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Abstract

Camera trapping surveys frequently capture individuals whose identity is only
known from a single flank. The most widely used methods for incorporating these
partial identity individuals into density analyses do not use all of the partial identity
capture histories, reducing precision, and while not previously recognized, introducing
bias. Here, we present the spatial partial identity model (SPIM), which uses the spatial
location where partial identity samples are captured to probabilistically resolve their
complete identities, allowing all partial identity samples to be used in the analysis. We
show that the SPIM out-performs other analytical alternatives. We then apply the
SPIM to an ocelot data set collected on a trapping array with double-camera stations
and a bobcat data set collected on a trapping array with single-camera stations. The
SPIM improves inference in both cases and in the ocelot example, individual sex de-
termined from photographs is used to further resolve partial identities, one of which is
resolved to near certainty. The SPIM opens the door for the investigation of trapping
designs that deviate from the standard 2 camera design, the combination of other data
types between which identities cannot be deterministically linked, and can be extended
to the problem of partial genotypes.

Keywords: Spatial capture-recapture, partial identity, camera trapping, multiple marks
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1 Introduction

Generally, capture-recapture models for wildlife species regard the individual identity of

each capture event as known; however in practice, the identities of individuals for some

capture events can be ambiguous or erroneous. In live-capture studies, tags can be lost. In

camera trapping studies, researchers often end up with partial identity samples – left-only

and right-only photographs that cannot be deterministically linked. In genetic capture-

recapture studies, partial genotypes and allelic dropout can lead to partial identification

or misidentification, respectively. Statistical models have been developed to address the

problem of imperfect identification in live capture using double tagging (e.g. Wimmer et al.,

2013) and in camera trap and genetic capture-recapture studies by regarding the complete

identification of partial or potentially erroneous samples as latent and specifying models

for both the capture-recapture process and the imperfect observation process conditional

on the capture (e.g. McClintock et al., 2013; Bonner & Holmberg, 2013; Wright et al.,

2009). However, relatively little attention has been paid to one of the most important

determinants of sample identity–the spatial location where it was collected. The identity of

ambiguous samples should more likely match the identity of other samples collected closer

together in space than those collected further apart and this information can be used to

model the observation process and aid in the determination of sample identity. While this

was recognized by Wright et al. (2009), it has yet to be formalized and implemented for

partial or potentially erroneous identity samples. The information about identity contained

in the spatial location of samples has been used in two recent spatially-explicit capture-

recapture (SCR) models where there is no other information about identity for some or

all samples. Chandler & Clark (2014) probabilistically associate unidentified detections or

counts to individuals identified by mark-recapture using their spatial location and a latent

SCR model and Chandler et al. (2013) consider the situation where 100% of the samples are

of unknown identity and use the spatial location of samples in combination with a latent

SCR model as the basis for estimating density from such data. Here, we will address the use

of sample location to probabilistically resolve partial identities in camera trapping studies.

Camera traps (remotely triggered infra-red cameras) have become an established method

for collecting capture-recapture data for a wide range of species, especially those that are
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individually-identifiable from natural marks found on both flanks of the animal (termed

“bilateral identification” by McClintock et al., 2013). Camera trapping studies typically

allow capture-recapture data to be collected over longer periods of time and across larger

areas than is feasible using live capture, leading to more captures of more individuals and thus

more precision for population parameter estimates such as density (Kelly et al., 2012). These

characteristics are especially advantageous when studying animals existing at low densities,

such as large carnivores. However, even when using camera traps, researchers have found it

difficult to achieve adequate precision for parameter estimates of low density populations,

so any innovations in statistical methodology that can improve statistical efficiency, such as

allowing unidentified or partial identity samples to be included in the analysis, are of broad

practical interest.

Because animal markings are usually bilaterally asymmetric, researchers need to simul-

taneously photograph both flanks of an individual at least once during a capture-recapture

study in order to obtain a complete identity (McClintock et al., 2013) and this is the reason

the majority of camera trap studies deploy two cameras at each trap station. For individuals

that are never photographed on both flanks simultaneously, left-only and right-only pho-

tographs cannot be deterministically assigned to a single individual. These partial identity

individuals can be linked across occasions using either their left-only or right-only captures,

but it is not known which, if any, of these left-only and right-only partial identity capture

histories are the same individuals. Single-sided photographs can occur in the standard dou-

ble camera trap design if one camera is not triggered or has malfunctioned, one photograph is

blurry, or the animal is photographed at an angle or position that only permits identification

of a single flank. While less common in capture-recapture studies, the use of single camera

trap stations can usually only produce single-sided photographs, none of which can be deter-

ministically linked without supplemental information, such as dual-flank photographs from

a live capture event (e.g. Alonso et al., 2015).

Including both left-only and right-only captures in a single encounter history may result

in two histories for the same individual with neither being correct. Therefore, researchers

have typically discarded some of the single-sided captures from analysis (McClintock et al.,

2013). If only single camera trap stations are used, left-only and right-only capture histories

can be constructed. If at least some double camera trap stations are used, the left- and
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right-only captures can be linked to the complete identity individuals that were captured on

both sides simultaneously at least once during the survey. In these scenarios, two encounter

histories are usually constructed – all capture events for the complete identity individuals

are supplemented by either the left-only capture events or right-only capture events of the

partial identity individuals. The most common approach is to analyze a single side data set

and the chosen side is usually the one with more captured individuals or capture events (e.g.

Kalle et al., 2011; Nair et al., 2012; Srivathsa et al., 2015; Wang & Macdonald, 2009). This

process introduces two forms of bias that to our knowledge have not been identified in the

literature. First, if the data set with more captured individuals is always the one selected

for analysis, positive bias is introduced because the likelihood does not condition on this

selection process. Second, linking all three capture types for the complete identity individuals

introduces individual heterogeneity in capture probability and thus negative bias. To see this,

if pB and pS are the probabilities of being captured on both sides and a single side respectively,

complete identity individuals will have a capture probability of P (B ∪ S ∪ S) = 1 − (1 −

pB)(1− pS)2 > pB or pS while partial identity individuals will have a capture probability of

pS. A second approach that avoids the introduction of individual heterogeneity is to ignore

the fact that the left and right side photos from a simultaneous capture belong to the same

individual, average the density estimates from both single side analyses, and derive a joint

standard error assuming independence. This method is proposed by Wilson et al. (1999);

however, Bonner & Holmberg (2013) point out that assuming independence between the

dependent data sets will lead to the underestimation of standard errors and below nominal

confidence interval coverage. Methods that appropriately model the dependence between the

data sets by accounting for the imperfect identification process are thus required to produce

unbiased estimates with appropriate measures of uncertainty.

Two recent papers (McClintock et al., 2013; Bonner & Holmberg, 2013) have extended

the Latent Multinomial Model (LMM) of Link et al. (2010), originally applied to genetic

capture-recapture with misidentification, to allow the complete and partial identity samples

to be modeled together while accounting for the uncertainty in identity of the partial identity

samples. Both papers show that the uncertainty stemming from the imperfect observation

process is more than offset by the gain in precision from using all the capture events, leading

to a net increase in precision of abundance (McClintock et al., 2013) and survival (Bonner &
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Holmberg, 2013) estimates, at least for the scenarios considered for simulation. The MCMC-

based LMM accounts for the uncertainty in identity by sampling from possibly true encounter

histories that are consistent with the observed encounter histories without respect to where

they were collected. Using the spatial information associated with samples can reduce the

frequency with which we propose and accept true encounter histories that combine samples

with locations that are unlikely to be from the same individual based on the movement

characteristics of the species under consideration. For example, consider 3 samples (A, B, C)

of unknown identity of a mesocarnivore with a typical home-range area of 4 km2. If samples

A and B are 6 km distant, but samples A and C are only 1 km distant, then it is more likely

that samples A and C are the same individual than samples A and B. SCR models are a

natural framework for dealing with uncertain identity in capture-recapture models because

they involve an explicit description of how the spatial organization of individuals interacts

with the spatial organization of traps or other sampling devices. Therefore, we propose a

spatial partial identity model (SPIM) that uses the spatial information associated with each

photograph in camera trap studies to jointly model simultaneous, left-only, and right-only

photographs while accounting for the uncertain identity of partial identity samples within

the SCR framework. We apply this model to two data sets – one from a double camera

station study of ocelots in Belize and one from a single camera station study of bobcats in

southern California.

2 Methods – Model Description

We assume that individual activity centers si are distributed across the two-dimensional

state space S according to si ∼ Uniform(S). We define events m ∈ (B,L,R) to correspond

to both-side simultaneous capture, left-only capture, and right-only capture, respectively.

We assume a partially latent binomial capture process such that for each capture type,

Y
(m)
ij ∼ Binomial(K, p

(m)
ij ) with K being the number of capture occasions (e.g., nights of

a camera trapping study) and p
(m)
ij being the capture probability of individual i at trap j

for event type m. The true, partially latent encounter history is then the set of binomial

frequencies Yij = (Y
(B)
ij , Y

(L)
ij , Y

(R)
ij ) and the observed encounter history is the set of binomial

frequencies yij = (y
(B)
ij , y

(L)
ij , y

(R)
ij ). The dimensions of the three binomial frequencies are
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nB×J , nL×J , and nR×J , respectively, with J being the number of traps and nm being the

number of individuals for which a m event was observed. Both true and observed encounter

histories are augmented up to dimension M × J by adding M − nB, M − nL and M − nR
rows of all zero encounter histories (see Royle et al., 2013, for a complete description of

data augmentation in SCR models). A vector of M partially latent indicator variables z

is introduced to indicate which individuals are in the population with zi ∼ Bernoulli(φ),

inducing the relationship N ∼ Binomial(M,φ).

If we knew the complete identities of all captured individuals, we could construct the true

encounter history Yij from the observed encounter history yij by reordering the rows of y
(L)
ij

and y
(R)
ij . The key idea behind the SPIM is that we can construct possibly true encounter

histories by linking nearby left-only and right-only partial identity samples and reordering

the rows of y
(L)
ij and y

(R)
ij accordingly. To do this, we define Y

(B)
ij and y

(B)
ij to be in the correct

order of identity, corresponding to the order of s and z, and specify the known identity

vector IDB = (IDB
1 , ID

B
2 , . . . , ID

B
M) = 1, . . . ,M . Then, we introduce partially-latent identity

vectors IDL = (IDL
1 , ID

L
2 , . . . , ID

L
M) and IDR = (IDR

1 , ID
R
2 , . . . , ID

R
M) indicating which IDB

i

each IDL
i and IDR

i correspond to. For example, if the values of IDL
22 and IDR

32 are 28, the left

and right encounter histories for the 28th individual in Y
(B)
ij and y

(B)
ij are stored in the 22nd

and 32nd rows of y
(L)
ij and y

(R)
ij , respectively. On each MCMC iteration, we construct possibly

true encounter histories Yij from the possibly true identities IDL and IDR after swapping

some of the identities and associated partial identity samples between activity centers within

a user-defined search radius (spatially limiting this process raises the acceptance probability

because proposals that combine partial identity samples that are far apart relative to sigma

will almost always be rejected). This process produces posterior distributions for the SCR

parameters that account for the uncertainty in identification of the partial identity samples.

To prevent samples from the complete identity individuals from being swapped, we define

c to be an n × 1 indicator vector with entries 1 if the complete identity of individual i is

known, whether from a B event at some point during the study or from auxiliary data, and 0

otherwise. In all cases of ci = 1, individual identities are complete and Yij = yij. Conversely,

the indicies of y
(L)
ij and y

(R)
ij with ci = 0 are partial identity samples and Y

(L)
ij and Y

(R)
ij are

latent. For convenience, we jointly sort Yij and yij such that the 1, . . . , nComplete ci = 1

individuals are the first individuals to occur in the true and observed encounter histories,
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IDB
i = IDL

i = IDR
i for the first i = 1, . . . , nComplete individuals, and we only need to resolve

the identities of the i = nComplete+1,...,M entries of the y
(L)
ij and y

(R)
ij observed data sets. The

full MCMC algorithm is described in Appendix A.

Conditional on the true Yij, the detection process is that of a typical SCR model. We

assume a Gaussian hazard detection function. Because double cameras are co-located, it is

unlikely that they are independent. Therefore, we write the detection function for mark type

m as

pm(s,x) = 1− exp(−hm(s,x)) (1)

with pm(s,x) being the probability of capture for an individual with activity center s at

trap location x and

hm(s,x) = λm0 exp

(
−||s− x||2

2σ2

)
(2)

with λm0 being the cumulative hazard of detection of event type m for an activity center

located at the same location as a detector and σ being the spatial scale parameter. Because

we do not expect any systematic difference in the probability of detecting one flank over the

other, we will set λS0 := λR0 = λL0 where S indicates a single side capture. For single camera

stations, we have the single-side detection function pS(s,x) for both L and R captures. At

double camera stations, the single side capture probability is p2S(s,x) = 1− (1− pS(s,x)2)

because there are now two ways to photograph a single side (camera 1 or 2). B captures can

only occur at double camera stations and so we introduce λB0 as the cumulative hazard of a

double-sided detection for an activity center located at the same location as a detector. If

pB0 > p2S0 , there is a positive correlation between cameras at the same station, such as in the

case of cameras on a narrow trail that are likely to be triggered together by a large animal.

If pB0 < p2S0 , there is a negative correlation which can happen if cameras are placed on a

wide road or trail and smaller animals traveling closer to one camera may not be identifiable

when photographed by the other camera.

2.1 Methods – Trap Operation File

It is common for cameras to malfunction in camera trap studies. In typical SCR, this can

be accommodated by modifying the capture process using L (dimension 1 x J), the number

of trap nights each trap was operational, if working with the 2-D data matrix (individual
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× trap) or by recording L, the complete trap operation history (dimension J × K, 1 if

trap j was operational on occasion k, 0 otherwise), if working with the 3-D data array

(individual × trap × occasion). Then, yij ∼ Binomial(Lj, pij), or yijk ∼ Binomial(1, pijk ×

Ljk). Traditionally, the trap operation file does not distinguish between having one or two

cameras operational, despite the capture probability likely being higher when both traps

are functional. In the SPIM, both side captures can only occur when two cameras are

operational and the probability of a single side capture depends on whether one or two

cameras are operational. Therefore, we need to use the 2-D L and the 3-D data array to

properly account for camera operation.

2.2 Methods – Alternative Estimators

2.2.1 Methods – Pragmatic Estimators

We will consider the most common estimator used in practice based on choosing the single

side data set with the most captured individuals and combining it with the both side data set,

if available, and analyzing the resulting data set with a traditional null SCR model. Because

choosing the best single side introduces a positive bias, the second pragmatic estimator will

choose a random side to be combined with the both side data set, if available. We will refer to

these estimators as the “best-side” and “random-side” estimators on single camera trapping

arrays and ”both-plus-best-side” and ”both-plus-random-side” estimators on double camera

and hybrid trapping arrays.

2.2.2 Methods – The Naive Independence Estimator

An alternative to the SPIM is to ignore the dependence between the left, right, and both side

data sets and average the density estimates from the individual analyses and derive a joint

standard error assuming independence. This method is proposed by Wilson et al. (1999)

and while Bonner & Holmberg (2013) point out that assuming independence will lead to the

underestimation of standard errors, this estimator might perform reasonably well in some

scenarios, such as when data are sparse and thus there is less dependence between data sets.

A Bayesian analogue to Wilson et al. (1999) is to perform a joint MCMC analysis on the

both (when available), left, and right data sets, allowing each data set to have its own latent
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structure (s,ψ,z), but sharing detection function parameters (λ0 and σ). On each MCMC

iteration, NB (when both side data is available), NL, and NR are independently calculated

by summing zB, zL, and zR and their average is recorded.

3 Simulations

We conducted 384 simulations for each of 36 scenarios, grouped into four sets, to compare

the performance of the SPIM, pragmatic estimators, and the naive independence estimator

across a range of trapping array designs and densities. In order to vary the proportion of

simulated individuals that produced complete identities, we set pS0 =0.13, pB0 =0.2 in the first

two sets of scenarios and pS0 =0.2, pB0 =0.13 in the second two sets. The first and third sets of

scenarios were conducted on a 6 x 6 array and the second and fourth was conducted on an 8 x

8 array. For all scenarios, σ=0.5, trap spacing was 1 unit (2σ), and the state space extended

2 units beyond the square trapping arrays in both the X and Y dimensions. The number of

IDs to swap on each MCMC iteration, nswap, was set to 10, and the search radius for activity

centers to swap IDs, dmax, was set to 1. Three types of trapping arrays were considered

– one with all double camera stations, one with all single camera stations, and a hybrid

array with 1
4

double camera stations and 3
4

single camera stations (Figure 1). We considered

D∈(0.2, 0.4, 0.6) for the 6 x 6 array and D∈(0.1, 0.2, 0.4) for the 8 x 8 array. Estimator

performance was compared by percent bias of the posterior mode, average mean squared

error (MSE), frequentist coverage of the 95% highest posterior density (HPD) intervals, and

the mean width of the 95% HPD interval for N. N was chosen over D because the number

of individuals to simulate for a given D on the 8 x 8 array of size 144 units2 (N=D×144)

had to be rounded to the nearest integer. The difference in performance between the SPIM

and best-side estimator was compared because the best-side estimator is the most common

in practice.

In the scenarios where data is more sparse, occasionally there were realizations of the

capture process that did not produce a spatial recapture – a capture of the same animal

at more than one location. Analyzing data sets with no spatial recaptures leads to density

estimates that are biased high (Sun et al., 2014); therefore, for simulated data sets with no

spatial recaptures, data sets were discarded. For simulated data sets with spatial recaptures
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between the three data sets, but not within the single side or both plus single side data sets,

the single side estimators were not fit. For simulated data sets that did not have spatial

recaptures in all two or three data sets, the naive independence estimator was not fit. In our

simulations, the only way to obtain a complete identity was by being captured on both sides

simultaneously at least once during the survey. We used linear regression on the response

variable of mean difference in 95% credible interval widths between the SPIM and best-side

estimators to test the hypotheses that precision gains in the SPIM are related to the mean

number of complete identity individuals captured and the percentage of captured individuals

with complete identities. A comparison of the SPIM to the non-spatial partial identity model

of McClintock (2015) can be found in Appendix C. Finally, the R package stargazer was used

to convert all R output to LaTeX tables (Hlavac, 2015).

3.1 Simulation Results

For all single camera trapping arrays, the random-side estimator produced nearly unbiased

density estimates (Figure 2), while the best-side estimator was biased high roughly 5% when

pS0 =0.2 and roughly 15% when pS0 =0.13. The SPIM was biased high, but less than 5%, except

for the scenario with the lowest population size where it was biased low by 7%. Coverage

for these three estimators was roughly nominal or above nominal. On average, the SPIM

decreased the 95% HPD interval width by 30-40% with larger increases at smaller population

sizes and when pS0 was lower (Figure 3a). The SPIM decreased the MSE by 40-60% over

the best-side estimator (Figure 3a) and the random-side estimator (Appendix B). The naive

independence estimator was generally biased high (up to 12.8%), and bias decreased as N

increased (see Appendix B for naive independence estimator results). Coverage for the naive

independence estimator was slightly less than nominal and the mean width of the 95% HPD

interval was larger than that of the SPIM except in some of the scenarios where pS0 =0.2 and

N was larger; however coverage in these scenarios was around 0.90.

For all double camera trapping arrays, the both-plus-random-side and both-plus-best-

side estimators were biased low 5-7% (Figure 2) due to the individual heterogeneity induced

when constructing these data sets, but the both-plus-best-side was less biased because al-

ways choosing the best side induces positive bias as seen in the single camera simulations,

counteracting the negative bias from ignored individual heterogeneity. The SPIM had a
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Figure 1: Trapping arrays for the simulation study. Single exes (X) depict single camera

stations and double exes (XX) depict double camera stations. Activity centers from one

realization of the capture process are displayed, with green dots representing complete iden-

tity individuals (B), yellow dots representing partial identity individuals captured on the left

side (L), right side (R) or left and right side (LR). Black dots representing individuals never

captured.

slight negative bias that disappeared as N increased. The both-plus-best-side estimator had

nominal coverage at low N , but coverage tended to be less than nominal as N increased.

The both plus random-side estimator had lower than nominal coverage that decreased with

N . The SPIM had nominal or greater than nominal coverage. On average, the SPIM pro-

duced 95% HPD intervals that were of equal size or slightly wider (4%) than the best-side

estimator. (Figure 3a). The SPIM produced point estimates with slightly lower MSE, with
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Figure 2: Bias and coverage of population size for the SPIM, best-side, and random-side

estimators. Scenarios labeled “a” correspond to scenarios with pS0 < pB0 and those labeled

“b” correspond to scenarios with pS0 > pB0 . Double indicates two camera per station, single

indicates one camera per station, and hybrid indicates a combination of double and single

stations as depicted in Figure 1.

a greater improvement at larger N . The naive independence estimator was biased high, but

less so than in the all single trapping array scenarios, and bias decreased with increasing N .

Coverage for the naive independence estimator was around 0.85 in all scenarios and the mean

width of the 95% HPD interval was similar to that of the SPIM and single-side estimators.

For hybrid camera trapping arrays, the both-plus-single-side estimators exhibited the

same patterns as in the all double camera trapping arrays, but to a lesser degree. The

both-plus-random-side estimator was still biased low, but the both-plus-best-side estimator

was now unbiased due to the two sources of bias roughly canceling out (Figure 2). Coverage

for the both-plus-best-side estimator was nominal or higher and coverage for the both-plus-

random-side was less than nominal except at the lowest N . The SPIM performed about the

same in terms of bias and coverage as it did in the all double trap scenarios. On average, the
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Figure 3: (a) Performance difference between the SPIM and best-side estimator as judged

by the mean reduction in the width of the 95% credible interval and the mean reduction

in MSE. Scenarios labeled “a” correspond to scenarios with pS0 < pB0 and those labeled “b”

correspond to scenarios with pS0 > pB0 . (b) The mean difference in the 95% credible interval

width between the SPIM and best side estimator by the mean number of complete identity

individuals captured and the mean percentage of captured individuals that had complete

identities. The scenarios with >50% complete identities are the all double camera scenarios

and those with <50% complete identities are the hybrid scenarios and the % complete

identities are higher when λB0 > λS0 . Within each scenario, the number of complete identities

increase as N increases.

SPIM produced 95% HPD intervals that were 5-17% more narrow than the both-plus-best-

side estimator. (Figure 3a), with the largest precision gains seen when N was lower. MSE

reductions were similar to the all double trap scenarios. The difference in precision between

the SPIM and best-side estimator was related to the mean number of complete identity
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individuals captured, the percent of captured individuals whose identity was complete, and

their interaction (all p<0.0001). The number of complete identity individuals influenced

precision more when the percent of individuals whose identity was complete was lower (Figure

3b). The naive independence estimator was biased high when pS0 =0.13 as much as 20% but

moderately biased low when pS0 =0.2. Coverage for the naive independence estimator was

slightly less than nominal in all scenarios and the mean width of the 95% HPD interval was

larger than that of the SPIM and single-side estimators.

In the lowest density simulations on all single camera trapping arrays when pS0 =0.13,

14-20% of the simulated data sets did not have spatial recaptures within either the best-

side or random-side data sets and therefore were excluded from these analysis. In practice,

one could deviate from the best-side or random-side rule if the other data set had a spatial

recapture, but the SPIM was able to accommodate the realizations with spatial recaptures

between, but not within data sets while maintaining acceptable bias and nominal coverage.

Full simulation results can be found in Appendix B.

4 Application 1: Dual camera station trapping array

targeting ocelots

This data set comes from a long-term, multi-site felid study in Belize conducted from 2008

to the present. The study targeted jaguars, pumas, and ocelots, but due to their smaller

size and more nocturnal activity patterns, the probability of simultaneously photographing

ocelots on both flanks was relatively low, leading to several ambiguous single-sided encounter

histories within any given year. Because this is a multi-year study, the complete identities

of some individuals within any given year are known from other years, but we will use a

single data set in isolation to model the more typical single year survey. This specific data

set was collected in the Rio Bravo Conservation Management Area, Belize, in 2014. The

trapping array (Figure 2) consisted of 26 dual camera stations with a mean spacing of 1.96

km and the survey lasted 98 days (July 20 - October 25), resulting in 1796 trap nights with

2 cameras operational and 425 trap nights with a single trap operational due to malfunction.

Sex could be determined from the photographs for all individuals except for one individual
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that was captured a single time. Eight individuals (5 male, 3 female) were captured on both

flanks simultaneously at least once during the experiment producing complete identities and

another (male) was captured on both flanks at a single camera station in short succession

such that it was improbable that both sides did not belong to the same individual. This

individual’s identity was considered complete and the capture was recorded as a left-side

capture, chosen randomly. This was done because a single camera was operational during

this event and our model does not allow a both-side capture to occur when a single camera

is operational and recording the event as both a left and right capture would violate the

independence assumption between the capture processes. There were nine partial identity

left-side encounter histories (1 male, 7 female, and 1 unknown) and 12 partial identity right-

side encounter histories (5 male and 7 female). From other years, it is known that 5 of the

partial identity left encounter histories belong to individuals recorded in the right encounter

histories. Overall, there were 10 both-side captures, 30 left-side captures, and 48 right-side

captures. The spatial distribution of captures for partial identity individuals can be seen in

Figure 4.

We analyzed the complete data set, the male-only data set, and the female-only data set.

Knowing the sex of almost all individuals provides us the opportunity to exclude matching

partial identity samples of different sexes; however, this information is not observable from

camera trap photographs for many species. To model this more common situation, we first

analyzed the full data set without using the sex covariate. Then, we used the sex covariate

to exclude matches between sexes to model either the situation where sex is known from

photographs or that of a species living at a lower density than this population of ocelots. Our

model could be modified to allow matches based on categorical covariates such as sex while

sharing the same density and detection function parameters; however for convenience, and

because male and female ocelots likely do not share the same σ or D (M. Kelly, unpublished

data), we analyzed the male and female-only data sets separately. This is conceptually

equivalent to formally including a sex covariate in the SPIM and allowing all parameters to

vary by sex. For all three data sets, we fit the SPIM to the full data set and traditional

SCR models to data sets that augmented all captures for the complete identity individuals

(both, left, and right) by either the left or the right partial identity encounter histories. For

all models, we ran one chain for 35K iterations, discarding the first 5K, and in the SPIMs,
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Figure 4: (a) Capture locations for partial identity samples in the ocelot data set. R and

L indicate right and left, respectively and M, F and ? indicate male, female, and unknown,

respectively. (b) The posterior distribution for L10 and R10 when they are correctly matched

(red), for L10 when not matched to R10 (green) and for R10 when not matched to L10 (blue).

When L10 is not matched to R10, it mostly matches with R13 and R20. When R10 is not

matched to L10, it mostly matches L12, L13, and L17. These results are from the model not

using sex information.

we set dmax to 3 km and nswap to 10. Based on the simulations of double camera trap station

surveys, we expected the SPIM estimates to be slightly less precise, but slightly larger due

to the individual heterogeneity introduced by the traditional manner of combining the three

data sets.

The results in Table 1 largely matched our expectations. The density estimates of the

SPIM were higher than the mean of the two SCR0 estimates by 21, 32, and 31 % for the total,

male, and female data sets, respectively. The right side data set was the “best-side” data set
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and it produced an estimate closer to the SPIM, which matches the simulation results. 95%

HPD intervals were slightly narrower using traditional SCR in 4 of the 6 possible comparisons

and slightly narrower using the SPIM in the remaining 2. σ estimates for males were higher

than for females and did not vary widely among the three methods of analysis. Adding

the posteriors for N from the male and female only models produced an estimate of 40 (29

- 58), which was one unit narrower than the SPIM not including sex information, despite

including three extra parameters and excluding the individual of unknown sex. Overall, the

SPIM provides more optimistic density estimates, that according to the simulations, should

be closer to the truth with credible intervals that can provide nominal frequentist coverage

or offer more accurate Bayesian interpretations, and removes the need to interpret two sets

of estimates. For the complete data set, the SPIM took 146 minutes to run on a laptop with

a 2.7 GHz Intel I7 processor.

Table 1: Parameter estimates for the ocelot data set using either the Spatial partial identity

model (SPIM) or the standard spatial capture-recapture model (SCR0) on either the both

plus right side data set or both plus left data set. Density is in units of individuals per 100

km2.

Sex Model pS0 pB0 p0 σ N (95% CI) D (95% CI) CI width

Both SPIM 0.005 0.003 2.00 42 (29− 59) 7.33 (5.09− 10.36) 5.27

SCR0-B+R 0.015 2.05 39 (27− 56) 6.87 (4.74− 9.83) 5.09

SCR0-B+L 0.015 2.25 30 (20− 44) 5.27 (3.51− 7.73) 4.21

Male SPIM 0.005 0.004 2.40 14 (11− 23) 2.63 (1.93− 4.04) 2.11

SCR0-B+R 0.015 2.45 15 (11− 26) 2.72 (1.93− 4.57) 2.63

SCR0-B+L 0.022 2.39 8 (7− 16) 1.41 (1.23− 2.81) 1.58

Female SPIM 0.005 0.002 1.21 24 (14− 40) 6.18 (3.56− 10.18) 6.61

SCR0-B+R 0.016 1.24 19 (12− 35) 4.89 (3.05− 8.90) 5.85

SCR0-B+L 0.007 1.71 18 (10− 38) 4.57 (2.54− 9.67) 7.12

The posterior distributions of sample identity for the partial identity samples provide
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interesting anecdotes about how both spatial location and a categorical covariate can indi-

vidually, and in combination, inform sample identity. In the model not using information

about individual sex, the 5 partial identity individuals in the left and right data sets that

were known to be the same individuals from other surveys were assigned higher posterior

probabilities of being the same individual than any other partial identity individuals (data

not shown). Using location alone, these probabilities ranged from 0.23 - 0.74 and when

adding the information about sex, they increased to 0.59 - 0.99 (Table 2). The tenth left

and right partial identity histories, L10 and R10, had a high probability of (correctly) being

the same individual with or without using the sex information (0.74 and 0.99, respectively).

In Figure 4, it can be seen that L10 was captured in 4 locations and R10 in 3 locations

with roughly the same mean capture location. Incorrectly matching R10 with L12 pulls

the combined mean capture location to the east, and incorrectly matching R10 with L13

pulls it to the south. Incorrectly matching L10 with R13 pulls the combined mean capture

location to south and slightly to the east and matching L10 with R20 pulls it to the east and

slightly to the north. These observations are reflected in the posterior distribution for the

activity center of these two partial identity samples decomposed into the MCMC iterations

when they were correctly matched and when they were not (Figure 5). When including sex

information, we know that R10 (male) cannot match either L12 or L13 (females) and L10

cannot match R13 or R20 (females). This only leaves augmented individuals for L10 and

R10 to incorrectly match and two augmented individuals, uncaptured by definition, with ac-

tivity centers in the middle of the trapping array are very improbable. Therefore, the model

assigns a 0.99 probability that L10 and R10 are the same individual when sex is considered.

Conversely, L11 and R12 with no nearby same sex matches (Figure 4) have a lower posterior

probability of being the same individual (0.60) because they can plausibly be assigned to

augmented individuals living off of the trapping array that were never right or left-captured,

respectively.
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Table 2: Posterior probabilities that left and right ocelot samples are from the same in-

dividual for individuals that were determined to be the same from data collected in other

years.

L ID R ID
Pr(L ID = R ID)

Sex Unknown Sex Known

10 10 0.74 0.99

11 12 0.28 0.59

12 13 0.42 0.72

14 14 0.23 0.63

15 15 0.38 0.70

5 Application 2: Single camera station trapping array

targeting bobcats

This data set comes from a study of bobcats in southern California that has been analyzed

using both non-spatial partial identity models (PIM, McClintock et al., 2013; McClintock,

2015) and hybrid mark-resight models (Alonso et al., 2015) that combine mark-resight and

capture-recapture for the unmarked, but individually-identifiable individuals. The trapping

array consisted of 30 single camera stations with a mean spacing of 1.63 km operated over

187 days, producing 4669 trap nights and 109 left-only or right-only capture events of 23

left-side and 23 right-side individuals. Twenty-seven bobcats were GPS-collared, marked,

and photographed on both sides at capture so their left- and right-side encounter histories

could be linked and 15 of these individuals were later photographed at camera traps. See

Alonso et al. (2015) for a full description of the survey.

Following McClintock et al. (2013) and Alonso et al. (2015), we analyzed the data set in

two ways. First, we analyzed the data set using the 15 complete identities obtained from

the live captures to compare performance to the PIMs in McClintock (2015) and the hybrid

mark-resight estimators in Alonso et al. (2015). While the hybrid mark-resight estimator
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makes use of the number of marked individuals in the population that were not recaptured,

we did not constrain our MCMC sampler with this information so that a better comparison

could be made to the PIM analyses that did not use this information and because the

posterior density of N for the SPIMs placed negligible weight below the known number of

individuals in the population during the survey (41). For the second analysis, we discarded

the complete identities to model a single camera capture-recapture survey that did not have

a live capture component. Because Alonso et al. (2015) found strong support for individual

heterogeneity in the mark-resight models and both Alonso et al. (2015) and McClintock

(2015) found moderate support for individual heterogeneity in capture-recapture models, we

compare the SPIM to the PIM and mark-resight models with individual heterogeneity in

capture probability. For each SPIM and SCR analysis, we ran one chain for 35K iterations,

discarding the first 5K. For the SPIM models, we set nswap=10 and dmax to 2 km. The SPIM

models with and without the 15 complete identities took 57 and 53 minutes to run on a

laptop with a 2.7 GHz Intel I7 processor, respectively.

Among the models using the 15 complete identity individuals, the most precise estimate

was the hybrid mark-resight model using the right-side data set for the capture-recapture

of unmarked individuals; however, the SPIM was more precise than the average of the left

and right side analyses and removes the task of interpreting two estimates (Table 3). The

conservative approach would be to interpret the least precise single side analysis, in which

case the SPIM was 14% more precise than both the single-side hybrid mark-resight and SCR

analyses. The SPIM was 66% more precise than the PIM with individual heterogeneity,

which was considerably less precise than the classical Mh single-side analyses discarding the

15 complete identities. When the 15 complete identities are discarded, the precision of the

SPIM is only slightly reduced and is still 6% more precise than the least precise single-side

hybrid mark-resight estimate and is 30% more precise than the least precise SCR estimate.

The former suggests that there is a similar amount of information about density in the spatial

location of captures on this single camera array as there is in knowing the marked status of

15 individuals and that the SPIM can remove the need for the live capture component of

a study if the only goal is to mark individuals for mark-resight density estimation. While

the SPIM appears to perform the most favorably on this data set compared to alternatives

considered, we note that a definitive comparison would require a simulation study where the
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true parameter values are known and more than one survey can be conducted.

Table 3: Population size estimates for the bobcat data set from the spatial partial identity

model (SPIM), single side SCR analyses (SCR0), non-spatial partial identity models (PIM

Mh McClintock, 2015), Mh hybrid mark-resight models (HMR Alonso et al., 2015), and

Mh classical mark-recapture models (Alonso et al., 2015). The SPIM and single side SCR

analyses are repeated both with (Complete IDs=15) and without (Complete IDs=0) the

information from live-captured individuals.

Complete IDs Model N (95% CI) CI width

15 SPIM 57 (45− 74) 29

SCR0-B+L 57 (41− 75) 34

SCR0-B+R 50 (38− 68) 30

PIM-Mh 52 (29− 114) 85

HMR-B+L 60 (45− 79) 34

HMR-B+R 55 (43− 70) 27

0 SPIM 52 (38− 70) 32

SCR0-L 52 (34− 80) 46

SCR0-R 44 (31− 65) 34

Mh-L 40 (27− 94) 67

Mh-R 45 (30− 88) 58

6 Discussion

Our study has shown that the spatial location where samples were collected provides infor-

mation about individual identity and using this information in partial identity models can

improve inference in camera trap studies. Further, the formal treatment of the number of

cameras at trap stations allows for camera number and the spatial distribution of station

types (1 or 2 cameras) to be considered when designing surveys. Our results demonstrate that
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the SPIM estimator performs better than the best-side, random-side, naive independence,

and non-spatial partial identity (PIM; see Appendix C) estimators, at least in the sparse data

scenarios considered here. When using all single camera trap stations, the best-side estimator

was significantly biased high and although the random-side-estimator is unbiased, the SPIM

was significantly more precise and accurate (see Appendix B). The difference in precision

between the SPIM and the random-side estimator was similar to the best-side comparisons

in Figure 3a and MSE reductions were moderately less than the best-side comparisons due

to the lack of bias in the random-side analysis. When at least some double camera trap sta-

tions are used and thus some identities are complete, aggregating the single-side encounter

histories for the complete identity individuals introduced individual heterogeneity in capture

probability and thus negative bias and reduced coverage into the single-side analyses. For

the best-side estimator, the positive bias due to always selecting the data set with the most

individuals was roughly canceled out by the negative bias from individual heterogeneity in

the hybrid trapping array designs; however, it is not likely this will hold across all combi-

nations of parameter values. The best-side estimator was biased low in the double camera

trapping array designs, suggesting that performance depends on the ratio of complete to

partial identity individuals, which determines the magnitude of individual heterogeneity in

capture probability. The SPIM had minimal bias and nominal coverage in the hybrid and

double trapping array designs and we expect this to hold across a wide range of parameter

values and trapping array designs. Precision of the SPIM was slightly less than the best-side

estimator in some of the double camera trapping array designs; however, coverage of the

best-side estimator in most of these scenarios was slightly less than nominal. In the hybrid

designs with fewer complete identity individuals, the SPIM moderately increased precision

and reduced MSE. The performance gain of the SPIM is further increased when considering

other options available to the researcher. If both data sets were analyzed rather than just

the best or random-side, the researcher could choose either the most precise estimate, a pro-

tocol that will guarantee less than nominal coverage, or the most conservative estimate in

which case the precision gains of using the SPIM will be increased. The naive independence

estimator was biased high in all scenarios except when pS0 > pB0 on hybrid trapping arrays,

exhibited slightly to moderately low coverage, and was not more precise than the SPIM

except in a few scenarios with the most captured individuals. If the goal is to maintain good
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frequentist properties, researchers should choose the analysis method before examining their

data and we argue that the SPIM is the best all-around choice to achieve these ends.

In general, the SPIM offers better performance gains in smaller populations, when there

are fewer complete identity individuals, and when the percentage of individuals that have

partial identities is higher. The performance gains in the hybrid designs was better than the

all double designs because they produced fewer complete identities and a higher percentage

of partial identities. In fact, the precision of the hybrid designs was not substantially lower

than the all double designs, despite using only 1
4

the number of double camera stations. This

result suggest that hybrid designs could potentially be the best use of a fixed number of

cameras – designs that to our knowledge are not currently being used. Another determinant

of the ratio of partial to complete identity individuals is the ratio of pS0 to pB0 . For example,

the trapping array in the ocelot example also targeted jaguars which when photographed, are

significantly more likely than ocelots to produce a complete identity because of their larger

size, slower traveling speed, and less nocturnal activity patterns (M. Kelly unpublished data),

perhaps reducing potential performance gains by using the SPIM.

The SPIM likely performs better on more regular, closely-spaced (relative to sigma)

trapping arrays as investigated in the simulations. Partial identity samples on the interior of

a regular, closely-spaced trapping array are more likely to be correctly matched than those

on the edge of the trapping array or on a trapping array that is spaced more widely because

it is less likely that an animal will only have a single side captured when it is surrounded

by traps than if it is not. This can be seen in the ocelot example where the probability

the right and left sample number 10 are the same individual is very high. In the model not

including sex, each sample is never assigned to an augmented individual (an animal with

the other side not captured) and when sex information is included, all other nearby partial

identity samples are ruled out and the probability the samples match is estimated to be

0.99. This high certainty relies on the samples being on the interior of the trapping array

in an area where the trapping array is roughly regular, because if these two samples do

not match, there must be two augmented individuals living on the interior of the trapping

array for each to match with and this is improbable. Conversely, left ID 11 is assigned to

right ID 12 with probability 0.28 without sex information and 0.59 with sex information.

This reduced certainty is mostly due to the partial identity samples being collected on the
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periphery of the array where augmented individual activity centers are much more likely to

exist to be matched with. By the same argument, the SPIM should perform better on larger

arrays where the ratio of interior to exterior array area is larger, given the same number of

individuals are on the array. In our simulations, the best precision and MSE gains between

the 6 x 6 and 8 x 8 arrays depended on the scenario, but we fixed D and so N varied by

array size. Confirming this result requires further simulation.

As seen in the ocelot example, if an individual covariate aside from spatial location is

available, the probabilities of correctly assigning the left ID to the correct right ID and vice

versa can be considerably increased. We suspect this should in general increase precision for

abundance and density by reducing the pool of potential matches for each partial identity

sample. Indeed, in the ocelot example, when we added the male- and female-only posteriors

for N, we slightly increased precision despite having modeled 3 additional parameters over

the combined model and excluded the individual whose sex was not known. Reducing the

set of potential matches should reduce the plausible ranges of p0, σ, and number of captured

individuals, increasing precision of abundance and density. We suspect the relative value of

spatial location and other covariates depends on the degree they deterministically or proba-

bilistically rule out potential matches. In general, knowing sex will rule out approximately

half of the potential matches, while knowing spatial location on a large trapping array relative

to σ should rule out a much higher percentage of matches. In the ocelot example, we took an

ad hoc approach to using the sex information, but sex or other categorical covariates could

formally be modelled either by ruling out inconsistent matches only between partial identity

individuals, or by also modelling the category proportions (e.g. sex ratio) and updating the

latent category values of the augmented individuals on each MCMC iteration.

While the PIM estimator reliably decreased MSE, removed small sample bias, and in-

creased precision in some scenarios, it reduced precision in the more data sparse scenarios

we considered and offered only small precision gains in the presence of individual hetero-

geneity in capture probability (Appendix C). In general, we think individual heterogeneity

in capture probability is difficult for the PIM to accommodate. Because the observation

process is defined conditional upon encounter, the likelihood that two partial identity en-

counter histories are the same depends on how consistent their combined number of captures

across capture types are with the current estimates of p and N . If all individuals can have
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their own p, the number of times the composite individual was captured becomes much less

informative about identity. Because the capture processes in the SPIM are independent, the

likelihood component for partial identity, single-sided encounter histories does not depend

on the combined number of capture events. Rather, the likelihood that two partial identity

encounter histories are the same depends on how consistent the combined spatial distribution

of captures are with p0 and σ. Therefore, there should be less information about individual

identity when there is individual heterogeneity in σ, and perhaps to a lesser extent, p0. The

sensitivity of the SPIM to individual heterogeneity in p0 and σ should be investigated.

One concern of using the SPIM over traditional SCR or the PIM is computational effi-

ciency. We feel the computation demands of the SPIM are reasonable, at least for the low

density scenarios where precision gains are the most needed. An R package to fit the SPIM is

available at github.com/benaug/SCRRcpp and in the supplementary material which includes

code to fit the models in either R or Rcpp and RcppArmadillo (Eddelbuettel & François,

2011; Eddelbuettel & Sanderson, 2014), which is considerably faster. If a trap operation

file is used and the 3-D data array must be used, the R analysis is much slower, but only

slightly slower in Rcpp. In simulations with random trap failure (data not shown), ignoring

trap failure reduced the estimates of λS0 and λB0 , but not N , suggesting the use of the 3-D

data array is not necessary, at least when trap failure is at random, but this warrants further

investigation. To provide some benchmarks, we replicated scenario S9.6 on a laptop with a

2.7 GHz intel I7 processor, raising N to 100 with M=150. To run 35K MCMC iterations,

it took 106.7 minutes in R and 10.3 minutes in Rcpp (∼10x faster) with no trap file and

the 2-D data matrix. Using the 2-D trap file and 3-D data array, it took 575.9 minutes

in R and 12.6 minutes in Rcpp (∼45x faster). Computation time can further be reduced

using the semi-complete likelihood approach of King et al. (2015) which is currently being

developed for the multimark package (McClintock pers. comm.) The longer reported run

times for the bobcat and ocelot data sets are due to the use of polygon, rather than rect-

angular state spaces, and reflect the computational demand of ensuring that activity center

proposals falling outside of the continuous, many-sided state space are not accepted.

As previously recognized by Wright et al. (2009), another application where the spatial

location of partial or potentially corrupted identity samples would be useful is in capture

recapture studies using microsatellite markers. Wright et al. (2009) developed a non-spatial
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model that accommodated both partial genotypes and allelic dropout. In genetic capture-

recapture studies, the spatial location where samples were collected is almost always recorded

and could be used to resolve partial and potentially corrupted identities. The potential for

improved inference is perhaps greatest for studies using genotypes from sources with low

complete amplification rates due to small amounts of DNA or higher levels of degradation

such as scat samples in tropical environments (e.g. Wultsch et al., 2014). Unlike the camera

trap observation model, the partial identity genetic samples have traditionally been com-

pletely discarded, suggesting that performance gains could be larger than seen here. The

SPIM could also be extended to combine any capture-recapture data types where identity

cannot be resolved between methods. For example, Sollmann et al. (2013) combined capture-

recapture data from camera traps and scat samples by sharing σ between data sets. Using

the SPIM, the latent structure (e.g. activity centers and z) could also be probabilistically

shared. In these cases, we expect improvements in precision over the separate analyses simi-

lar to the all single camera trap designs, because they are both two sampling methods where

identity cannot be deterministically resolved between data sets for any individuals.

SUPPLEMENTARY MATERIAL

R-package for SPIM: R-package SCRRcpp containing code to fit the SPIM in R and

Rcpp. The package also contains all datasets used as examples in the article.

6.1 Appendix A

First, we will specify our prior distributions.

1. π(λm0 ) ∼ Uniform(0,∞), m ∈ B, S

2. π(σ) ∼ Uniform(0,∞).

3. π(ψ) ∼ Uniform(0, 1)

4. π(si1) ∼ Uniform(xmin, xmax), π(si2) ∼ Uniform(ymin, ymax)

5. π(IDL
i ) ∼ Uniform(nComplete + 1,M) ∀i > nComplete
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6. π(IDR
i ) ∼ Uniform(nComplete + 1,M) ∀i > nComplete

As previously described, conditional on IDL and IDR, we can construct a possibly true

encounter history yij so our MCMC algorithm will follow the standard algorithm as described

by Royle et al. (2013) with the additional step of updating IDL and IDR and constructing

a new possibly true encounter history yij on each MCMC iteration.

1. Update λB0 and λS0 . Both λB0 and λS0 are updated with a Metropolis-Hastings step

using the distribution Normal(λcurr0 , σλ) to propose λcand0 , automatically rejecting if a

negative value is proposed. The full conditional distributions for both λ0 parameters

are just the likelihood.

2. Update σ. σ is updated with a Metropolis-Hastings step using the distribution

Normal(σcurr, σσ), to propose σcand, automatically rejecting if a negative value is pro-

posed.The full conditional distribution for both σ is again the likelihood.

3. Update IDL and IDR. On each MCMC iteration, we update both IDL and IDR by

swapping nswap values of IDB stored in IDL and IDR. We first update IDL. We

need to identify the correctly ordered indices IDB at which to swap the values of

IDL, mapping IDL to IDB. We then identify the candidate set of IDB individuals

that do not correspond to complete identities, Completei = 0, and who are currently

in the population, zi = 1. From this candidate set, we remove the individuals that

would lead to swapping a zi = 0 individual into the population through the value

stored in IDL
i . Next, we choose a focal candidate v to swap the value of IDL

v with equal

probability across the candidate set. Because proposals that combine candidates whose

activity centers are far apart will almost always be rejected, we apply a distance-based

criterion to rule out improbable combinations, thus raising acceptance rates. To do

this, we calculate the Euclidean distance between the current activity center of the

focal candidate v and the activity centers of all other individuals in the candidate

set. We then identify the set of possible candidate individuals to exchange values

of IDL
i with the focal candidate by identifying which candidate individual activity

centers are within a distance threshold, dmax, of the focal individual’s activity center.

From this reduced candidate set of size nforward, we randomly select individual w with
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equal probability
(

1
nforward

)
across the remaining candidates and the focal and selected

candidate exchange values of IDL
i . Because this proposal process is not symmetric, we

repeat it in reverse to obtain nreverse, with the probability of choosing this candidate

being 1
nreverse

. We recompute the proposed true encounter history y
(L)prop
ij for i ∈ v, w

and accept the proposal with probability

min

(
1,
f(y

(L)prop
ij )

f(y
(L)curr
ij )

nreverse
nforward

)
. (3)

This process is then repeated to update IDR.

4. Update z. Each zi is updated by a Gibbs step. The full conditional of zi is

[zi|yi, σ, λB0 , λS0 , si] ∝ [yi|, zi, σ, λB0 , λS0 , si][zi|ψ] = Bern
(

p∗iψ

p∗i+(1−ψ)

)
, where p∗i =

∑J
j (1− pij)K

and pij is determined using the detection function, σ, λB0 , λ
S
0 , si,X and the number of

cameras at each station.

5. Update ψ. ψ is updated with a Gibbs step. Since π(ψ) ∼ Uniform(0, 1) is in the Beta

family, the full conditional distribution for ψ is [ψ|z] ∝ Beta(1 +
∑

i zi, 1 +M −
∑

i zi).

6. Update s. Each si is updated with a Metropolis-Hastings step using the distributions

Normal(scurri1 , σs) and Normal(scurri2 , σs) to propose scandi1 and scandi2 , respectively. The

full conditional distribution is the likelihood.

6.2 Appendix B
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Table B1: Simulation results from the 6 x 6 trapping array with pS0 =0.13 and pB0 =0.2 (S1.6-

S9.6), 8 x 8 trapping array with pS0 =0.13 and pB0 =0.2 (S1.8-S9.8), 6 x 6 trapping array with

pS0 =0.2 and pB0 =0.13 (S1.6b-S9.6b), and 8 x 8 trapping array with pS0 =0.2 and pB0 =0.13

(S1.8b-S9.8b). Models fit include the spatial partial identity model (SPIM), best-side es-

timator (best S), random-side estimator (rand S), both-plus-best-side estimator (B+best),

both-plus-random-side estimator (B+rand), and naive independence estimator (naive). Ar-

ray S, D, and H are all single stations, all double stations, and a hybrid of the two. C and

P are the mean number of captured complete and partial identity individuals, respectively.

Cov and Wid are coverage and mean width of the 95% credible interval. %MSE and %Wid

are the reduction in MSE and credible interval width of the SPIM from the best-side or both-

plus-best-side analysis. %Discard are the percent of realizations with no spatial recaptures

that were discarded.

Scenario Array Model D N N̂ %Bias MSE %MSE Cov Wid %Wid C P %Discard

S1.6 S SPIM 0.2 20 20.9 4.3 54 -40.8 0.955 37.1 -36.2 0 6.4 1

S best S 0.2 20 22.9 14.4 91.3 0.979 65.3 14

S rand S 0.2 20 20.1 0.6 84.3 0.956 63.2 18

S naive 0.2 20 22.6 12.8 77 0.935 43.3 32

S2.6 S SPIM 0.4 40 41.7 4.3 138.9 -38.9 0.958 46.6 -32.1 0 12.8 0

S best S 0.4 40 45 12.6 227.2 0.958 74.2 2

S rand S 0.4 40 41.1 2.8 221.1 0.957 71.8 4

S naive 0.4 40 43.2 7.9 146.4 0.933 48.7 7

S3.6 S SPIM 0.6 60 60.7 1.2 160 -59.6 0.956 50.8 -35.1 0 19.2 0

S best S 0.6 60 66.9 11.4 395.8 0.966 85.6 0

S rand S 0.6 60 62.2 3.7 385.6 0.964 83.5 0

S naive 0.6 60 63.2 5.3 215.6 0.932 55.8 0

S4.6 D SPIM 0.2 20 19.5 -2.6 16.1 -0.1 0.945 15 2 8.1 2.6 0

D B+best S 0.2 20 18.9 -5.4 16.1 0.932 14.7 0

D B+rand S 0.2 20 18 -10.1 19.9 0.911 14.3 0

D naive 0.2 20 21.5 7.3 24.9 0.854 15.6 0
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Scenario Array Model D N N̂ %Bias MSE %MSE Cov Wid %Wid C P %Discard

S5.6 D SPIM 0.4 40 39.6 -1 33.9 -3.8 0.945 21.2 3.3 16.4 5.4 0

D B+best S 0.4 40 38 -5 35.3 0.932 20.5 0

D B+rand S 0.4 40 36.7 -8.1 42.8 0.901 20.1 0

D naive 0.4 40 41.6 4.1 48.5 0.857 20.5 0

S6.6 D SPIM 0.6 60 60 0 50.2 -15 0.943 26.1 4.3 25.3 7.7 0

D B+best S 0.6 60 57.2 -4.7 59.1 0.917 25 0

D B+rand S 0.6 60 55.8 -7 70 0.862 24.6 0

D naive 0.6 60 62.3 3.9 72.8 0.833 24.2 0

S7.6 H SPIM 0.2 20 19.7 -1.3 23.8 -3.7 0.971 19.9 -9.6 4 4.9 0

H B+best S 0.2 20 19.8 -0.8 24.8 0.982 23 1

H B+rand S 0.2 20 18.4 -7.8 30.3 0.952 22 2

H naive 0.2 20 24 20.2 80.7 0.922 31.3 3

S8.6 H SPIM 0.4 40 40.2 0.4 50.9 -2 0.943 28 -3.4 7.9 10 0

H B+best S 0.4 40 39.1 -2.2 52 0.961 29.6 0

H B+rand S 0.4 40 37 -7.4 67.9 0.911 28.4 0

H naive 0.4 40 43.9 9.6 115.4 0.914 36.4 0

S9.6 H SPIM 0.6 60 61.1 1.8 77.4 -1.8 0.927 31.5 -7.1 11.9 15.2 0

H B+best S 0.6 60 58.8 -2 78.7 0.953 34.5 0

H B+rand S 0.6 60 55.9 -6.9 103.6 0.896 33.4 0

H naive 0.6 60 62.8 4.7 102.3 0.927 36.4 0

S1.8 S SPIM 0.1 15 14.6 -2.5 35.6 -47.7 0.95 27.1 -42 0 5.4 1

S best S 0.1 15 16.9 12.7 68 0.978 54.8 17

S rand S 0.1 15 15 -0.1 78.3 0.929 52.3 20

S naive 0.1 15 16.9 12.8 59.4 0.918 35.6 36

S2.8 S SPIM 0.2 29 30 3.3 52.5 -72.7 0.973 33.6 -35.8 0 10.9 0

S best S 0.2 29 33.6 16 192.6 0.975 58.6 3

S rand S 0.2 29 30.3 4.4 149.5 0.96 58.5 5

S naive 0.2 29 31.7 9.3 107.8 0.944 40.9 9
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Scenario Array Model D N N̂ %Bias MSE %MSE Cov Wid %Wid C P %Discard

S3.8 S SPIM 0.4 58 59.4 2.4 143.5 -53.4 0.949 46.6 -34.8 0 20.5 0

S best S 0.4 58 64.8 11.7 307.6 0.954 77.7 0

S rand S 0.4 58 59.3 2.2 272.2 0.943 74.2 0

S naive 0.4 58 61.6 6.2 205.1 0.919 50.7 0

S4.8 D SPIM 0.1 15 14.6 -2.7 9.9 1.3 0.954 10.9 0.1 7 2.2 0

D B+best S 0.1 15 14.3 -4.4 9.8 0.949 10.9 0

D B+rand S 0.1 15 13.6 -9.4 11.9 0.911 10.6 0

D naive 0.1 15 16.3 8.7 18.1 0.847 14 0

S5.8 D SPIM 0.2 29 28.6 -1.4 16.2 -3.1 0.957 15.2 2.3 13.9 4 0

D B+best S 0.2 29 27.8 -4.1 16.7 0.954 14.9 0

D B+rand S 0.2 29 27 -6.9 20.4 0.935 14.7 0

D naive 0.2 29 30.3 4.4 24.8 0.863 15.7 0

S6.8 D SPIM 0.4 58 58 0.1 30.3 -6.8 0.954 21.8 3.9 27.9 8 0

D B+best S 0.4 58 55.8 -3.7 32.5 0.949 21.1 0

D B+rand S 0.4 58 54.4 -6.2 46.3 0.884 20.8 0

D naive 0.4 58 59.7 2.8 52.8 0.858 20.6 0

S7.8 H SPIM 0.1 15 14.5 -3.2 12.8 -30.2 0.968 14.4 -13.1 3.3 4.2 0

H B+best S 0.1 15 14.9 -1 18.3 0.962 17.8 1

H B+rand S 0.1 15 13.5 -10.3 20.1 0.929 16.9 1

H naive 0.1 15 17.7 18 61.1 0.936 29.9 3

S8.8 H SPIM 0.2 29 28.9 -0.3 24.7 -2.7 0.96 19.7 -6.7 6.5 8.3 0

H B+best S 0.2 29 28.3 -2.5 25.4 0.97 21.5 0

H B+rand S 0.2 29 26.5 -8.6 34 0.93 20.5 0

H naive 0.2 29 32.4 11.7 84.4 0.938 32.6 0

S9.8 H SPIM 0.4 58 58 -0.1 49.2 -9.8 0.96 27.9 -0.3 13.3 16.3 0

H B+best S 0.4 58 55.2 -4.8 54.5 0.954 28.1 0

H B+rand S 0.4 58 52.5 -9.5 79.6 0.89 27.2 0

H naive 0.4 58 61.5 6 135.7 0.938 40.4 0
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Scenario Array Model D N N̂ %Bias MSE %MSE Cov Wid %Wid C P %Discard

S1.6b S SPIM 0.2 20 20.4 2.1 27 -53 0.971 22.7 -34.2 0 8.4 0

S best S 0.2 20 22.8 14.1 57.4 0.987 40.1 3

S rand S 0.2 20 20.6 2.9 61 0.965 40.4 3

S naive 0.2 20 21.6 7.9 34.3 0.95 24.2 6

S2.6b S SPIM 0.4 40 40 -0.1 56.2 -49 0.958 29.5 -28.8 0 16.5 0

S best S 0.4 40 43.4 8.4 110.2 0.966 44.1 0

S rand S 0.4 40 39.7 -0.8 92 0.966 41.9 0

S naive 0.4 40 41.1 2.9 66.1 0.932 28.4 0

S3.6b S SPIM 0.6 60 60.6 1 78.9 -42.3 0.951 35.7 -25.6 0 24.9 0

S best S 0.6 60 63.8 6.4 136.8 0.961 49.9 0

S rand S 0.6 60 60.8 1.4 128.1 0.961 49.1 0

S naive 0.6 60 61.7 2.8 94.3 0.898 33.2 0

S4.6b D SPIM 0.2 20 19.6 -1.9 13.5 -8.4 0.982 14.1 -0.3 6.5 4.8 0

D B+best S 0.2 20 19.2 -4.1 14.8 0.953 14.2 0

D B+rand S 0.2 20 18.3 -8.3 18 0.93 13.8 0

D naive 0.2 20 21.1 5.7 24.1 0.875 15.6 0

S5.6b D SPIM 0.4 40 39.6 -1.1 31.4 -7.8 0.956 20 1.7 12.7 9.7 0

D B+best S 0.4 40 38.1 -4.7 34.1 0.935 19.8 0

D B+rand S 0.4 40 36.8 -8 41.7 0.885 19.4 0

D naive 0.4 40 41.1 2.7 49.3 0.839 20.6 0

S6.6b D SPIM 0.6 60 59.3 -1.1 42.9 -15.7 0.943 24.6 2.4 19.2 14.5 0

D B+best S 0.6 60 57 -5.1 50.9 0.919 24.1 0

D B+rand S 0.6 60 55.2 -8 65.7 0.878 23.7 0

D naive 0.6 60 60.9 1.5 72.2 0.849 24.9 0

S7.6b H SPIM 0.2 20 19.5 -2.3 19.6 -24.3 0.948 16.5 -14.6 2.7 7.1 0

H B+best S 0.2 20 20.4 2.2 25.9 0.942 20.3 1

H B+rand S 0.2 20 19 -5.2 28.9 0.937 19.3 0

H naive 0.2 20 19.3 -3.5 33.9 0.945 25.8 1
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Scenario Array Model D N N̂ %Bias MSE %MSE Cov Wid %Wid C P %Discard

S8.6b H SPIM 0.4 40 39.8 -0.4 35.6 -10.6 0.958 23.5 -10 5.2 14.7 0

H B+best S 0.4 40 40.3 0.7 39.8 0.966 26.5 0

H B+rand S 0.4 40 38.5 -3.8 45.7 0.943 25.8 0

H naive 0.4 40 38.8 -3.1 75.3 0.948 32.7 0

S9.6b H SPIM 0.6 60 60.3 0.4 55.2 -11.4 0.924 28 -9.1 8.3 21.9 0

H B+best S 0.6 60 60.3 0.5 62.3 0.948 31.1 0

H B+rand S 0.6 60 57.3 -4.5 72.7 0.932 30.1 0

H naive 0.6 60 57.8 -3.6 90.3 0.945 33.4 0

S1.8b S SPIM 0.1 15 14 -6.9 15.8 -47.7 0.953 15.5 -38.8 0 6.7 0

S best S 0.1 15 16 6.5 30.1 0.981 31.5 2

S rand S 0.1 15 14.7 -1.9 61.3 0.951 30.7 4

S naive 0.1 15 15.1 0.9 19.9 0.938 18.1 8

S2.8b S SPIM 0.2 29 29.1 0.4 27.4 -45.1 0.942 20.8 -29.5 0 14 0

S best S 0.2 29 31.3 8 49.9 0.963 31.9 0

S rand S 0.2 29 29.6 2 54.8 0.944 32.4 0

S naive 0.2 29 30.1 3.6 35.4 0.923 21.2 0

S3.8b S SPIM 0.4 58 59.8 3.2 71 -46.5 0.947 32.8 -25.9 0 26.5 0

S best S 0.4 58 63 8.6 132.6 0.947 45.8 0

S rand S 0.4 58 59.8 3.1 109.5 0.958 45.4 0

S naive 0.4 58 60.8 4.8 83.3 0.892 30.5 0

S4.8b D SPIM 0.1 15 15 0 7.5 -2.1 0.976 10.4 -0.3 5.8 3.9 0

D B+best S 0.1 15 14.8 -1.2 7.7 0.974 10.5 0

D B+rand S 0.1 15 14.2 -5.4 8.9 0.952 10.3 0

D naive 0.1 15 16.7 11.5 18.8 0.878 16.6 0

S5.8b D SPIM 0.2 29 28.7 -1.1 14.8 -6.2 0.947 14.5 1.5 11 7.4 0

D B+best S 0.2 29 28 -3.6 15.8 0.934 14.3 0

D B+rand S 0.2 29 27 -7 20.6 0.913 14.1 0

D naive 0.2 29 30.2 4.1 28.4 0.876 18.4 0
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Scenario Array Model D N N̂ %Bias MSE %MSE Cov Wid %Wid C P %Discard

S6.8b D SPIM 0.4 58 57.7 -0.5 28.6 -12.1 0.955 20.7 2.2 21.8 15.1 0

D B+best S 0.4 58 55.9 -3.5 32.5 0.944 20.3 0

D B+rand S 0.4 58 54.6 -5.9 40.9 0.897 19.9 0

D naive 0.4 58 59.2 2 53.9 0.847 23.1 0

S7.8b H SPIM 0.1 15 14.6 -2.8 9.2 -12.1 0.963 11.8 -16.5 2.4 5.9 0

H B+best S 0.1 15 15.1 0.8 10.5 0.984 15.1 0

H B+rand S 0.1 15 14 -6.8 13 0.965 14.3 1

H naive 0.1 15 14.8 -1.2 18.8 0.934 25.9 1

S8.8b H SPIM 0.2 29 28.7 -1 21.2 -7.9 0.944 16.5 -12.9 4.5 11.9 0

H B+best S 0.2 29 29.3 0.9 23 0.952 19.3 0

H B+rand S 0.2 29 27.5 -5.2 30.3 0.913 18.3 0

H naive 0.2 29 28.1 -3.1 46.6 0.939 29.7 0

S9.8b H SPIM 0.4 58 57.9 -0.2 36.6 -16.4 0.955 23.8 -6.9 9.3 23.5 0

H B+best S 0.4 58 57.6 -0.7 43.8 0.963 25.7 0

H B+rand S 0.4 58 55.3 -4.7 52.7 0.937 25.1 0

H naive 0.4 58 57.6 -0.7 103.3 0.944 39.5 0
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6.3 Appendix C

Here, we will compare the spatial partial identity model (SPIM) to the non-spatial partial

identity of McClintock (2015, PIM). Comparisons between spatial and classical capture-

recapture models are not straightforward because spatial capture-recapture models inher-

ently model individual heterogeneity in capture probability that arises due to the spatial

structure of the population, the distribution of traps, and the assumed form of the detec-

tion function, while classical models use one of a number of general distributions to model

individual heterogeneity in capture probability such as the finite-mixture or logit-normal.

Therefore, if we want to make a comparison between methods on the same data sets, which

must have spatial structure and individual heterogeneity in order to fit a spatial model, the

heterogeneity distribution for the classical model will necessarily be misspecified, perhaps

confounding the difference of interest - the model for resolving partial identity. A second

complication is that if we want to compare density estimates, the classical method must

determine the area in which the population lives to convert N to D. Assuming this is known

perfectly is usually unrealistic, so estimating this area would need to be part of the com-

parison. Comparing N estimates instead of D estimates is more straightforward, but the

properties of the SPIM N estimates will depend on the D, the arrangement of the trapping

array, and σ.

To bypass some of these complications, we present a comparison between how well the

SPIM improves inference in a spatially structured population and how well the non-spatial

partial identity model improves inference in a population with either no individual hetero-

geneity or moderate individual heterogeneity of the logit-normal form (σ=0.2). Because the

precision gains seen in the SPIM results were mostly in the single camera trap station sce-

narios, we will limit our investigation to those. To obtain comparable capture probabilities,

we calculated the mean capture probability from the 384 simulated SPIM data sets in the

single side scenarios, which ranged from 0.096 to 0.101 in scenarios S1.6 - S3.6, 0.142 to

0.147 in scenarios S1.6b - S3.6b, 0.085 to 0.109 in scenarios S1.8 - S3.8, and 0.162 to 0.173

in scenarios S1.8b - S3.8b. We used the R package multimark to simulate and fit models to

data sets with p ∈(0.10,0.15,0.20,0.25), N ∈(20,40,60,80,100), 5 capture occasions, and the

probability of obtaining left and right photos conditional upon capture both being 0.5. Be-
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cause individual heterogeneity is generally difficult to model in sparse data sets, we increased

the capture probability to p ∈(0.20,0.25,0.30,0.35) when including individual heterogeneity.

For each scenario, we simulated 400 data sets and fit both M0 and the PIM model (Mm). As

in the SPIM simulations, we recorded the mean width of the 95% HPD interval, the mean

difference in the 95% HPD interval between the two models, the mean MSE, and the mean

difference in MSE between the two models.

Multimark simulation results can be found in Tables C1 and C2 and the corresponding

SPIM results are in Table B1 in Appendix B. The scenarios with p=0.1 are comparable to

SPIM scenarios S1.6-S3.6 and S1.8-S3.8. For the simulations with no individual heterogeneity

(Table C1), at capture probabilities this low, neither M0, nor Mm could estimate N without

negative bias for populations of size 100 or less with 5 capture occasions, but Mm did reduce

the negative bias. Further, Mm brought the reduced coverage of M0 back up to nominal.

While Mm reduced the MSE at all population sizes, it reduced precision except when N=100.

The precision and gain in precision was greater for the SPIM and the MSE was lower and the

reduction in MSE was greater for the SPIM. Scenarios with p=0.15 are comparable to SPIM

scenarios S1.6b-S3.6b and S1.8b-S3.8b. At this capture probability, M0 is still negatively

biased and coverage is low at lower N , but Mm nearly removes the bias and brings coverage

back up to nominal. Again, Mm reduced the MSE in all scenarios, but did not increase

precision until N=60. The SPIM again produced the highest precision, lowest MSE, largest

gain in precision, and the largest reduction in MSE. The PIM does not increase precision at

all population sizes until p=0.20. Even when p=0.25, Mm does not produce estimates that

are as precise and accurate as the S1.6b-S3.6b SPIM scenarios where the average p is 0.09.

In scenarios with individual heterogeneity in capture probability (Table C2), Mmh decreases

the MSE, but the results on precision are mixed. The mean 95% credible interval tends to

be slightly more narrow in most cases, but the mean difference in credible interval width

between Mmh and Mm across data sets suggests Mmh does not on average increase precision

in these scenarios. These conflicting results are likely due to differences in the skew of the

sampling distributions between models.

The main results are that in these scenarios, Mm reliably removes small sample bias,

decreases the MSE and improves precision in some scenarios, but does not increase precision

in the scenarios where the data are the most sparse (small N , low p) and the SPIM is more
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precise. The introduction of individual heterogeneity in capture probability reduces the

ability of the PIM to increase precision, at least in the scenarios considered. These sparse

data scenarios are generally the scenarios where the need for a gain in precision is the greatest

and these are the scenarios where the SPIM offers the largest gains in precision. Further, the

SPIM increases precision in the presence of the spatially-induced component of individual

heterogeneity. We admit that this is just one of several possible ways that the SPIM could be

compared to the PIM. The comparison would be less favorable for the SPIM if the simulated

populations had a larger sigma, given the same overall capture probability, a higher density

for a given N , or individual heterogeneity in the detection function parameters. Conversely,

the performance of Mm would most likely be worse if we compared the estimation of density

between the SPIM and PIM using an ad-hoc method to determine the area sampled with

its own level of uncertainty or if the individual heterogeneity distribution was misspecified

(e.g. spatially-induced).
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Table C1: Multimark simulation results with no individual heterogeneity in capture prob-

ability – population size estimates, mean 95% credible interval width, mean 95% credible

interval reduction between M0 and Mm (%Wid), 95% Credible Interval coverage, mean MSE,

and mean MSE reduction between M0 and Mm (%MSE)

N p
N̂ Width

%Wid
Cover MSE

%MSE
Mm M0 Mm M0 Mm M0 Mm M0

20 0.10 13 10 49 39 42 0.915 0.816 144.20 194.17 -26

40 0.10 32 25 97 86 26 0.912 0.878 357.15 560.36 -36

60 0.10 52 43 139 135 15 0.938 0.912 601.36 980.07 -39

80 0.10 69 59 156 166 5 0.940 0.910 993.59 1, 576.39 -37

100 0.10 93 82 194 226 -2 0.950 0.922 1, 143.56 1, 944.64 -41

20 0.15 17 14 50 46 24 0.942 0.894 77.26 128.43 -40

40 0.15 38 34 83 95 0 0.945 0.935 183.36 309.28 -41

60 0.15 58 52 97 120 -8 0.930 0.940 352.05 518.07 -32

80 0.15 78 75 109 152 -17 0.938 0.945 510.53 697.30 -27

100 0.15 98 94 118 164 -17 0.958 0.962 577.95 963.00 -40

20 0.20 19 17 43 52 -2 0.930 0.925 52.86 80.14 -34

40 0.20 39 37 57 77 -15 0.952 0.955 120.25 202.69 -41

60 0.20 62 60 75 108 -19 0.958 0.950 204.81 311.16 -34

80 0.20 79 78 74 108 -21 0.968 0.950 254.99 485.68 -47

100 0.20 100 100 83 124 -24 0.962 0.945 340.31 634.56 -46

20 0.25 20 19 31 43 -11 0.945 0.935 30.27 55.11 -45

40 0.25 40 39 43 59 -18 0.968 0.958 61.84 123.69 -50

60 0.25 61 61 52 77 -24 0.940 0.932 149.71 234.27 -36

80 0.25 79 79 54 81 -25 0.940 0.925 169.80 361.42 -53

100 0.25 101 100 63 93 -25 0.935 0.905 241.09 468.31 -49
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Table C2: Multimark simulation results with individual heterogeneity in capture probability

– population size estimates, mean 95% credible interval width, mean 95% credible interval

reduction between Mh and Mmh (%Wid), 95% Credible Interval coverage, mean MSE, and

mean MSE reduction between Mh and Mmh (%MSE)

N p
N̂ Width

%Wid
Cover MSE

%MSE
Mmh Mh Mmh Mh Mmh Mh Mmh Mh

20 0.20 20 17 48 49 14 0.990 0.975 43.25 74.56 -42

40 0.20 43 40 80 91 1 0.982 0.995 102.62 170.15 -40

60 0.20 66 62 105 117 -1 0.988 0.995 188.46 265.64 -29

80 0.20 87 84 129 142 0 0.978 0.992 252.75 407.11 -38

100 0.20 108 105 151 163 1 0.972 0.982 349.20 576.93 -39

20 0.25 22 20 44 47 7 0.982 0.965 30.37 49.77 -39

40 0.25 45 43 72 82 2 0.965 0.962 81.22 135.42 -40

60 0.25 68 65 101 108 6 0.975 0.978 134.70 219.48 -39

80 0.25 89 86 118 126 3 0.985 0.980 166.14 298.24 -44

100 0.25 112 108 139 148 4 0.950 0.978 273.89 407.18 -33

20 0.30 23 21 40 44 4 0.970 0.975 22.09 35.34 -37

40 0.30 45 43 66 70 3 0.978 0.980 58.87 81.70 -28

60 0.30 68 66 89 96 2 0.965 0.972 97.88 150.70 -35

80 0.30 92 89 111 115 6 0.942 0.960 181.55 235.32 -23

100 0.30 114 111 126 132 7 0.918 0.960 294.75 404.12 -27

20 0.35 23 22 38 43 1 0.950 0.972 18.27 28.75 -36

40 0.35 46 44 63 65 7 0.945 0.968 48.72 79.62 -39

60 0.35 68 67 80 86 2 0.938 0.958 96.71 133.87 -28

80 0.35 93 88 103 101 12 0.912 0.958 172.80 176.72 -2

100 0.35 114 109 112 114 8 0.920 0.968 210.28 233.44 -10
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