki

X−1∑
j=i+1

1

kj
. (S6.4)

Defining α1 =
〈
1
b

〉
and α2 =

〈
1
b2

〉
, we have

〈FPT 〉 = (1 + α1)
1

k0
+ α1

X−1∑
i=1

1

ki
, (S6.5)

〈
FPT 2

〉
= (1 + 2α1 + α2)

1

k20
+ (α1 + α2)

(
1

k0

X−1∑
i=1

1

ki
+

X−1∑
i=1

1

k2i

)
+ α2

X−1∑
i=1

1

ki

X−1∑
j=i+1

1

kj

(S6.6)

The derivatives of 〈FPT 〉 with respect to ki’s are given by

∂ 〈FPT 〉
∂k0

= (1 + α1)

(
− 1

k20

)
;
∂ 〈FPT 〉
∂ki

= α1

(
− 1

k2i

)
, 1 ≤ i ≤ X − 1. (S6.7)

Similarly, the derivative of 〈FPT 2〉 are

∂ 〈FPT 2〉
∂k0

= 2

(
−2 (1 + 2α1 + α2)

k30
− (α1 + α2)

k20

X−1∑
j=1

1

kj

)
; (S6.8)

∂ 〈FPT 2〉
∂ki

= 2

α1 + α2

k0
+

2 (α1 + α2)

ki
+ α2

X−1∑
j=1
j 6=i

1

kj

(−1

k2i

)
, 1 ≤ i ≤ X − 1. (S6.9)

To find a critical point, we have to solve the following system of equations

2

(
−2 (1 + 2α1 + α2)

k30
− (α1 + α2)

k20

X−1∑
j=1

1

kj

)
= m (1 + α1)

(
− 1

k20

)
(S6.10)

2

α1 + α2

k0
+

2 (α1 + α2)

ki
+ α2

X−1∑
j=1
j 6=i

1

kj

(−1

k2i

)
= mα1

(
− 1

k2i

)
, 1 ≤ i ≤ X − 1, (S6.11)

(1 + α1)
1

k0
+ α1

X−1∑
i=1

1

ki
= topt. (S6.12)
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Assuming that k0, k1, ... 6= 0, we get

2

(
2 (1 + 2α1 + α2)

k0
+ (α1 + α2)

X−1∑
j=1

1

kj

)
= m (1 + α1) (S6.13)

2

α1 + α2

k0
+

2 (α1 + α2)

ki
+ α2

X−1∑
j=1
j 6=i

1

kj

 = mα1, 1 ≤ i ≤ X − 1, (S6.14)

(1 + α1)
1

k0
+ α1

X−1∑
i=1

1

ki
= topt. (S6.15)

Solution to above system of equations gives

ki = k = k0ζ, 1 ≤ i ≤ X − 1, (S6.16)

k0 =
Xα1

(
(1 + α1)

2 + 2α2

)
− 3α3

1 + α2 + 2α2
1 + α2

1α2 + α1

(X (α2 − α2
1) + α1 (2 + 3α1 + α2)) topt

, (S6.17)

ζ =
X(α2 − α2

1) + 3α2
1 + 2α1 + α1α2

3α2
1 + α1 + α1α2 − α2

. (S6.18)

These equations reduce to our previous results of having a constant mean burst size b when

α1 = 1/b, α2 = 1/b2 are used.

S6-b. Optimal regulation when extrinsic factor affects the transcription rate

We consider an extrinsic factor Z with a positive-valued arbitrary distribution fZ(z).

This factor is assumed to be static, i.e., it does not vary over the time scale of the event of

interest. Further we assume that it affects the transcription rates in a multiplicative fashion.

The first-passage time mean in this case can be written as

〈FPT |Z = z〉 =
1

z

(
1

k0
+

1

b

X−1∑
i=0

1

ki

)
=⇒ 〈FPT 〉 =

〈
1

z

〉(
1

k0
+

1

b

X−1∑
i=0

1

ki

)
. (S6.19)

Likewise the second order moment can be written as

〈
FPT 2

〉
=

〈
1

z2

〉
2

b2

(
τ0
bk0

+
X−1∑
i=0

τi
ki

)
, τi :=

b

ki
+

X−1∑
j=i

1

kj
. (S6.20)
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Solving the constrained optimization problem of minimizing 〈FPT 2〉 constrained to 〈FPT 〉 =

topt in this case simplifies to solving the following system of equations

〈1/z2〉
〈1/z〉

2

b

(
2 (b+ 1)

k0
+

X−1∑
j=1

1

kj

)
= m, (S6.21)

〈1/z2〉
〈1/z〉

2

b

b+ 1

k0
+

2 (b+ 1)

ki
+

X−1∑
j=1
j 6=i

1

kj

 = m, 1 ≤ i ≤ X − 1, (S6.22)

〈
1

z

〉
1

b

(
b+ 1

k0
+

X−1∑
j=1

1

kj

)
= topt, (S6.23)

where m represents the Lagrange’s multiplier. Solution to these equations gives

k0 =
(b+ 1)(2b+X)

〈
1
z

〉
(2b+ 1)btopt

(S6.24)

ki =
2b+ 1

b+ 1
k0 =

(2b+X)
〈
1
z

〉
btopt

, 1 ≤ i ≤ X − 1. (S6.25)

S7. OPTIMAL FEEDBACK STRATEGY WHEN BURST SIZE IS DRAWN FROM

A POISSON DISTRIBUTION

In the main paper, the mRNA degradation process is assumed to be memoryless (expo-

nential), and consequently the burst of proteins is assumed to follow a geometric distribution.

However, in the limit when the mRNA degradation process is deterministic, the burst size

distribution becomes Poisson. For this reason, we investigate how the optimal feedback

strategy changes in the case when the burst follows a Poisson distribution.

The production and degradation of the protein (similar to equation (2) in main text) is

governed by following probabilities

P (x(t+ dt) = i+B|x(t) = i) = kidt, (S7.1)

P (x(t+ dt) = i− 1|x(t) = i) = iγdt, (S7.2)

where the burst size B follows a Poisson distribution given by

P (B = j) =
bj

j!
e−b. (S7.3)

Here b, as before, represents the mean burst size, i.e., the average number of protein molecules

produced by one mRNA.

36

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 3, 2016. ; https://doi.org/10.1101/056945doi: bioRxiv preprint 

https://doi.org/10.1101/056945
http://creativecommons.org/licenses/by-nc-nd/4.0/


●

●

● ● ● ● ● ● ●
●

▲ ▲
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

■
■ ■ ■ ■ ■ ■ ■ ■ ■

1 3 5 7 9
0

1

2

3

4

5

6

Protein count

T
ra

n
s
c
ri

p
ti
o

n
 r

a
te

b = 0.6

b = 1

b = 3

FIG. S7.1. Optimal feedback strategy for Poisson distributed burst size. The optimal transcription

rates obtained via numerical optimization for different values of mean burst size are shown. The

event threshold is assumed to be 10 molecules, and the mean FPT is constrained to be 10 minutes.

One can carry out the first-passage time calculations in the same manner as done for the

geometric burst size case. It turns out that the first two moments can be compactly written

as

〈FPT 〉 =
X−1∑
i=0

αi
ki
, (S7.4)

〈
FPT 2

〉
= 2

X−1∑
i=0

τi
ki
, (S7.5)

where

τi =
X−1∑
j=i

αj−i
kj

. (S7.6)

The coefficients αi, i ∈ {0, 1, 2, . . . X − 1} are defined as

α0 = 1, αi =
eb

eb − 1

bi

i! (eb − 1)i

i−1∑
m=0

a[i,m]emb, (S7.7)

with a[r, s] represents an Eulerian number whose expression is

a[r, s] =
s+1∑
i=0

(−1)i
(
r + 1

i

)
(s+ 1− i)r . (S7.8)
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We performed numerical optimization with respect to parameters ki’s for threshold X =

10 to see the form of the optimal feedback strategy such that 〈FPT 2〉 is minimized, with

constraint 〈FPT 〉 = topt = 10 minutes. The results show that while the optimal transcription

rates are not equal (i.e., no feedback mechanism in strict sense), they are fairly close to each

other for mean burst sizes of 1 and 3 molecules. For mean burst size of 0.6 molecules, the

first transcription rate when protein count is zero comes out to be significantly higher than

other transcription rates which are more or less close to each other (Fig. S7.1). These results

suggest that while the optimal feedback strategy deviates from a no feedback strategy with

the underlying distribution of the burst size, it appears to remain close to a no feedback

strategy.
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