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Camera trapping surveys frequently capture individuals whose
identity is only known from a single flank. The most widely used
methods for incorporating these partial identity individuals into den-
sity analyses discard some of the partial identity capture histories,
reducing precision, and while not previously recognized, introduc-
ing bias. Here, we present the spatial partial identity model (SPIM),
which uses the spatial location where partial identity samples are cap-
tured to probabilistically resolve their complete identities, allowing
all partial identity samples to be used in the analysis. We show that
the SPIM out-performs other analytical alternatives. We then apply
the SPIM to an ocelot data set collected on a trapping array with
double-camera stations and a bobcat data set collected on a trapping
array with single-camera stations. The SPIM improves inference in
both cases and in the ocelot example, individual sex determined from
photographs is used to further resolve partial identities, one of which
is resolved to near certainty. The SPIM opens the door for the inves-
tigation of trapping designs that deviate from the standard 2 camera
design, the combination of other data types between which identi-
ties cannot be deterministically linked, and can be extended to the
problem of partial genotypes.
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2 AUGUSTINE ET AL.

1. Introduction. The inferential goal of capture-recapture studies is
to estimate population density, D, or abundance, IV, in the presence of
imperfect detection. Individuals are either naturally or manually marked
and subjected to repeated capture attempts in order to estimate their cap-
ture probability and thus D or N. Generally, capture-recapture models for
wildlife species regard the individual identity of each capture event as known;
however in practice, the identities of individuals for some capture events
can be ambiguous or erroneous. In live-capture studies, tags can be lost.
In camera trapping studies, researchers often obtain partial identity sam-
ples — left-only and right-only photographs that cannot be deterministically
linked. In genetic capture-recapture studies, partial genotypes and allelic
dropout can lead to partial identification or misidentification, respectively.
Statistical models have been developed to address the problem of imperfect
identification in live capture using double tagging (e.g. Wimmer et al., 2013)
and in camera trap and genetic capture-recapture studies by regarding the
complete identification of partial or potentially erroneous samples as latent
and specifying models for both the capture-recapture process and the imper-
fect observation process conditional on the capture (e.g. McClintock et al.,
2013; Bonner and Holmberg, 2013; Wright et al., 2009). However, relatively
little attention has been paid to one of the most important determinants of
sample identity—the spatial location where it was collected. The identity of
ambiguous samples should more likely match the identity of other samples
collected closer together in space than those collected further apart and this
information can be used to model the observation process and aid in the
determination of sample identity.

The information about identity contained in the spatial location of sam-
ples has been used in two recent spatially-explicit capture-recapture (SCR)
models where there is no other information about identity for some or all
samples. Chandler and Clark (2014) probabilistically associate unidentified
detections or counts to individuals identified by mark-recapture using their
spatial location and a latent SCR model and Chandler et al. (2013) consider
the situation where 100% of the samples are of unknown identity and use
the spatial location of samples in combination with a latent SCR model as
the basis for estimating density from such data (see Fewster et al., 2016, for
an alternative model for spatially correlated unidentified counts). Further,
spatial mark-resight models (e.g. Sollmann et al., 2013a) use the spatial
locations of capture to resolve the uncertain identities of unmarked and
sometimes marked individuals. In this case, mark status constitutes a par-
tial identity. Here, we address the use of sample location to probabilistically
resolve partial identities in camera trapping studies (i.e. single flank pho-
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SCR WITH PARTIAL IDENTITY 3

tographs) where complete identities are derived from two flanks.

Camera traps (remotely triggered infra-red cameras) have become an es-
tablished method for collecting capture-recapture data for a wide range of
species, especially those that are individually-identifiable from natural marks
found on both flanks of the animal (termed “bilateral identification” by
McClintock et al., 2013). Camera trapping studies typically allow capture-
recapture data to be collected over longer periods of time and across larger
areas than is feasible using live capture, leading to more captures of more
individuals and thus more precision for population parameter estimates such
as density (Kelly et al., 2012). These characteristics are especially advan-
tageous when studying animals existing at low densities, such as large car-
nivores. However, even when using camera traps, researchers have found it
difficult to achieve adequate precision for parameter estimates of low density
populations, so any innovations in statistical methodology that can improve
statistical efficiency, such as allowing unidentified or partial identity samples
to be included in the analysis, are of broad practical interest.

Because animal markings are usually bilaterally asymmetric, researchers
need to simultaneously photograph both flanks of an individual at least
once during a capture-recapture study in order to obtain a complete iden-
tity (McClintock et al., 2013) and this is the reason the majority of camera
trap studies deploy two cameras at each trap station. Given a single si-
multaneous both-side capture, all of the capture events for an individual
can be combined into an capture history—the record of whether or not it
was captured on each trap and occasion. For individuals that are never
photographed on both flanks simultaneously, left-only and right-only pho-
tographs cannot be deterministically assigned to a single individual. These
partial identity individuals can be linked across occasions using either their
left-only or right-only captures, but it is not known which, if any, of these
left-only and right-only partial identity capture histories are the same indi-
viduals. Single-sided photographs can occur in the standard double camera
trap design if one camera is not triggered or has malfunctioned, one photo-
graph is blurry, or the animal is photographed at an angle or position that
only permits identification of a single flank. While less common in capture-
recapture studies, the use of single camera trap stations can usually only
produce single-sided photographs, none of which can be deterministically
linked without supplemental information, such as dual-flank photographs
from a live capture event (e.g. Alonso et al., 2015).

Including both left-only and right-only capture events in a single capture
history may often result in instances where the capture events for a single
individual are erroneously split across two individuals, one coming from the


https://doi.org/10.1101/056804
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/056804; this version posted June 8, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

4 AUGUSTINE ET AL.

left-only captures and the other from the right-only captures. Therefore,
researchers have typically discarded some of the single-sided captures from
analysis (McClintock et al., 2013). If only single camera trap stations are
used, left-only and right-only capture histories can be constructed. If at least
some double camera trap stations are used, the left- and right-only captures
can be linked to the complete identity individuals that were captured on
both sides simultaneously at least once during the survey. In these scenar-
ios, two capture histories are usually constructed — all capture events for
the complete identity individuals are supplemented by either the left-only
capture events or right-only capture events of the partial identity individ-
uals. The most common approach is to analyze a single side data set and
the chosen side is usually the one with more captured individuals or capture
events (e.g. Kalle et al., 2011; Nair et al., 2012; Srivathsa et al., 2015; Wang
and Macdonald, 2009). This process introduces two forms of bias that to
our knowledge have not been identified in the literature. First, if the data
set with more captured individuals is always the one selected for analysis,
positive bias is introduced because the likelihood does not condition on this
selection process. Second, linking all three capture types for the complete
identity individuals introduces individual heterogeneity in capture probabil-
ity and thus negative bias because the observed captures disproportionately
come from the individuals with the highest capture probabilities (the com-
plete identity individuals), leading to an overestimate of capture probability
which in turn leads to an underestimate of abundance (Otis et al., 1978).
To see how this process introduces individual heterogeneity, if pp, pr, and
pr are the probabilities of being captured on both sides, left-side only, and
right-side only respectively, complete identity individuals will have a capture
probability of P(BULUR) =1—(1—pg)(1—pr)(1—pr) > pr or pr by the
monotonicity property of probability. A second approach that avoids the in-
troduction of individual heterogeneity is to ignore the fact that the left and
right side photos from a simultaneous capture belong to the same individual,
average the density estimates from both single side analyses, and derive a
joint standard error assuming independence. This method is proposed by
Wilson, Hammond and Thompson (1999); however, Bonner and Holmberg
(2013) point out that assuming independence between the dependent data
sets will lead to the underestimation of standard errors and below nominal
confidence interval coverage. Methods that appropriately model the depen-
dence between the data sets by accounting for the imperfect identification
process are thus required to produce unbiased estimates with appropriate
measures of uncertainty.

Two recent papers (McClintock et al., 2013; Bonner and Holmberg, 2013)
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have extended the Latent Multinomial Model (LMM) of Link et al. (2010),
originally applied to genetic capture-recapture with misidentification, to al-
low the complete and partial identity samples to be modeled together while
accounting for the uncertainty in identity of the partial identity samples.
Both papers show that the uncertainty stemming from the imperfect obser-
vation process is more than offset by the gain in precision from using all the
capture events, leading to a net increase in precision of abundance (McClin-
tock et al., 2013) and survival (Bonner and Holmberg, 2013) estimates, at
least for the scenarios considered for simulation. While the MCMC-based
LMM accounts for the uncertainty in identity by sampling from latent true
capture histories that are consistent with the observed capture histories,
this approach does not use the information about where samples were col-
lected. However, using the spatial information associated with samples can
reduce the frequency with which we propose and accept true capture histo-
ries that combine samples with locations that are unlikely to be from the
same individual based on the movement characteristics of the species un-
der consideration. For example, consider 3 samples (A, B, C) of unknown
identity of a mesocarnivore with a typical home-range area of 4 km?. If
samples A and B are 6 km distant, but samples A and C are only 1 km
distant, then it is more likely that samples A and C are the same indi-
vidual than samples A and B. SCR models are a natural framework for
dealing with uncertain identity in capture-recapture models because they
involve an explicit description of how the spatial organization of individuals
interacts with the spatial organization of traps or other sampling devices.
Therefore, we propose a spatial partial identity model (SPIM) that uses the
spatial information associated with each photograph in camera trap studies
to jointly model simultaneous, left-only, and right-only photographs while
accounting for the uncertain identity of partial identity samples within the
SCR framework. We apply this model to two data sets — one from a dou-
ble camera station study of ocelots in Belize and one from a single camera
station study of bobcats in southern California.

2. Methods — Model Description. We assume that individual activ-
ity centers s; are distributed uniformly across a continuous, two-dimensional
state space 8 according to s; ~ Uniform(S) (but see Borchers and Efford,
2008; Reich and Gardner, 2014; Royle, Fuller and Sutherland, 2016, for al-
ternative specifications). This state space is a rectangular or polygonal user-
defined region inhabited by the population. Next, let & be a J x 3 matrix for
the J traps, with the first two columns containing the X and Y coordinates
of the traps and the third column containing the number of cameras deployed
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at each station. We define events m € (B, L, R) to correspond to both-side
simultaneous capture, left-only capture, and right-only capture, respectively.

We assume a partially latent binomial capture process such that for the mt"

capture type, YZ%) ~ Binomial(1, pl(.;,?) with pl(.;',? being the capture proba-
bility of individual i at trap j on occasion k (e.g., day of a camera trapping

study) for event type m. The true, partially latent capture history is then the

y(B (D) (B

ik Yiig s Yis') and the observed cap-

ture history is the set of binomial frequencies y;;, = (yi(ﬁc),ygfk),ygﬁ)). The

dimensions of the three binomial frequencies are ng x J x K, np x J x K,
and ng x J x K, respectively, with, K being the total number of trap nights
and n,, being the number of individuals for which at least one m event
was observed. Both true and observed capture histories are augmented up
to dimension M x J by adding M — np, M —ny and M — np rows of all
zero capture histories (see Royle, Dorazio and Link, 2007; Royle, 2009, for a
complete description of data augmentation in capture-recapture models). A
vector of M partially latent indicator variables z is introduced to indicate
which individuals are in the population with z; ~ Bernoulli(), inducing the
relationship N ~ Binomial(M, ). Therefore, population abundance, N is
a derived quantity obtained at each MCMC iteration by N = wa Z5
and so is population density, D" = %

Conditional on the partially latent Y, the detection process is that of a
typical SCR model, except that the capture probabilities depend on the cap-
ture type and number of cameras at a trap. We assume a Gaussian hazard
detection function. Because double cameras are typically positioned to fire
together in order to get a both-side capture, it is unlikely that each camera
is independent. Rather than model the capture probabilities of each of the
two cameras with some correlation between cameras, we specify different
capture probabilities for both-side captures and single-side captures, assum-
ing independence between the both, left, and right-side capture processes.
We write the detection function for capture type m as

set of binomial frequencies Yj;, = (

(2.1) P (s,x) =1 —exp(—h™ (s, z))

with p(m)(s, x) being the probability of capture for an individual with ac-
tivity center s at trap location x and

12
(2.2) W™ (s, 2) = A" exp (-””””)

202

with )\(()m) being the expected number of detections for capture type m for
an activity center located at the same location as a trap and o being the
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spatial scale parameter that determines how quickly capture probability
declines with distance between an activity center and a trap. Because we do
not expect any systematic difference in the probability of detecting one flank
over the other, we will set A(()S) = )\(()R) = )\(()L) where S indicates a single
side capture. For single camera stations, we have the single-side detection
function p(¥ (s, z) for both L and R captures. At double camera stations,

the single side capture probability is
(2.3) PPV (s,x) =1 - (1-p"9(s,2))?

because there are now two ways to photograph a single side (camera 1 or
2). Note that p()(s,z) here corresponds to equation 2.1 for a single side
capture. B captures can only occur at double camera stations and so we in-
troduce )\(()B) as the expected number of both-side observations for an activity
center located at the same location as a trap. Finally, the single and both-
side capture probabilities for each individual at each trap depends on the

number of cameras deployed following pfjsk) (si,xj) = pgjl.lf)(si, Tj)[(2;5=1) T
(

25) (o o B m ) —pnBrg .

Dijik (si, xj)[(xj3:2) and Pijk (si, ;) = Dijk (si, w])[(xjgzz)'

If we knew the complete identities of all captured individuals, we could
construct the true capture history Y from the observed capture history y
by reordering the rows of y&) and y?. Thus, the key idea behind the
SPIM is that we can sample the latent true capture histories by simply
reordering the i indices of y&) and y® accordingly. To do this, we de-
fine Y(®) and y™® to be in the correct order of identity, corresponding
to the order of s and z, and introduce identity vectors to aid in updating
the latent ¢ indices of the true capture history. We specify the known iden-
tity vector ID®) = @D® D D)) = 1,..., M. Then, we intro-
duce partially-latent identity vectors ID() = (IDEL),IDéL), . ,IDS\? ) and
D) = (™ ... DY) indicating which ID{?) each ID*) and

(L) (R)

IDER) correspond to. For example, if the values of IDsy” and IDs,” are 28,
the left and right capture histories for the 28th individual in Y (&) and y(5)
are stored in the 22" and 32" j indices of y&) and y™®, respectively. On
each MCMC iteration, we construct latent true capture histories Y from the
latent identities in ID) and IDU after swapping some of the identities
and associated partial identity samples between activity centers. This pro-
cess produces posterior distributions for the SCR parameters that account
for the uncertainty in identification of the partial identity samples.

To prevent samples from the complete identity individuals from being
swapped, we define ¢ to be an n x 1 indicator vector with entries 1 if the
complete identity of individual ¢ is known, whether from a B event at some
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8 AUGUSTINE ET AL.

point during the study or from auxiliary data, and 0 otherwise. In all cases
of ¢; = 1, individual identities are complete and Y (™ = y(™) for m e
(B, L, R). Conversely, the i indices of y») and y® with ¢; = 0 are partial
identity samples and Y'©) and Y (%) are latent. For convenience, we jointly

sort Y and y such that the 1,..., ncomplete ¢; = 1 individuals are the first

individuals to occur in the true and observed capture histories, IDZ(-B) =

IDEL) = IDER) for the first i = 1,..., Ncomplete individuals, and we only need
to resolve the latent identities of the ¢ = ncomplete+1,..,m ¢ indices of the
y) and yB) observed data sets.

2.1. Methods — Trap Operation File. It is common for cameras to mal-
function in camera trap studies. In typical SCR, this can be accommo-
dated by modifying the capture process using L (dimension 1 x J), the
row vector containing the number of trap nights each trap was operational,
if working with the 2-D data matrix (individual x trap summed over oc-
casions). If working with the 3-D data array (individual x trap x occa-
sion), L, the complete trap operation history matrix is then a matrix whose
jkt" element is 1 if trap j was operational on occasion k and 0 otherwise.
Then, y;; ~ Binomial(L;, pij), or yir ~ Binomial(1,p;r x Lj). Tradi-
tionally, the trap operation file does not distinguish between having one
or two cameras operational, despite the capture probability likely being
higher when both traps are functional. In the SPIM, both side captures
can only occur when two cameras are operational and the probability of
a single side capture depends on whether one or two cameras are opera-
tional; therefore, the 3-D data array needs to be used to properly account
for camera operation if there are two camera stations. Specifically, the sin-
gle and both-side trap by occasion level detection probabilities for each in-
dividual are then pgjsk) (s,x) = pgjl.,f)(s,m)](Lj’kzl) + pl(?]f)(s,az)l(,;jykﬂ) and

(B) _ B :
Pijk (s,x) = Pijk (s, a:)I(Lj’kZQ), respectively.

2.2. MCMC Algorithm. We will describe the novel aspects of the MCMC
algorithm here — see Appendix A for the complete description. The following
are our uninformative prior distributions.

s )\ém)) ~ Uniform(0,00), m € B, S
7(0) ~ Uniform(0, c0).

(
(

m(¢) ~ Uniform(0,1)
(si) ~ Uniform(S)

L e
3
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The joint posterior is then:

28,9, A0 A 0, Yy, x] o
it g (B)y(S)
LIS T T il Yairl [Yielre " 26, 0y 865 ¢ [si][zil )]

i=1 \j=1k=1
A A o]

and we sample from this distribution using MCMC. The full conditional for
Y™ s

)

[Y(m)] (m) )\(S) [ Z(m)|)\(5)

I y'L » N0 ,O',Zi,Si]O( Y, 0 ,O',Zi,Si],WheI‘e

K
[y.(m)\)\és),a, Zi, Si] = H H Binomial((}/;(?),zipgfg)
for m € (L, R). While not part of the joint posterior, the ID vectors can be
used to update Y and conditional on ID®) and ID(R), we can construct
a latent true capture history Y so our MCMC algorithm follows the stan-
dard SCR MCMC algorithm as described by Royle et al. (2013) with the
additional step of updating ID® and IDW) to produce a new latent true
capture history Y on each MCMC iteration. On each MCMC iteration, we
update both ID®) and IDW by swapping nsuap values of ID®) stored
in ID® and ID™. We first update ID®). We need to identify the cor-
rectly ordered indices ID®) at which to swap the value of ID(L), mapping
ID®) to ID®). We then identify the candidate set of ID®) individuals
that do not correspond to complete identities (¢; = 0) and who are cur-
rently in the population (z; = 1). Next, we choose a focal candidate v to

swap the value of ID&L) with equal probability across the candidate set.
Because proposals that combine candidates whose activity centers are far
apart will almost always be rejected, we apply a distance-based criterion to
rule out improbable combinations, thus raising acceptance rates. To do this,
we calculate the Fuclidean distance between the current activity center of
the focal candidate v and the activity centers of all other individuals in the
candidate set. We then identify the set of possible candidate individuals to
exchange values of IDZ(-L) with the focal candidate by identifying which can-
didate individual activity centers are within a distance threshold, dy,qz, of
the focal individual’s activity center. From this reduced candidate set of size
N forward, We randomly select individual w with equal probability Pr(swap to

1D |7 DQ(UL)): (*) across the remaining candidates and the focal and

N forward
(

selected candidate exchange values of IDZ-L). Because this proposal process
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10 AUGUSTINE ET AL.

is not symmetric, we repeat it in reverse to obtain n,eyerse, with the prob-
ability of choosing this candidate being Pr(swap to I D,EUL)|[ DS,L)):;

Nreverse

We recompute the proposed true capture history Y;(L)p "P for i € v,w and
accept the proposal with probability

L)pro
(2.4) win (1 R
. 7f(lf(L)curr 1 .

) ) N forward

where f (Yi(L)) is the SCR observation model likelihood. This process is then
repeated to update ID®) and thus, Y& .

2.3. Methods — ”Pragmatic” Estimators. We will consider the most com-
mon estimator used in practice based on choosing the single side data set
with the most captured individuals and combining it with the both side data
set, if available, and analyzing the resulting data set with a traditional null
SCR model (fixed Ao and o). Because choosing the best single side intro-
duces a positive bias, the second estimator will choose a random side to be
combined with the both side data set, if available. We will refer to these
estimators as the “best-side” and “random-side” estimators on single cam-
era trapping arrays and “both-plus-best-side” and “both-plus-random-side”
estimators on double camera and hybrid trapping arrays.

3. Application 1: Dual camera station trapping array targeting
ocelots. This data set comes from a long-term, multi-site felid study in
Belize conducted from 2008 to the present for which an analysis has not yet
been published. The study targeted jaguars, pumas, and ocelots, but due
to their smaller size and more nocturnal activity patterns, the probability
of simultaneously photographing ocelots on both flanks was relatively low,
leading to several ambiguous single-sided capture histories within any given
year. Because this is a multi-year study, the complete identities of some in-
dividuals within any given year are known from other years, but we will use
a single data set in isolation to model the more typical single year survey.
This specific data set was collected in the Rio Bravo Conservation Man-
agement Area, Belize, in 2014. The trapping array (Figure la) consisted of
26 dual camera stations with a mean spacing of 1.96 km and the survey
lasted 98 days (July 20 - October 25), resulting in 1796 trap nights with
2 cameras operational and 425 trap nights with a single trap operational
due to malfunction. Sex could be determined from the photographs for all
individuals except for one individual that was captured a single time. Eight
individuals (5 male, 3 female) were captured on both flanks simultaneously
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at least once during the experiment producing complete identities and an-
other (male) was captured on both flanks at a single camera station in short
succession such that it was improbable that both sides did not belong to
the same individual. This individual’s identity was considered complete and
the capture was recorded as a left-side capture, chosen randomly. This was
done because a single camera was operational during this event and our
model does not allow a both-side capture to occur when a single camera is
operational and recording the event as both a left and right capture would
violate the independence assumption between the capture processes. There
were nine partial identity left-side capture histories (1 male, 7 female, and
1 unknown) and 12 partial identity right-side capture histories (5 male and
7 female). From other years, it is known that 5 of the partial identity left
capture histories belong to individuals recorded in the right capture histo-
ries. Overall, there were 10 both-side captures, 30 left-side captures, and 48
right-side captures. The spatial distribution of captures for partial identity
individuals can be seen in Figure 1la.

We analyzed the complete data set, the male-only data set, and the
female-only data set. Knowing the sex of almost all individuals provides
us the opportunity to exclude matching partial identity samples of different
sexes; however, this information is not observable from camera trap pho-
tographs for many species. To model this more common situation, we first
analyzed the full data set without using the sex covariate. Then, we used the
sex covariate to exclude matches between sexes to model either the situation
where sex is known from photographs or that of a species living at a lower
density than this population of ocelots. Our model could be modified to
allow matches based on categorical covariates such as sex while sharing the
same density and detection function parameters; however for convenience,
and because male and female ocelots likely do not share the same o or D
(M. Kelly, unpublished data), we analyzed the male and female-only data
sets separately. This is conceptually equivalent to formally including a sex
covariate in the SPIM and allowing all parameters to vary by sex. For all
three data sets, we fit the SPIM to the full data set and traditional SCR
models to data sets that augmented all captures for the complete identity
individuals (both, left, and right) by either the left or the right partial iden-
tity capture histories. For all models, we ran one chain for 35K iterations,
discarding the first 5K, and in the SPIMs, we set dyqe to 3 km and ngyaep
to 10. Based on the simulations of double camera trap station surveys, we
expected the SPIM estimates to be slightly less precise, but slightly larger
due to the individual heterogeneity introduced by the traditional manner of
combining the three data sets.
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The results in Table 1 largely matched our expectations. The density es-
timates of the SPIM were higher than the mean of the two SCRO estimates
by 21, 32, and 31% for the total, male, and female data sets, respectively.
The right side data set was the “best-side” data set and it produced an
estimate closer to the SPIM, which matches the simulation results. 95%
HPD intervals were slightly narrower using traditional SCR in 4 of the 6
possible comparisons and slightly narrower using the SPIM in the remain-
ing 2. o estimates for males were higher than for females and did not vary
widely among the three methods of analysis. Adding the posteriors for N
from the male and female only models produced an estimate of 40 (29 - 58),
which was one unit narrower than the SPIM not including sex information,
despite including three extra parameters and excluding the individual of un-
known sex. Overall, the SPIM provides more optimistic density estimates,
that according to the simulations, should be closer to the truth with credible
intervals that can provide nominal frequentist coverage or offer more accu-
rate Bayesian interpretations, and removes the need to interpret two sets of
estimates. For the complete data set, the SPIM took 146 minutes to run on
a laptop with a 2.7 GHz Intel 17 processor.

The posterior distributions of sample identity for the partial identity sam-
ples provide interesting anecdotes about how both spatial location and a
categorical covariate can individually, and in combination, inform sample
identity. In the model not using information about individual sex, the 5 par-
tial identity individuals in the left and right data sets that were known to
be the same individuals from other surveys were assigned higher posterior
probabilities of being the same individual than any other partial identity in-
dividuals (data not shown). Using location alone, these probabilities ranged
from 0.23 - 0.74 and when adding the information about sex, they increased
to 0.59 - 0.99 (Table 2). The tenth left and right partial identity histories,
L10 and R10, had a high probability of (correctly) being the same individual
with or without using the sex information (0.74 and 0.99, respectively). In
Figure 1b, it can be seen that L.10 was captured in 4 locations and R10 in 3
locations with roughly the same mean capture location. Incorrectly match-
ing R10 with L12 pulls the combined mean capture location to the east,
and incorrectly matching R10 with L13 pulls it to the south. Incorrectly
matching .10 with R13 pulls the combined mean capture location to south
and slightly to the east and matching L10 with R20 pulls it to the east
and slightly to the north. These observations are reflected in the posterior
distribution for the activity center of these two partial identity samples de-
composed into the MCMC iterations when they were correctly matched and
when they were not. When including sex information, we know that R10
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(male) cannot match either L12 or L13 (females) and L10 cannot match
R13 or R20 (females). This only leaves augmented individuals for L10 and
R10 to incorrectly match and two augmented individuals, uncaptured by
definition, with activity centers in the middle of the trapping array are very
improbable. Therefore, the model assigns a 0.99 probability that L10 and
R10 are the same individual when sex is considered. Conversely, L11 and
R12 with no nearby same sex matches have a lower posterior probability of
being the same individual (0.60) because they can plausibly be assigned to
augmented individuals living off of the trapping array that were never right
or left-captured, respectively.

4. Application 2: Single camera station trapping array target-
ing bobcats. This data set comes from a study of bobcats in southern
California that has been analyzed using both non-spatial partial identity
models (PIM, McClintock et al., 2013; McClintock, 2015) and hybrid mark-
resight models (Alonso et al., 2015) that combine mark-resight and capture-
recapture for the unmarked, but individually-identifiable individuals. The
trapping array consisted of 30 single camera stations with a mean spac-
ing of 1.63 km operated over 187 days, producing 4669 trap nights and 109
left-only or right-only capture events of 23 left-side and 23 right-side individ-
uals. Twenty-seven bobcats were GPS-collared, marked, and photographed
on both sides at capture so their left- and right-side capture histories could
be linked and 15 of these individuals were later photographed at camera
traps. See Alonso et al. (2015) for a full description of the survey.

Following McClintock et al. (2013) and Alonso et al. (2015), we analyzed
the data set in two ways. First, we analyzed the data set using the 15 com-
plete identities obtained from the live captures to compare performance to
the PIMs in McClintock (2015) and the hybrid mark-resight estimators in
Alonso et al. (2015). While the hybrid mark-resight estimator makes use of
the number of marked individuals in the population that were not recap-
tured, we did not constrain our MCMC sampler with this information so
that a better comparison could be made to the PIM analyses that did not
use this information and because the posterior density of N for the SPIMs
placed negligible weight below the known number of individuals in the pop-
ulation during the survey (41). For the second analysis, we discarded the
complete identities to model a single camera capture-recapture survey that
did not have a live capture component. Because Alonso et al. (2015) found
strong support for individual heterogeneity in the mark-resight models and
both Alonso et al. (2015) and McClintock (2015) found moderate support
for individual heterogeneity in capture-recapture models, we compare the
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SPIM to the PIM and mark-resight models with individual heterogeneity
in capture probability. For each SPIM and SCR. analysis, we ran one chain
for 35K iterations, discarding the first 5K. For the SPIM models, we set
Nswap=10 and dyqr to 2 km. The SPIM models with and without the 15
complete identities took 57 and 53 minutes to run on a laptop with a 2.7
GHz Intel 17 processor, respectively.

Among the models using the 15 complete identity individuals, the most
precise estimate was the hybrid mark-resight model using the right-side data
set for the capture-recapture of unmarked individuals; however, the SPIM
was more precise than the average of the left and right side analyses and
removes the task of interpreting two estimates (Table 3). The conservative
approach would be to interpret the least precise single side analysis, in which
case the SPIM was 14% more precise than both the single-side hybrid mark-
resight and SCR. analyses. The SPIM was 66% more precise than the PIM
with individual heterogeneity, which was considerably less precise than the
classical M, single-side analyses discarding the 15 complete identities. When
the 15 complete identities are discarded, the precision of the SPIM is only
slightly reduced and is still 6% more precise than the least precise single-
side hybrid mark-resight estimate and is 30% more precise than the least
precise SCR estimate. The former suggests that there is a similar amount of
information about density in the spatial location of captures on this single
camera array as there is in knowing the marked status of 15 individuals and
that the SPIM can remove the need for the live capture component of a study
if the only goal is to mark individuals for mark-resight density estimation.
While the SPIM appears to perform the most favorably on this data set
compared to alternatives considered, we note that a definitive comparison
would require a simulation study where the true parameter values are known
and more than one survey can be conducted.

5. Discussion. Our study has shown that the spatial locations where
samples were collected provides information about individual identity and
using this information in partial identity models can improve inference in
camera trap studies. Further, the formal treatment of the number of cam-
eras at trap stations allows for camera number and the spatial distribution
of station types (1 or 2 cameras) to be considered when designing surveys.
Simulations in Appendix B demonstrate that the SPIM estimator performs
better than the best-side and random-side estimators, at least in the sparse
data scenarios considered here. In general, the SPIM offers better perfor-
mance gains in smaller populations, when there are fewer complete identity
individuals, and when the percentage of individuals that have partial identi-
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ties is higher. The performance gains in the hybrid designs was better than
the all double designs because they produced fewer complete identities and
a higher percentage of partial identities. In fact, the precision of the hybrid
designs was not substantially lower than the all double designs, despite us-
ing only % the number of double camera stations. This result suggest that
hybrid designs could potentially be the best use of a fixed number of cam-
eras — designs that to our knowledge are not currently being used. Another
determinant of the ratio of partial to complete identity individuals is the
ratio of p(()s) to p(()B). For example, the trapping array in the ocelot exam-
ple also targeted jaguars which when photographed, are significantly more
likely than ocelots to produce a complete identity because of their larger
size, slower traveling speed, and less nocturnal activity patterns (M. Kelly
unpublished data), perhaps reducing potential performance gains by using
the SPIM.

The SPIM likely performs better on more regular, closely-spaced (relative
to sigma) trapping arrays as investigated in the simulations. Partial identity
samples on the interior of a regular, closely-spaced trapping array are more
likely to be correctly matched than those on the edge of the trapping array
or on a trapping array that is spaced more widely because it is less likely
that an animal will only have a single side captured when it is surrounded
by traps than if it is not. This can be seen in the ocelot example where the
probability the right and left sample number 10 are the same individual is
very high. In the model not including sex, each sample is never assigned to
an augmented individual (an animal with the other side not captured) and
when sex information is included, all other nearby partial identity samples
are ruled out and the probability the samples match is estimated to be 0.99.
This high certainty relies on the samples being on the interior of the trapping
array in an area where the trapping array is roughly regular, because if these
two samples do not match, there must be two augmented individuals living
on the interior of the trapping array for each to match with and this is
improbable. Conversely, left ID 11 is assigned to right ID 12 with probability
0.28 without sex information and 0.59 with sex information. This reduced
certainty is mostly due to the partial identity samples being collected on
the periphery of the array where augmented individual activity centers are
much more likely to exist to be matched with. By the same argument, the
SPIM should perform better on larger arrays where the ratio of interior to
exterior array area is larger, given the same number of individuals are on
the array. In our simulations, the best precision and MSE gains between the
6 x 6 and 8 x 8 arrays depended on the scenario, but we fixed D and so N
varied by array size. Confirming this result requires further simulation.
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As seen in the ocelot example, if an individual covariate aside from spatial
location is available, the probabilities of correctly assigning the left ID to the
correct right ID and vice versa can be considerably increased. We suspect this
should in general increase precision for abundance and density by reducing
the pool of potential matches for each partial identity sample. Indeed, in
the ocelot example, when we added the male- and female-only posteriors
for N, we slightly increased precision despite having modeled 3 additional
parameters over the combined model and excluded the individual whose
sex was not known. Reducing the set of potential matches should reduce
the span of values of pg, o, and number of captured individuals that are
consistent with the data, increasing precision of abundance and density. We
suspect the relative value of spatial location and other covariates depends
on the degree they deterministically or probabilistically rule out potential
matches. In general, knowing sex will rule out approximately half of the
potential matches, while knowing spatial location on a large trapping array
relative to ¢ should rule out a much higher percentage of matches. In the
ocelot example, we took an ad hoc approach to using the sex information,
but sex or other categorical covariates could formally be modelled either
by ruling out inconsistent matches only between observed partial identity
individuals, or by also modelling the category proportions (e.g. sex ratio)
and updating the latent category values of the augmented individuals on
each MCMC iteration.

A comparison of the SPIM to the non-spatial partial identity model of
McClintock (2015) can be found in Supplement B. While the PIM estimator
reliably decreased MSE, removed small sample bias, and increased precision
in some scenarios, it reduced precision in the more data sparse scenarios
we considered and offered only small precision gains in the presence of indi-
vidual heterogeneity in capture probability. In general, we think individual
heterogeneity in capture probability is difficult for the PIM to accommo-
date. Because the multinomial observation process (left, right, or both-side
capture) is defined conditional upon capture, the likelihood that two par-
tial identity capture histories are the same depends on how consistent their
combined number of captures across capture types are with p and N. If all
individuals can have their own p, the number of times the composite indi-
vidual was captured becomes much less informative about identity. Because
the left, right, and both-side capture processes in the SPIM are independent,
the likelihood component for partial identity, single-sided capture histories
does not depend on the combined number of capture events. Rather, the
likelihood that two partial identity capture histories are the same depends
on how consistent the combined spatial distribution of captures are with pg
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and o. Therefore, there should be less information about individual iden-
tity when there is individual heterogeneity in o, and perhaps to a lesser
extent, pg. Generalizations of the 2-flank SPIM to scenarios where partial
identities cannot be categorized into types will require a model similar to
the PIM estimator where the combined number of captures is informative
about identity and hard to distinguish from individual heterogeneity. This
problem arises in all SCR models with latent individual identities, such as
spatial mark-resight and unmarked SCR, so the sensitivity of these models
to individual heterogeneity in py and o should be investigated.

One concern of using the SPIM over traditional SCR or the PIM is compu-
tational efficiency. We feel the computation demands of the SPIM are reason-
able, at least for the low density scenarios where precision gains are the most
needed. An R package to fit the SPIM is available at github.com/benaug/SPIM
which includes code to fit the models in either R or Repp and ReppArmadillo
(Eddelbuettel and Frangois, 2011; Eddelbuettel and Sanderson, 2014), which
is considerably faster. If a trap operation file is used and the 3-D data array
must be used, the R analysis is much slower, but only slightly slower in
Repp. In simulations with random trap failure (data not shown), ignoring
trap failure reduced the estimates of \j and )\éB), but not N, suggesting the
use of the 3-D data array is not necessary, at least when trap failure is at ran-
dom, but this warrants further investigation. To provide some benchmarks,
we replicated scenario S9.6 on a laptop with a 2.7 GHz intel 17 processor,
raising N to 100 with M=150. To run 35K MCMC iterations, it took 106.7
minutes in R and 10.3 minutes in Repp (~10x faster) with no trap file and
the 2-D data matrix. Using the 2-D trap file and 3-D data array, it took
575.9 minutes in R and 12.6 minutes in Repp (~45x faster). Computation
time can further be reduced using the semi-complete likelihood approach
of King et al. (2015) which is currently being developed for the multimark
package (McClintock pers. comm.) The longer reported run times for the
bobcat and ocelot data sets are due to the use of polygonal, rather than
rectangular state spaces, and reflect the computational demand of ensuring
that activity center proposals falling outside of the continuous, many-sided
state space are not accepted.

As previously recognized by Wright et al. (2009), another application
where the spatial location of partial or potentially corrupted identity samples
would be useful is in capture recapture studies using microsatellite markers.
Wright et al. (2009) developed a non-spatial model that accommodated both
partial genotypes and allelic dropout. In genetic capture-recapture studies,
the spatial location where samples were collected is almost always recorded
and could be used to resolve partial and potentially corrupted identities.
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The potential for improved inference is perhaps greatest for studies using
genotypes from sources with low complete amplification rates due to small
amounts of DNA or higher levels of degradation such as scat samples in
tropical environments (e.g. Wultsch, Waits and Kelly, 2014); however, if
these low quality samples are more likely to be erroneous, the misidentifica-
tion process should be modelled. Unlike the camera trap observation model,
the partial identity genetic samples have traditionally been completely dis-
carded, suggesting that performance gains could be larger than seen here.
One last potential DNA-based application is that researchers may choose to
genotype fewer loci than necessary to determine a sample is unique in the
population and model the resulting uncertainty in identity using the SPIM.
This could either save project resources or allow more samples to be ampli-
fied for the same amount of resources. Since the information about identity
in each loci comes with diminishing returns per additional loci, it is not clear
that the better use of resources is to genotype fewer samples to a high level
of certianty rather than to genotype many samples to a lower degree of infor-
mation about identity. Finally, the SPIM could also be extended to combine
any capture-recapture data types where identity cannot be resolved between
methods. For example, Sollmann et al. (2013b) combined capture-recapture
data from camera traps and scat samples by sharing ¢ between data sets.
Using the SPIM, the latent structure (e.g. activity centers and z) could also
be probabilistically shared. In these cases, we expect improvements in preci-
sion over the separate analyses similar to the all single camera trap designs,
because they are both two sampling methods where identity cannot be de-
terministically resolved between data sets for any individuals. Given these
alternative applications of the SPIM, we suggest the model presented in this
paper should be referred to as the 2-flank SPIM.

6. Tables and figures.
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TABLE 1
Parameter estimates for the ocelot data set using either the Spatial partial identity model
(SPIM) or the standard spatial capture-recapture model (SCR0) on either the both plus

right side data set or both plus left data set. Density is in units of individuals per 100
2

km=.

Sex Model s P pe o N (95% CI) D (95% CI) CI width
Both SPIM  0.005 0.003 2.00 42 (29 —59) 7.33 (5.09—10.36)  5.27
SCRO-B+R 0.015 2.05 39 (27 —56) 6.87 (4.74—9.83)  5.09
SCRO-B+L 0.015 2.25 30 (20 —44) 527 (3.51 —7.73)  4.21
Male SPIM  0.005 0.004 240 14 (11 —23) 2.63(1.93—4.04)  2.11
SCRO-B+R 0.015 245 15(11—26) 2.72(1.93—4.57)  2.63
SCRO-B+L 0.022 239 8(7—16) 1.41 (1.23—2.81) 1.58
Female  SPIM  0.005 0.002 1.21 24 (14 —40) 6.18 (3.56 — 10.18)  6.61
SCRO-B+R 0.016 1.24 19 (12—35) 4.89 (3.05—18.90)  5.85
SCRO-B+L 0.007 1.71 18 (10 —38) 4.57 (2.54 — 9.67) 7.12

TABLE 2

Posterior probabilities that left and right ocelot samples are from the same individual for
individuals that were determined to be the same from data collected in other years.

Pr(L ID = R ID)

LID  RID Sex Unknown Sex Known
10 10 0.74 0.99
11 12 0.28 0.59
12 13 0.42 0.72
14 14 0.23 0.63

15 15 0.38 0.70
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TABLE 3
Population size estimates for the bobcat data set from the spatial partial identity model
(SPIM), single side SCR analyses (SCR0), non-spatial partial identity models (PIM M,
MecClintock, 2015), My hybrid mark-resight models (HMR Alonso et al., 2015), and My
classical mark-recapture models (Alonso et al., 2015). The SPIM and single side SCR
analyses are repeated both with (Complete IDs=15) and without (Complete IDs=0) the
information from live-captured individuals.

Complete IDs Model N (95% CI)  CI width

15 SPIM 7 (45 — 74) 29
SCRO-B+L 57 (41 — 75) 34
SCRO-B+R 50 (38 — 68) 30

PIM-M, 52 (20 — 114) 85
HMR-B+L 60 (45 — 79) 34
HMR-B+R 55 (43 — 70) 27

0 SPIM 52 (38 — 70) 32

SCRO-L 52 (34— 80) 46

SCRO-R 44 (31 — 65) 34

M, -L 40 (27 — 94) 67
M;-R 45 (30 — 88) 58
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Fig 1: (a) Capture locations for partial identity samples in the ocelot data
set. R and L indicate right and left, respectively and M, F and ? indicate
male, female, and unknown, respectively. (b) The posterior distribution for
L10 and R10 when they are correctly matched (red), for L10 when not
matched to R10 (green) and for R10 when not matched to L10 (blue). When
LL10 is not matched to R10, it mostly matches with R13 and R20. When R10
is not matched to L10, it mostly matches L.12, .13, and L17. These results
are from the model not using sex information.
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APPENDIX A: FULL MCMC ALGORITHM

The joint posterior we want to sample from is

2,5, 0, AP A o, Y]y, x]

M J K
{H {H LT [y Vil [Yige AN 0 52, “33‘]} [Si][zilw]}

i=1 | j=1k=1
A A o]

where M is the dimension of data augmentation. In practice, the analyst
should choose M >> N and will need to raise M if N = M at any
point of the MCMC algorithm. The following are our uninformative prior
distributions.

1. 7r(/\(()m)) ~ Uniform(0, 00), m € B, S
2. (o) ~ Uniform(0, 0o).

3. m(¢) ~ Uniform(0, 1)

4. 7(s;) ~ Uniform(S)

The full conditionals are

1. ANPIY®) 62,8 « [YB)o, 2, 5, AP AP)], where [Y B0, 2, 5, AP =
1M, 1) J[k \ Binomial(V.(2, zp!2)
2. [)\(S YD YB 5 2 5] [YO,YEND 5 2 8] [A\Y] where Y L) ¥ B|g, 2, 5, AT =
M H 1Hk 1 Binomial( Zgi), zlpgij)) x Binomial( lglz), zngfk))

3. [aw YO,y @\ A o, 2, 8] o y®, ¥,y ®lo, 2, A AN,

where [Y(B) Y (1) Yy (B)|g 2, s, )\(B) )\(S)] = 1]_[ _, [TX_, Binomial( zgf),zngjk))x
Binomial(YZﬁ) , zngfk)) X Bmomlal(YZg k:)7 zngjk) )
4. 1Y, Z ] i )\(()S),a Zi, Si] [ |)\0 ),0 2i, 8;i|, where
[yl(L |)\0 ,a zi, 8i| = H 1Hk 1 Binomial(( Zgi),zlpgjk))
5. [Y;(R)\ )\((JS) 0, 2i, Si] [yi \)\(()S , 0, 2i, Si], where
[yl(R)])\O , 0, Ziy Si] = H}J LT, Binomial((i/;gk),zzpz(f,g)
6. [2]Yi 0, AP NS 8] o< [Vil, 26,0, AP A i) [z]00), where [V, 25,0, A ALY sy =

Bern (%) (p; defined below)
7. [Y|z] o< Beta(l + 32, 2, 1 + M — 3, z;)
8. sV, AP A 6z o (V3]0 AP A o, 24][s4], where [Yi]ss, AP A o, 2] =
y (L) (L) y (B (R)

H 1sz 1Blnomlal(Yng),zlpgjk))meomlal( ik ,zzpzjk)xBlnomlal( ik ,zzp“k)

As previously described, conditional on ID) and IDU? | we can construct
a latent true capture history Y;;, so our MCMC algorithm will follow the
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standard algorithm as described by Royle et al. (2013) with the additional
step of updating ID®) and IDW) and constructing a new latent true capture
history Y;;x on each MCMC iteration.

1. Update /\(()B) and )\g sequentially. Both /\(()B) and )\g are updated with

a Metropolis-Hastings step using the distribution Normal(A§*"", o) to
propose )\f)a”d, automatically rejecting if a negative value is proposed.

2. Update 0. o is updated with a Metropolis-Hastings step using the dis-
tribution Normal(c®'", o), to propose o automatically rejecting
if a negative value is proposed.

3. Update Y by updating ID®) and IDU. On each MCMC iteration,
we update both ID®) and IDX by swapping ngwaep values of ID®)
stored in ID™) and IDU . We first update ID"). We need to identify
the correctly ordered indices ID®) at which to swap the value of IDW),
mapping ID®) to ID®). We then identify the candidate set of ID(B )
individuals that do not correspond to complete identities (c¢; = 0) and
who are currently in the population (z; = 1). From this candidate set,
we remove the individuals that would lead to swapping a z; = 0 in-
dividual into the population through the value stored in IDEL). Next,
we choose a focal candidate v to swap the value of IDz(,L) with equal
probability across the candidate set. Because proposals that combine
candidates whose activity centers are far apart will almost always be
rejected, we apply a distance-based criterion to rule out improbable
combinations, thus raising acceptance rates. To do this, we calculate
the Euclidean distance between the current activity center of the focal
candidate v and the activity centers of all other individuals in the can-
didate set. We then identify the set of possible candidate individuals to

exchange values of IDEL) with the focal candidate by identifying which

candidate individual activity centers are within a distance threshold,
dmaz, of the focal individual’s activity center. From this reduced can-
didate set of size 1 forward, we randomly select individual w with equal

probability Pr(swap to I DS,L)|I D&L)):(;> across the remain-

N forward
ing candidates and the focal and selected candidate exchange values
of IDEL). Because this proposal process is not symmetric, we repeat
it in reverse to obtain n,eperse, With the probability of choosing this

candidate being Pr(swap to ID&L)|ID£L)):<;). We recompute

Nreverse

the proposed true capture history Y; Dprop g1 € v, w and accept the
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proposal with probability

L)pro 1
(Al) min (17 f(}/;EL;iuri) nreﬂlerse >
[y, )

N forward

where f(.) is the SCR observation model likelihood. This process is
then repeated to update ID® and thus, Y& .
4. Update z. Each z; is updated by a Gibbs step using the full conditional

above where pj is the probability individual 7 was not captured during

the experiment. Let pl(.ﬁg) and ﬁgjs,g be the probability of not being cap-

tured on both and single sides for each individual at each trap on each
occasion, respectively. Then ﬁgﬁ) =1- pgﬁ? and ﬁgjsk) =(1- p,ffk))z (the
squared term is needed because there are two ways to observe a sin-
gle side capture, right or left side; see model description and trap file
sections for definition of pgﬁ) and pgjsk) which depend on the number of
cameras deployed at each trap and trap operation). The probability of
not being captured during the experiment for each individual is then

 _ 11J K (8)(B)

b = 1lj=1 [Ti=1 ik Pijk -

5. Update 9. 9 is updated with a Gibbs step. Since 7(¢)) ~ Uniform(0, 1)
is in the Beta family, the full conditional distribution for v is [1)|z]
Beta(l+ >, 2z, 1 + M — >, zi).

6. Update s. Each activity center s; is updated with a Metropolis-Hastings

step using the distributions Normal(s{{"", o5) and Normal(s{y"™", 05) to

propose sf{md and sfﬁmd, respectively. Proposals that fall outside of the
state space are rejected. The full conditional distribution is the SCR
observation model likelihood.

7. Record the derived quantities population abundance, N = ZZM 25T

and population density, D" = A|[|§|7|7

APPENDIX B: SIMULATIONS

Here, we present a simulation study to assess the performance of the SPIM
and compare it to alternative estimators. In addition to the “pragmatic es-
timators” described in the main article, we will also assess the performance
of the “naive independence estimator”. An alternative to the SPIM is to
ignore the dependence between the left, right, and both side data sets and
average the density estimates from the individual analyses and derive a joint
standard error assuming independence. This method is proposed by Wilson,
Hammond and Thompson (1999) and while Bonner and Holmberg (2013)
point out that assuming independence will lead to the underestimation of
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standard errors, this estimator might perform reasonably well in some sce-
narios, such as when data are sparse and thus there is less dependence be-
tween data sets. A Bayesian analogue to this method is to perform a joint
MCMC analysis on the both (when available), left, and right data sets, al-
lowing each data set to have its own latent structure (s,1,z), but sharing
detection function parameters (A9 and o). On each MCMC iteration, Np
(when both side data is available), Ny, and Ng (current population size val-
ues for the both, left, and right side data sets) are independently calculated
by summing zpg, z1, and zr and their average is recorded.

We conducted 384 simulations for each of 36 scenarios, grouped into four
sets, to compare the performance of the SPIM, pragmatic estimators, and
the naive independence estimator across a range of trapping array designs
and densities. In order to vary the proportion of simulated individuals that

produced complete identities, we set pg =0.13, pr):O.Q in the first two sets

of scenarios and pg =0.2, pr>:0.13 in the second two sets. The first and third
sets of scenarios were conducted on a 6 x 6 array and the second and fourth
was conducted on an 8 x 8 array. For all scenarios, 0=0.5, trap spacing was 1
unit (20), and the state space extended 2 units beyond the square trapping
arrays in both the X and Y dimensions. The number of IDs to swap on each
MCMC iteration, ngwqp, was set to 10, and the search radius for activity
centers to swap IDs, diner, was set to 1. Three types of trapping arrays
were considered — one with all double camera stations, one with all single
camera stations, and a hybrid array with % double camera stations and %
single camera stations (Figure B1). We considered D& (0.2, 0.4, 0.6) for the
6 x 6 array and density, D€(0.1, 0.2, 0.4) for the 8 x 8 array. Estimator
performance was compared by percent bias of the posterior mode, average
mean squared error (MSE), frequentist coverage of the 95% highest posterior
density (HPD) intervals, and the mean width of the 95% HPD interval for
N. N was chosen over density because the number of individuals to simulate
for a given density on the 8 x 8 array of size 121 units? (N=Dx121) had
to be rounded to the nearest integer so the realized data sets could not be
simulated from the exact density. The number of MCMC iterations varied
from 35000 to 150000 across scenarios with these numbers chosen to obtain
effective sample sizes for N greater than 400 and monte carlo standard errors
for N of less than 0.5.

In the scenarios where data are more sparse, occasionally there were real-
izations of the capture process that did not produce a spatial recapture — a
capture of the same animal at more than one location. Analyzing data sets
with no spatial recaptures leads to density estimates that are biased high
(Sun, Fuller and Royle, 2014); therefore, for simulated data sets with no
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spatial recaptures, data sets were discarded. For simulated data sets with
spatial recaptures between the three data sets, but not within the single
side or both plus single side data sets, the single side estimators were not
fit. For simulated data sets that did not have spatial recaptures in all two
or three data sets, the naive independence estimator was not fit. In our sim-
ulations, the only way to obtain a complete identity was by being captured
on both sides simultaneously at least once during the survey. We used lin-
ear regression on the response variable of mean difference in 95% credible
interval widths between the SPIM and best-side estimators to test the hy-
potheses that precision gains in the SPIM are related to the mean number
of complete identity individuals captured and the percentage of captured
individuals with complete identities. Finally, the R package stargazer was
used to convert all R output to LaTeX tables (Hlavac, 2015).

B.1. Simulation Results. For all single camera trapping arrays, the
random-side estimator produced nearly unbiased density estimates (Figure
B2), while the best-side estimator was biased high roughly 5% when p5=0.2
and roughly 15% when pOS =0.13. The SPIM was biased high, but less than
5%, except for the scenario with the lowest population size where it was
biased low by 7%. Coverage for these three estimators was roughly nominal
or above nominal. On average, the SPIM decreased the 95% HPD interval
width by 30-40% with larger increases at smaller population sizes and when
pg was lower (Figure A3a). The SPIM decreased the MSE by 40-60% over
the best-side estimator (Figure A3a) and the random-side estimator (see
Supplement A). The naive independence estimator was generally biased high
(up to 12.8%), and bias decreased as N increased (see Supplement A for
naive independence estimator results). Coverage for the naive independence
estimator was slightly less than nominal and the mean width of the 95% HPD
interval was larger than that of the SPIM except in some of the scenarios
where pg =0.2 and N was larger; however coverage in these scenarios was
around 0.90.

For all double camera trapping arrays, the both-plus-random-side and
both-plus-best-side estimators were biased low 5-7% (Figure B2) due to the
individual heterogeneity induced when constructing these data sets, but the
both-plus-best-side was less biased because always choosing the best side
induces positive bias as seen in the single camera simulations, counteracting
the negative bias from ignored individual heterogeneity. The SPIM had a
slight negative bias that disappeared as N increased. The both-plus-best-
side estimator had nominal coverage at low IV, but coverage tended to be
less than nominal as N increased. The both plus random-side estimator
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had lower than nominal coverage that decreased with N. The SPIM had
nominal or greater than nominal coverage. On average, the SPIM produced
95% HPD intervals that were of equal size or slightly wider (4%) than the
best-side estimator. (Figure B3a). The SPIM produced point estimates with
slightly lower MSE, with a greater improvement at larger N. The naive
independence estimator was biased high, but less so than in the all single
trapping array scenarios, and bias decreased with increasing N. Coverage
for the naive independence estimator was around 0.85 in all scenarios and
the mean width of the 95% HPD interval was similar to that of the SPIM
and single-side estimators.

For hybrid camera trapping arrays, the both-plus-single-side estimators
exhibited the same patterns as in the all double camera trapping arrays,
but to a lesser degree. The both-plus-random-side estimator was still bi-
ased low, but the both-plus-best-side estimator was now unbiased due to
the two sources of bias roughly canceling out (Figure B2). Coverage for the
both-plus-best-side estimator was nominal or higher and coverage for the
both-plus-random-side was less than nominal except at the lowest N. The
SPIM performed about the same in terms of bias and coverage as it did in
the all double trap scenarios. On average, the SPIM produced 95% HPD
intervals that were 5-17% more narrow than the both-plus-best-side estima-
tor. (Figure B3a), with the largest precision gains seen when N was lower.
MSE reductions were similar to the all double trap scenarios. The differ-
ence in precision between the SPIM and best-side estimator was related to
the mean number of complete identity individuals captured, the percent of
captured individuals whose identity was complete, and their interaction (all
p<0.0001). The number of complete identity individuals influenced preci-
sion more when the percent of individuals whose identity was complete was
lower (Figure B3b). The naive independence estimator was biased high when
pg =0.13 as much as 20% but moderately biased low when pg =0.2. Coverage
for the naive independence estimator was slightly less than nominal in all
scenarios and the mean width of the 95% HPD interval was larger than that
of the SPIM and single-side estimators.

In the lowest density simulations on all single camera trapping arrays
when p§=0.13, 14-20% of the simulated data sets did not have spatial re-
captures within either the best-side or random-side data sets and therefore
were excluded from these analysis. In practice, one could deviate from the
best-side or random-side rule if the other data set had a spatial recapture,
but the SPIM was able to accommodate the realizations with spatial recap-
tures between, but not within data sets while maintaining acceptable bias
and nominal coverage. Full simulation results can be found in Supplement
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A.

B.2. Simulation Discussion. When using all single camera trap sta-
tions, the best-side estimator was significantly biased high and although the
random-side-estimator is unbiased, the SPIM was significantly more pre-
cise and accurate (see Supplement A). The difference in precision between
the SPIM and the random-side estimator was similar to the best-side com-
parisons in Figure A3a and MSE reductions were moderately less than the
best-side comparisons due to the lack of bias in the random-side analysis.
When at least some double camera trap stations are used and thus some
identities are complete, aggregating the single-side capture histories for the
complete identity individuals introduced individual heterogeneity in capture
probability and thus negative bias and reduced coverage into the single-side
analyses. For the best-side estimator, the positive bias due to always se-
lecting the data set with the most individuals was roughly canceled out by
the negative bias from individual heterogeneity in the hybrid trapping array
designs; however, it is not likely this will hold across all combinations of pa-
rameter values. The best-side estimator was biased low in the double camera
trapping array designs, suggesting that performance depends on the ratio of
complete to partial identity individuals, which determines the magnitude of
individual heterogeneity in capture probability. The SPIM had minimal bias
and nominal coverage in the hybrid and double trapping array designs and
we expect this to hold across a wide range of parameter values and trapping
array designs. Precision of the SPIM was slightly less than the best-side
estimator in some of the double camera trapping array designs; however,
coverage of the best-side estimator in most of these scenarios was slightly
less than nominal. In the hybrid designs with fewer complete identity indi-
viduals, the SPIM moderately increased precision and reduced MSE. The
performance gain of the SPIM is further increased when considering other
options available to the researcher. If both data sets were analyzed rather
than just the best or random-side, the researcher could choose either the
most precise estimate, a protocol that will guarantee less than nominal cov-
erage, or the most conservative estimate in which case the precision gains of
using the SPIM will be increased. The naive independence estimator was bi-
ased high in all scenarios except when pg > péB) on hybrid trapping arrays,
exhibited slightly to moderately low coverage, and was not more precise
than the SPIM except in a few scenarios with the most captured individu-
als. If the goal is to maintain good frequentist properties, researchers should
choose the analysis method before examining their data and we argue that
the SPIM is the best all-around choice to achieve these ends.
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Fig B1l: Trapping arrays for the simulation study. Single exes (X) depict
single camera stations and double exes (XX) depict double camera stations.
Activity centers from one realization of the capture process are displayed,
with green dots representing complete identity individuals (B), yellow dots
representing partial identity individuals captured on the left side (L), right
side (R) or left and right side (LR). Black dots representing individuals never

captured.
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Fig B2: Bias and coverage of population size for the SPIM, best-side, and
random-side estimators. Scenarios labeled “a” correspond to scenarios with
pg < p(()B) and those labeled “b” correspond to scenarios with pOS > péB).
Double indicates two camera per station, single indicates one camera per
station, and hybrid indicates a combination of double and single stations as

depicted in Figure Al.
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Fig B3: (a) Performance difference between the SPIM and best-side esti-
mator as judged by the mean reduction in the width of the 95% credible
interval and the mean reduction in MSE. Scenarios labeled “a” correspond

to scenarios with pg < p(()B) and those labeled “b” correspond to scenar-

ios with p5 > p[()B). (b) The mean difference in the 95% credible interval
width between the SPIM and best side estimator by the mean number of
complete identity individuals captured and the mean percentage of captured
individuals that had complete identities. The scenarios with >50% complete
identities are the all double camera scenarios and those with <50% complete
identities are the hybrid scenarios and the % complete identities are higher
when )\gB) > /\g . Within each scenario, the number of complete identities

increase as N increases.
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SUPPLEMENTARY MATERIAL

Supplement A: Simulation Tables for Appendix A
(Submitted to AOAS).

Supplement B: Comparison of Spatial Partial Identity Model to
the Non-spatial Partial Identity Model
(Submitted to AOAS).

REFERENCES

Avonso, R. S., McCuintock, B. T., Lyren, L. M., Bovybpston, E. E. and
CroOKs, K. R. (2015). Mark-recapture and mark-resight methods for estimating abun-
dance with remote cameras: a carnivore case study. PloS one 10 e0123032.

BONNER, S. J. and HOLMBERG, J. (2013). Mark-Recapture with Multiple, Non-Invasive
Marks. Biometrics 69 766-775.

BORCHERS, D. L. and EFFORD, M. (2008). Spatially explicit maximum likelihood methods
for capture-recapture studies. Biometrics 64 377-385.

CHANDLER, R. B. and CLARK, J. D. (2014). Spatially explicit integrated population
models. Methods in Ecology and Evolution 5 1351-1360.

CHANDLER, R. B., ROYLE, J. A. et al. (2013). Spatially explicit models for inference
about density in unmarked or partially marked populations. The Annals of Applied
Statistics 7 936-954.

EDDELBUETTEL, D. and FrRANGOIS, R. (2011). Rcpp: Seamless R and C++ Integration.
Journal of Statistical Software 40 1-18.

EDDELBUETTEL, D. and SANDERSON, C. (2014). RcppArmadillo: Accelerating R with
high-performance C++ linear algebra. Computational Statistics and Data Analysis 71
1054-1063.

FEWSTER, R., STEVENSON, B., BORCHERS, D. L. et al. (2016). Trace-contrast models for
capture-recapture without capture histories. Statistical Science 31 245-258.

Hravac, M. (2015). stargazer: well-formated regression and summary statistics tables. R
package version 5.2. htt;://CRAN.R-project.org/package=stargazer.

KALLE, R., RAMESH, T., QURESHI, Q. and SANKAR, K. (2011). Density of tiger and
leopard in a tropical deciduous forest of Mudumalai Tiger Reserve, southern India, as
estimated using photographic capture—recapture sampling. Acta Theriologica 56 335—
342.

KeLLy, M. J., BETSCH, J., WuLTscH, C., MEsA, B. and MILLS, L. S. (2012). Noninvasive
sampling for carnivores. Carnivore ecology and conservation: a handbook of techniques
(L. Boitani and RA Powell, eds.). Ozford University Press, New York 47-69.

KiNG, R., McCriNnTOCK, B. T., KIDNEY, D. and BORCHERS, D. (2015). Capture-
recapture abundance estimation using a semi-complete data likelihood approach. arXiv
preprint arXiv:1508.06313.

LiNk, W. A., YosHIZAKI, J., BAILEY, L. L. and PoLLock, K. H. (2010). Uncovering a
latent multinomial: analysis of mark-recapture data with misidentification. Biometrics
66 178-185.

McCLINTOCK, B. T. (2015). multimark: an R package for analysis of capture-recapture
data consisting of multiple noninvasive marks. Ecology and evolution 5 4920—4931.
McCLINTOCK, B. T., ConN, P. B., ALONSO, R. S. and CROOKS, K. R. (2013). Integrated
modeling of bilateral photo-identification data in mark-recapture analyses. Fcology 94

1464-1471.


https://doi.org/10.1101/056804
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/056804; this version posted June 8, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

SCR WITH PARTIAL IDENTITY 33

NaIR, T., THORBJARNARSON, J. B., AusT, P. and KRISHNASWAMY, J. (2012). Rigorous
gharial population estimation in the Chambal: implications for conservation and man-
agement of a globally threatened crocodilian. Journal of Applied Ecology 49 1046—-1054.

OTis, D. L., BurNHAM, K. P., WHITE, G. C. and ANDERSON, D. R. (1978). Statistical
inference from capture data on closed animal populations. Wildlife monographs 62 3—
135.

REICH, B. J. and GARDNER, B. (2014). A spatial capture-recapture model for territorial
species. Environmetrics 25 630-637.

ROYLE, J. A. (2009). Analysis of capture-recapture models with individual covariates
using data augmentation. Biometrics 65 267-274.

ROYLE, J. A., DorAzIO, R. M. and LiNK, W. A. (2007). Analysis of multinomial models
with unknown index using data augmentation. Journal of Computational and Graphical
Statistics 16 67-85.

RoOYLE, J. A., FULLER, A. K. and SUTHERLAND, C. (2016). Spatial capture-recapture
models allowing Markovian transience or dispersal. Population ecology 58 53—62.

RoyLE, J. A., CHANDLER, R. B., SOLLMANN, R. and GARDNER, B. (2013). Spatial
capture-recapture. Academic Press.

SOLLMANN, R.; GARDNER, B., PARSONS, A. W., STOCKING, J. J., McCLINTOCK, B. T.,
Smons, T. R., PorLock, K. H. and O’CONNELL, A. F. (2013a). A spatial mark—
resight model augmented with telemetry data. Ecology 94 553—-559.

SOLLMANN, R., TORRES, N. M., FURTADO, M. M., DE ALMEIDA JAcoMmoO, A. T., PALO-
MARES, F., ROQUES, S. and SILVEIRA, L. (2013b). Combining camera-trapping and
noninvasive genetic data in a spatial capture-recapture framework improves density
estimates for the jaguar. Biological conservation 167 242-247.

SRIVATHSA, A., PARAMESHWARAN, R., SHARMA, S. and KaraNTH, K. U. (2015). Esti-
mating population sizes of leopard cats in the Western Ghats using camera surveys.
Journal of Mammalogy gyv0T79.

SuN, C. C., FULLER, A. K. and ROYLE, J. A. (2014). Trap configuration and spacing
influences parameter estimates in spatial capture-recapture models. PloS one 9 e88025.

WanNG, S. W. and MACDONALD, D. W. (2009). The use of camera traps for estimating
tiger and leopard populations in the high altitude mountains of Bhutan. Biological
Conservation 142 606—613.

WiLsoN, B., HAMMOND, P. S. and THOMPSON, P. M. (1999). Estimating size and assess-
ing trends in a coastal bottlenose dolphin population. Ecological applications 9 288-300.

WIMMER, J., TOWSEY, M., ROE, P. and WILLIAMSON, I. (2013). Sampling environmental
acoustic recordings to determine bird species richness. Ecological Applications 23 1419—
1428.

WRIGHT, J. A., BARKER, R. J., SCHOFIELD, M. R., FrRANTZ, A. C., BYROM, A. E. and
GLEESON, D. M. (2009). Incorporating Genotype Uncertainty into Mark—Recapture-
Type Models For Estimating Abundance Using DNA Samples. Biometrics 65 833-840.

WurrscH, C., Warts, L. P. and KeLLy, M. J. (2014). Noninvasive individual and species
identification of jaguars (Panthera onca), pumas (Puma concolor) and ocelots (Leopar-
dus pardalis) in Belize, Central America using cross-species microsatellites and faecal
DNA. Molecular ecology resources 14 1171-1182.


https://doi.org/10.1101/056804
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/056804; this version posted June 8, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

34 AUGUSTINE ET AL.

DEPARTMENT OF FISH AND WILDLIFE CONSERVATION, VIRGINIA TECH, BLACKSBURG, VA 24061
LAUREL, MD 20708

DEPARTMENT OF FisH AND WILDLIFE CONSERVATION, VIRGINIA TECH, BLACKSBURG, VA 24061
DEPARTMENT OF FISH AND WILDLIFE CONSERVATION, VIRGINIA TECH, BLACKSBURG, VA 24061
DEPARTMENT OF FI1sH AND WILDLIFE CONSERVATION, VIRGINIA TECH, BLACKSBURG, VA 24061
THOUSAND OaKs, CA 91360

DEPARTMENT OF FI1SH WILDLIFE, AND CONSERVATION BioLocGy, FOrRT CoLLINS, CO

E-MAIL: baugusti@Qvt.edu


mailto:baugusti@vt.edu
https://doi.org/10.1101/056804
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods – Model Description
	Methods – Trap Operation File
	MCMC Algorithm
	Methods – "Pragmatic" Estimators

	Application 1: Dual camera station trapping array targeting ocelots
	Application 2: Single camera station trapping array targeting bobcats
	Discussion
	Tables and figures
	Full MCMC Algorithm
	Simulations
	Simulation Results
	Simulation Discussion

	Supplementary Material
	References
	Author's addresses

