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ABSTRACT

Raw copy number data is highly dimensional, noisy and can suffer from so-called
genomic wave artifacts. We introduce a novel method based on multi-scale edge
detection in derivative space. By using derivatives, the algorithm was very fast and
robust against genomic waves. Our method compared very well to existing state-of-
the-art segmentation methods and importantly outperformed these if noise and wave
artifacts were well present.

INTRODUCTION

Copy number aberrations (CNA) are a hallmark of cancer. With the coming of the current high
density micro arrays, CNAs can be efficiently measured at several million locations in the
genome. Segmentation of the copy number signal is a fundamental step before subsequent
statistical analysis. Because of the high number of probes and because the aCGH data is very
noisy, we need algorithms that are fast and robust.

A great number of segmentation algorithms have been proposed. A first class of methods
employ some kind of local smoothing of the raw signal using, for example, moving average,
wavelets (Ben-Yaakov and Eldar, 2008), or adaptive weights smoothing (Hupé 2004). With
these methods, the data is not explicitly segmented but usually one proceeds by detecting
contiguous altered segments by thresholding for loss and gain.

A special class of segmentation methods may be referred to as ‘piece-wise constant model’
(PCM) based methods that include CBS (Olshen et al., 2004) and mBPCR (Rancoita et al.,
2009). These methods model the underlying true copy number profile as a piece-wise constant
function. In theory, this is a reasonable assumption because the DNA breaks in segments and
between two genomic breakpoints we expect the copy number to be constant. In practice,
however, PCM-based segmentation is severely hampered by two problems: wave artifacts
and hypersegmentation. ‘Genomic waves’ have been reported in the raw signal of genotyping
arrays of both Affymetrix and Illumina (Nannya et al., 2005; Komura et al., 2006; Marioni et al.,
2007). These artifacts are exposed as local ‘wave’-like fluctuations of the base line of different
characteristic lengths from tens to hundreds of Mb. The cause of the genomic waves is not
clear but seem to be related with the local GC content. The strength of the waves depends

on the sample and may be related to the amount of starting material or differences in PCR
conditions (Nannya et al., 2005). These artifacts cause false positives and adversely limit the
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detection of (real) low contrast features, in particular for CNV detection. Furthermore, because
of their pseudo-random nature, the artifacts seem dangerously ‘convincing’ as real copy
number aberrations. A variety of methods for the correction of genomic wave artifacts have
been proposed. These methods include regression on length and GC content (Nannya et al.,
2005; Leprétre et al., 2010), estimation and subtraction of the wave using lowess (Marioni et al.,
2007), and normalization using reference samples (van der Wiel et al., 2009).

Finally, we define a last group of (copy number) segmentation methods that uses first
derivative statistics to detect edges that correspond to chromosomal breakpoints. In image
processing, edge detection has a long history and is one of the fundamental methods for image
segmentation. The Canny edge detector, developed in 1986 by John F. Canny, is known to
many as the optimal edge detector and is still one of the most competitive methods to date.
Although edge-based segmentation for copy number profiling has not received much attention,
we believe that edge-based segmentation for copy number data which can exhibit genomic
waves and/or hypersegmentation has the better assumptions and less problems than the
more established PCM based methods. To the best of our knowledge, FACADE is the only
genomic segmentation method that uses edge detection in derivative space (Coe et al., 2010).
Compared to FACADE, our method uses multiple scales for better sensitivity and uses robust
outlier statistics to determine edges, while the former detects edges at a single scale and fixes
the number of edges.

We refer to our method as FFSEG (first-derivative based fast segmentation). Our proposed
method is extremely fast and, more importantly, very robust against genomic waves artifacts
and hypersegmentation. Briefly, FFSEG uses first derivatives of the raw signal and detects
edges on multiple scales using robust outlier statistics. The use of the first derivative instead of
the actual signal directly eliminates the problem of genomic waves, while robust outlier detection
adapts to the noise of the individual sample and avoids hypersegmentation. The edge detection
on multiple scales ensures good sensitivity of short high-contrast CNVs and at the same time
broad low-contrast regions. The FFSEG code (in R) is available upon request.

METHODS

Our starting point is the noisy, hon-segmented, raw copy number signal that has been properly
normalized and log2-transformed but not necessarily corrected for genomic waves. For a basic
implementation, we defined a signed Gaussian edge-detection (SGED) kernel as:

F(x) = -sign(x) * exp(-(x/n)**2)

where x is the position index and n is a scale parameter. We preferred this choice of kernel
rather than the more commonly used derivative of a Gaussian (Coe et al., 2010) because it
showed better localization of the edge positions due to the sharp boundary at x=0. For each
chromosome, first derivatives were computed by convolving the raw signal with the SGED
kernel. Edges were detected as statistically significant outliers, p<0.05 after Bonferroni multiple
test correction. The detection of edges was repeated at multiple scales, n = (8, 16, 32, 64,

128, 256, 512, 1024, 2048). We found that this set of scales detected most edges in our test
cases. The set of edges were then combined and duplicate positions were removed. This final
set served as candidate positions of true chromosomal breakpoints. A subsequent pruning
step removed breakpoint candidates by testing the mean signal of its flanking regions (t-test,
p<0.05). Finally, we estimated the copy number level for each region by its mean value. This
basic implementation worked well, however for larger scales the algorithm tended to become
rather slow. To speed up, for each scale, we decided to firstly bin the raw signal onto a coarse
resolution, detected the approximate positions of edge candidates and refined the edges by re-
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estimating their positions with the SGED kernel using the full resolution of probes. This sped up
the algorithm considerably without loss of accuracy.

RESULTS

Simulated data. To illustrate the features of FFSEG we created simulated data and compared
its segmentation results to those using the state-of-the-art segmentation methods: CBS (Olshen
2004), mBPCR (Rancoita et al., 2010), Ultrasome (Nilsson et al., 2009), HaarSeg (Ben-Yaakov
and Eldar, 2008) and the forementioned FACADE algorithm. Our simplified test case consisted
of a small aberration embedded in a noisy wave pattern. We have chosen model parameters
reflecting realistic values: ‘wave amplitude’=0.25, ‘noise SD’=0.60, ‘wave length’=3333, ‘number
of probes’=10000, ‘aberration width’=250 probes, ‘aberration height'=0.60. Figure 1 shows

the results of the different segmentation methods. If not otherwise mentioned, we used

the default parameters for the different algorithms. We see that CBS correctly modeled the
aberration segment but also closely modeled the waviness of the baseline, and it will be
difficult to differentiate between the real aberration and the tops of the wave artifact that appear
as ‘gains’. FACADE identified the aberration but suffered too from the genomics wave artifact
and additionally showed spurious peaks. HaarSeg failed to localize the aberration. With more
sensitive parameters, however, HaarSeg identified the gain but showed spurious noise artifacts
elsewhere (results not shown). mBPCR correctly located the aberration but was still sensitive
to the genomic wave, however less sensitive than CBS. The segmentation result of Ultrasome
was extremely noisy and followed closely the genomic wave. Finally, the figure shows that

only FFSEG correctly identified the aberration while completely ignoring the wave artifact of
the baseline. Running times were 0.833 seconds for CBS, 1440 seconds for mBPCR, 0.315
seconds for UltraSome, 0.063 for HaarSeg and 0.015 seconds for FFSEG.

Real data. We have run FFSEG on real data. The example data (sample X5098) was taken
from the public data set of tumor copy number profiles (van de Wiel et al., 2009) and represents
a sample with considerable genomic wave artifact. A set of normal reference sample were
available. We compared FFSEG and CBS on the raw (non-corrected) data and the wave-
corrected data using NoWaves (van de Wiel et al., 2009). Note that for the wave-correction a
set of normal references (either paired or not paired) must be available which is not always the
case. In Figure 2, we can see that on non-corrected data CBS suffered considerable from wave
artifacts and hypersegmentation (Flgure 2a), while it is much improved on the wave-corrected
data. On the other hand, FFSEG showed stable segmentation on both the non-corrected data
and wave-corrected data.

Cytogenetic validation. We validated FFSEG on available cytogenetic data of 396 cases of
chronic lymphocytic leukemia (CLL) and compared its detection accuracy with that of CBS and
mBPCR. The cytogenetic data represented lesions of different sizes: trisomy of chromosome
12, deletion of the small arm of chromosome 17, a region of loss at 11q (targeting ATM), and
an interstitial loss at 13q around the MIR15A/MIR16-1 cluster. Raw data was acquired using
Affymetrix SNP 6.0 mapping array and normalized using the manufacturer provided Hapmap
reference. The array has more that 1.8 million copy number probes. Segmentation of a single
copy number profile, on an 8-core 2.0GHz Intel Linux workstation, took a few seconds with
FFSEG, about 1 minute with CBS, and several hours with mBPCR. Figure 3 summarizes the
results. FFSEG compares well with CBS and mBPCR for the larger lesions (trisomy 12, del17p,
del11q) but was slightly more conservative for smaller deletions (del13q).

CONCLUSION
We have introduced a novel fast and robust algorithm (FFSEG) for the segmentation of copy
number profiles that is based on multi-scale edge detection using derivatives. A drawback
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might be that for the derivative outlier detection FFSEG needs a good amount of probes to
determine the null distribution, so the method might not be suitable for low density arrays.

For relatively easy cases, FFSEG compared well with the current state-of-the-art piecewise-
constant model based algorithms, and was the fastest method. More importantly, for more
complex scenarios, FFSEG showed to be very robust against so-called genomic wave artifacts
and hypersegmentation.
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Figure 1. Comparison of several segmentation algorithms on an artificial example illustrating the effects
of genomic waves. CBS, FACADE and mBPCR locate the aberration around x=4000 but are sensitive

to the waves. Ultrasome (and to a lesser extent FACADE) suffers from spurious hypersegmentation,
while HaarSeg fails to locate the aberration. FFSEG locates the aberration correctly and is robust against
the genomic wave. The blue line indicates the “true” genomic profile showing a small copy number

gain region embedded in the genomic wave. The black dots are raw copy number data. The red lines
correspond to the segmentation results of the different algorithms. x-axis: genomic location. y-axis:
log2ratio.
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Figure 2. Comparison of FFSEG with CBS on real data with severe genomic wave artifacts. The data
(sample X4861) is taken from the public data set of tumor copy number profiles (van de Wiel 2009). Using
raw data FFSEG is robust against the genomic wave while CBS tends to hypersegmentation. Using
NoWaves corrected data, FFSEG and CBS perform similarly but the FFSEG profile is still considerably
cleaner. (a) CBS profile from raw data. Black dots denote raw data. Blue line denotes smooth data using
moving average. Red line denotes segmentation. (b) CBS profile from NoWaves corrected data. (c)
FFSEG profile from raw data. (d) FFSEG profile from NoWaves corrected data.
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Figure 3. Detection accuracy of genomic lesions of CBS, mBPCR and FFSEG on cytogenetic validated
data of 396 cases of chronic lymphocytic leukemia. For the larger lesions (trisomy12, del17p, del11q)
FFSEG compares well with CBS and mBPCR. For the smaller lesion (del13q), FFSEG seems slightly
more conservative than the other methods showing a lower false positivity (FP) and lower true positivity
(TP).
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