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Abstract 27 

Background: The southern United States (US) may be vulnerable to outbreaks of Zika Virus (ZIKV), 28 

given the broad distribution of ZIKV vector species and periodic ZIKV introductions by travelers 29 

returning from affected regions. If autochthonous (locally-acquired) cases appear within the US, 30 

policymakers will seek early and accurate indicators of self-sustaining transmission to inform intervention 31 

efforts. However, given ZIKV’s low reporting rates and the geographic variability in both importations 32 

and transmission potential, a small cluster of reported cases may reflect diverse scenarios, ranging from 33 

multiple self-limiting but independent introductions to a self-sustaining local epidemic. 34 

Methods and Findings:  We developed a stochastic model that captures variation and uncertainty in 35 

ZIKV case reporting, importations, and transmission, and applied it to assess county-level risk throughout 36 

the state of Texas. For each of the 254 counties, we estimated the future epidemic risk as a function of 37 

reported autochthonous cases and evaluated a national recommendation to trigger interventions 38 

immediately following the first two reported cases of locally-transmitted ZIKV. Our analysis suggests 39 

that the regions of greatest risk for sustained ZIKV transmission include 21 Texas counties along the 40 

Texas-Mexico border, in the Houston Metro Area, and throughout the I-35 Corridor from San Antonio to 41 

Waco. Variation in vector habitat suitability drives epidemic risk variation, and can be exacerbated by 42 

uncertainty in reporting rate. Upon detection of a second locally transmitted case, the threat of epidemic 43 

expansion will depend critically on local vulnerability. For high risk Texas counties, we estimate this 44 

likelihood to be 64%, assuming an August 2016 risk projection and a 20% reporting rate.  45 

Conclusions: With reliable estimates of key epidemiological parameters, including reporting rates and 46 

vector abundance, this framework can help optimize the timing and spatial allocation of public health 47 

resources to fight ZIKV in the US. 48 
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Introduction 53 

In February 2016, Zika virus (ZIKV) was declared a Public Health Emergency of International 54 

Concern [1]. As of 25 July of 2016, the World Health Organization (WHO) confirmed mosquito-55 

transmitted cases in 65 countries and territories, with over 500,000 suspected and confirmed cases in the 56 

Americas alone [2,3]. In the US, the potential range of one of the primary vectors for ZIKV, Aedes 57 

aegypti, is thought to include at least 30 states [4]. Texas ranks among the most vulnerable states for 58 

ZIKV transmission, given its suitable climate, international airports, and geographical proximity to 59 

affected countries [4–9]. Of the 1,306 imported ZIKV cases in the US, 73 have occurred in Texas. While 60 

these importations have yet to spark autochthonous (local) transmission, Texas has historically sustained 61 

several small, autochthonous outbreaks (ranging from 4 - 25 confirmed cases) of another arbovirus 62 

vectored by Ae. Aegypti—dengue (DENV) [10,11].  63 

         As peak mosquito season approaches in the US and more cases are introduced via international 64 

travelers from the Americas, public health decision makers will face considerable uncertainty in gauging 65 

the severity of the threat and in effectively initiating interventions, given the large fraction of undetected 66 

ZIKV cases (asymptomatic and symptomatic) as well as the shifting economic balance between 67 

intervention expenditure and disease burden [12–15]. Depending on the ZIKV symptomatic fraction, 68 

reliability and rapidity of diagnostics, importation rate, and transmission rate, the detection of five 69 

autochthonous cases in a single Texas county, for example, may indicate a small chain of cases from a 70 

single importation, a self-limiting outbreak, or even a large, hidden epidemic underway (Fig 1). These 71 

diverging possibilities have historical precedents. In French Polynesia, a handful of suspected ZIKV cases 72 

were reported by October 2013; two months later an estimated 14,000-29,000 individuals had been 73 

infected [12,13]. By contrast, Dominica had 18 confirmed cases in early 2016 without a subsequent 74 

epidemic [14]. To address the uncertainty, the CDC recently issued conservative guidelines for state and 75 

local agencies; they recommend initiation of public health responses following local reporting of two non-76 

familial autochthonous ZIKV cases [16]. 77 
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 79 

Fig 1.  ZIKV emergence scenarios. A ZIKV infection could spark (A) a self-limiting outbreak or (B) a growing epidemic. Cases 80 

are partitioned into symptomatic (grey) and asymptomatic (black). Arrows indicate new ZIKV importations by infected travelers 81 

and vertical dashed lines indicate case reporting events. On the 75th day, these divergent scenarios are almost indistinguishable to 82 

public health surveillance, as exactly three cases have been detected in both. By the 100th day, the outbreak (A) has died out with 83 

21 total infections while the epidemic (B) continues to grow with already 67 total infections. Each scenario is a single stochastic 84 

realization of the model with R0=1.1, reporting rate of 10%, and introduction rate of 0.1 case/day. 85 

  86 

         Here, we develop a model to support real-time ZIKV risk assessment that accounts for 87 

uncertainty regarding ZIKV epidemiology, including importation rates, reporting rates, and local vector 88 

population density. This framework can be readily updated as our understanding of ZIKV evolves to 89 

provide situational awareness and actionable guidance for public health officials. By simulating ZIKV 90 

transmission using a stochastic branching process model [17] based on recent ZIKV data, we estimated 91 

ZIKV epidemic risk for each of the 254 counties in Texas, both initially and as a function of the 92 

cumulative number of reported autochthonous ZIKV cases. Further, we estimate county-level epidemic 93 

risks corresponding to the recommended two-case trigger and demonstrate the design of county-specific 94 

triggers indicative of imminent epidemic expansion. Our results suggest that counties along the Texas-95 
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Mexico border, in the Houston Metro Area, and throughout the I-35 Corridor from San Antonio to Waco 96 

are at highest risk for sustained epidemics. 97 

  98 

Methods 99 

Risk-assessment methodological overview 100 

In our study, we first estimated county-level ZIKV importation rates and sustained transmission 101 

risk (R0) for Texas in August of 2016. For each county, we then used these estimates to simulate 10,000 102 

stochastic ZIKV outbreaks. Finally, we analyzed the simulated outbreaks to determine spatiotemporal 103 

variation in ZIKV risk and estimate current and future epidemic risk from the number of reported 104 

autochthonous cases (Fig S1). 105 

 106 

Estimating County Importation Rates  107 

Our analysis assumes that any ZIKV outbreaks in Texas originate with infected travelers 108 

returning from regions with ZIKV activity. To estimate the ZIKV importation rate for specific counties, 109 

we (1) estimated the Texas statewide importation rate (expected number of imported cases per day), (2) 110 

estimated the probability that the next Texas import will arrive in each county, and (3) took the product of 111 

the state importation rate and each county importation probability.  112 

1. During the first quarter of 2016, 27 travel-associated cases of ZIKV were reported in Texas, with 113 

11 occurring in Houston’s Harris County [18], yielding a baseline first quarter estimate of 0.3 114 

imported cases per day throughout Texas. In 2014 and 2015, arbovirus introductions into Texas 115 

were threefold higher during the third quarter than the first quarter of each year, perhaps driven 116 

by seasonal increases in arbovirus activity in endemic regions and the approximately 40% 117 

increase from quarter 1 to quarter 3 in total number of international travelers to the US [19].  118 

Taking this as a baseline (lower bound) scenario, we projected a corresponding increase in ZIKV 119 

importations to 0.9 cases per day (statewide) for the third quarter. We also considered an elevated 120 

importation scenario, in which the first quarter cases (27) in Texas represent only the 121 
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symptomatic (20%) imported cases, corresponding to a projected third quarter statewide 122 

importation rate of 4.5 cases per day. 123 

2. We defined county-specific import risk as the probability that the next imported case in Texas 124 

will occur in that county. To build a predictive model for import risk, we fit a probabilistic model 125 

(maximum entropy) [20] of importation risk to 183 DENV, 38 CHIKV, and 31 ZIKV Texas 126 

importations reported at the county level from 2002 to 2016 and informative socioeconomic, 127 

environmental, and travel variables (Supplement §1.1). Given the geographic and biological 128 

overlap between ZIKV, DENV and Chikungunya (CHIKV), we used historical DENV and 129 

CHIKV importation data to supplement ZIKV importations in the importation risk model, while 130 

recognizing that future ZIKV importations may be fueled by large epidemic waves in neighboring 131 

regions and summer travel, and thus far exceed recent DENV and CHIKV importations [21]. 132 

Currently, DENV, CHIKV, and ZIKV importation patterns differ most noticeably along the 133 

Texas-Mexico border. Endemic DENV transmission and sporadic CHIKV outbreaks in Mexico 134 

historically have spilled over into neighboring Texas counties. In contrast, ZIKV is not yet as 135 

widespread in Mexico as it is in Central and South America, with only one reported ZIKV 136 

importation along the border to date (Val Verde County).  We included DENV and CHIKV 137 

importation data in the model fitting so as to consider potential future importations pressure from 138 

Mexico, as ZIKV continues its northward expansion. To find informative predictors for ZIKV 139 

importation risk, we analyzed 72 socio-economic, environmental, and travel variables, and 140 

removed near duplicate variables and those that contributed least to model performance, based on 141 

out-of-sample cross validation [22,23], reducing the original set of 72 variables to 10 (Tables S3-142 

S4).   143 

 144 

Estimating County Transmission Risk 145 

The risk of ZIKV emergence following an imported case will depend on the likelihood of 146 

mosquito-borne local transmission.  For each Texas county, we used the Ross-Macdonald formulation to 147 
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estimate the ZIKV reproduction number (R0), which is the average number of secondary infections caused 148 

by the introduction of a single infectious individual into a fully susceptible population (Supplement §1.2) 149 

[24]. To parameterize the model (Table S5), we used mosquito life history estimates from a combination 150 

of DENV and ZIKV studies and estimated Ae. aegypti abundance for each county [5]. For parameters that 151 

are sensitive to temperature (i.e., mosquito mortality and the extrinsic incubation period), we adjusted the 152 

mosquito parameters using average reported Texas county temperatures for the month of August [25]. 153 

 154 

ZIKV Outbreak Simulation Model 155 

To transmit ZIKV, a mosquito must bite an infected human, the mosquito must get infected with 156 

the virus, and then the infected mosquito must bite a susceptible human. We assumed that mosquito-borne 157 

transmission would be the main driver of epidemic dynamics, so we did not include sexual transmission 158 

in our model. Rather than explicitly model the full transmission cycle, we aggregated the two-part cycle 159 

of ZIKV transmission (mosquito-to-human and human-to-mosquito) into a single exposure period, and do 160 

not explicitly model mosquitos. For the purposes of this study, we need only ensure that the model 161 

produces a realistic human-to-human generation time of ZIKV transmission. 162 

The resultant model thus follows a Susceptible-Exposed-Infectious-Recovered (SEIR) 163 

transmission process stemming from a single ZIKV infection using a Markov branching process model 164 

(Fig S2).  The temporal evolution of the compartments is governed by daily probabilities of infected 165 

individuals transitioning between S, E, I, and R states, and new ZIKV cases arising from importations or 166 

autochthonous transmission  (Table S6). We treat days as discrete generations, and the next disease state 167 

progression depends solely on the current state and the transition probabilities. We assume that infectious 168 

cases cause a Poisson distributed number of secondary cases per day (via human to mosquito to human 169 

transmission), and infectious individuals are introduced daily according to a Poisson distributed number 170 

of cases around the importation. Furthermore, Infectious cases are categorized into reported and 171 

unreported cases according to a reporting rate. We assume that reporting rates approximately correspond 172 

to the percentage (~20%) of symptomatic ZIKV infections [14] and occur at the same rate for imported 173 
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and locally acquired cases. Additionally we make the simplifying assumption that reported cases transmit 174 

ZIKV at the same rate as unreported cases. We track imported and autochthonous cases separately, and 175 

conduct risk analyses based on reported autochthonous cases only, under the assumption that public 176 

health officials will have immediate and reliable travel histories for all reported cases [16].  177 

To accurately model the timing of ZIKV outbreaks, we fit the ZIKV generation time to recent 178 

estimates (Supplement §2.4) [26]. The generation time measures the average duration from initial 179 

symptom onset to the subsequent exposure of a secondary case, and is estimated to range from 10 to 23 180 

days for ZIKV [26]. In our model, the generation time corresponds to the exposure period followed by 181 

half of the infectious period. First, we fit the infectious period in our model to human ZIKV estimates for 182 

duration of viral shedding, which we assumed to be the length of the infectious period but may be an 183 

underestimate of the total length. Specifically, we solved for transition rates of a Boxcar Model [27] that 184 

produce an infectious period with mean duration of 9.88 days (Table S6) [28]. Then, we fit the exposure 185 

period to achieve the empirical ZIKV generation time distribution [26], yielding a mean exposure period 186 

of 10.4 days (95% CI 6-17) and a mean generation time of 15.3 days (95% CI 9.5-23.5). Given that the 187 

exposure period includes human and mosquito incubation periods and mosquito biting rates, this range is 188 

consistent with the estimated 5.9 day human ZIKV incubation period [28]. While there is much 189 

uncertainty regarding ZIKV transmission, our model framework is flexible to extensions and updates as 190 

we learn more about ZIKV epidemiology including reporting rates, transmission probabilities, clinical 191 

features, and outside importation pressures.  192 

 193 

Simulations  194 

For each county risk scenario, defined by a specified importation rate, transmission rate, and 195 

reporting rate, we ran 10,000 stochastic simulations. Each simulation began with a single imported 196 

infectious case and terminated either when there were no individuals left in either the Exposed or 197 

Infectious classes or the cumulative number of autochthonous infections reached 2,000. We classified 198 

simulations as either epidemics or self-limiting outbreaks; epidemics are all simulations that fulfill two 199 
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criteria: reach 2,000 cumulative autochthonous infections and have a maximum daily prevalence 200 

exceeding 50 autochthonous cases (Figs S3).  201 

 202 

Outbreak Analysis 203 

Policymakers must often make decisions in the face of uncertainty, such as when and where to 204 

initiate ZIKV interventions. Our stochastic framework allows us to provide real-time county-level risk 205 

assessments as reported cases accumulate. For each county, we found the probability that an outbreak will 206 

progress into an epidemic (reach 2,000 cases with a maximum daily prevalence over 50), as a function of 207 

the number of reported cases. We call this epidemic risk. To solve for epidemic risk in a county following 208 

the xth reported autochthonous case, we first find all simulations (of 10,000 total) that experience at least 209 

x reported autochthonous cases, and then calculate the proportion of those that are ultimately classified as 210 

epidemics. For example, consider a county in which 1,000 of 10,000 simulated outbreaks reach at least 211 

two reported autochthonous cases; the remaining 9,000 simulations dissipate with only one or zero case 212 

reports. If only 50 of the 1,000 simulations ultimately fulfill the two epidemic criteria, then the estimated 213 

epidemic risk following two reported cases in that county would be 5%. This simple classification scheme 214 

performs quite well, only rarely misclassifying a string of small outbreaks as an epidemic, with the 215 

probability of such an error increasing with the importation rate. For example, epidemics should not occur 216 

when R0=0.9. If the importation rate is high, however, overlapping series of moderate outbreaks may 217 

occasionally meet the two epidemic criteria. Even under the highest importation rate we considered (0.3 218 

cases/day), only 1% of outbreaks were misclassified.  219 

This method can be applied to evaluate universal triggers (like the recently recommended two-220 

case trigger) or derive robust triggers based on local importation and transmission risks as well as the risk 221 

tolerance of public health agencies. For example, if a policymaker would like to initiate interventions as 222 

soon as the risk of an epidemic reaches 30%, we would simulate local ZIKV transmission and solve for 223 

the number of reported cases at which the probability of an epidemic first exceeds 30%. Generally, the 224 

recommended triggers decrease as the policymaker threshold for action decreases (for example, 225 
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policymakers would act sooner (fewer reported cases) for a 10% versus 30% threshold) and as the local 226 

transmission potential increases (e.g. R0 = 1.5 versus R0 = 1.2). A policymaker wishing to trigger 227 

interventions early, upon even a low probability of epidemic spread, has a low tolerance for failing to 228 

intervene but may waste resources on unnecessary interventions; a policymaker willing to wait longer, 229 

has a higher risk tolerance, but may implement interventions too late in the course of the outbreak. 230 

 231 

County Uncertainty Analysis 232 

We took two approaches to addressing uncertainty in the model parameters. First, we conducted a 233 

sensitivity analysis to address the considerable uncertainty regarding several inputs into our estimation of 234 

R0, including mosquito biology, ZIKV epidemiology, and human-mosquito interactions (Supplement §4). 235 

For most factors, the county estimates of R0 simply scale linearly with changes in the factor. However, 236 

county-specific human-mosquito contact rates can change relative county risks based on assumptions 237 

regarding the socioeconomic effect on human-mosquito interactions (Fig S5-6), and county risk moves 238 

southward as the summer heat subsides (Fig S7). Second, given the considerable uncertainty regarding 239 

ZIKV epidemiology, we examined a scenario where the absolute values of both R0 and importation rate 240 

are unknown, but lie within plausible ranges for Texas. To do so, we randomly sampled 10,000 241 

simulations from the high risk Texas county outbreaks (counties with R0>1), creating an amalgamous 242 

high risk county, and completed the outbreak analysis as we do with individual counties. 243 

  244 

Results 245 

To develop a ZIKV risk assessment framework for Texas counties, we first estimate county-level 246 

ZIKV importation and transmission rates for August 2016. ZIKV importation risk within Texas is 247 

predicted by variables reflecting urbanization, mobility patterns, and socioeconomic status (Table S3), 248 

and is concentrated in metropolitan counties of Texas (Fig 2A). The two highest risk counties--Harris, 249 

which includes Houston and has an estimated 27% chance of receiving the next imported Texas case, and 250 

Travis, which includes Austin and has a 10% chance of the next importation--contain international 251 
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airports. Other high risk regions include Brazos County, the Dallas and San Antonio metropolitan areas, 252 

and several counties along the Texas-Mexico border. 253 

  254 

 255 

Fig 2.  ZIKV importation and transmission risk estimates across Texas. (A) Color indicates the probability that the next 256 

ZIKV import will occur in a given county for each of the 254 Texas counties. Probability is colored on a log scale. The 10 most 257 

populous cities in Texas are labeled. Houston’s Harris County has 2.7 times greater chance than Austin’s Travis County of 258 

receiving the next imported case. (B) Estimated county-level R0 for ZIKV (See Fig S5-11 for sensitivity analysis). 259 

  260 

Our county-level estimates of autochthonous ZIKV transmission risk (Fig 2B) suggest that the 261 

majority of Texas counties (87%) have an estimated R0 below one, and thus are unlikely to sustain 262 

epidemics. The Southeast region of Texas has the highest estimated transmission risk, driven primarily by 263 

high mosquito habitat suitability. These estimates are sensitive to uncertainty in several parameters (Fig 264 

S5-11), and can be updated as we learn more about ZIKV. While the average transmission risk may be 265 

higher or lower than our baseline assumption, and will certainly vary seasonally, the relative risks of 266 

regions and counties are robust (Fig S6-S10), and allow us to conduct plausible case studies and identify 267 

at risk areas for enhanced surveillance and preparedness efforts. Given the uncertainty underlying the 268 
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county R0 estimates, we also aggregate the 21 highest estimates into a plausible distribution for a high risk 269 

Texas county, ranging from R0 = 1.0 to R0 = 2.2 with a median of  1.1.   270 

 271 

Fig 3. Real-time risk-assessment for ZIKV situational awareness and forecasting. (A) Simulated outbreaks, assuming an 272 

importation rate of 0.01 case per day, for a known (moderate risk) R0 (blue) or an unknown high risk R0 (red). Two thousand 273 

randomly sampled simulations are shown for each scenario. (B) Total number of (current) autochthonous cases as a function of 274 

the cumulative reported autochthonous cases, assuming an importation rate of 0.01 case per day, for a known R0 (blue) or an 275 

unknown high-risk R0 (red), and a relatively high (dashed) or low (solid) reporting rate. Ribbons indicate 50% quantiles.  (C) The 276 

increasing probability of imminent epidemic expansion as reported autochthonous cases accumulate, compared across the high 277 

risk (red) and known moderate risk (blue) for a low (solid) and high (dashed) reporting rate. Suppose cases arise in a high risk 278 

county and a policymaker wishes to trigger a response as soon as two cases are reported (vertical line). With a 20% reporting rate 279 

there is a 64% probability of an ensuing epidemic. 280 

 281 

Under a single set of epidemiological conditions, wide ranges of outbreaks are possible (Fig 3A). 282 

The relationship between what policymakers can observe (cumulative reported cases) and what they wish 283 

to know (current prevalence) can be obscured by such uncertainty, and will depend critically on both the 284 

transmission and reporting rates (Fig 3B). If key drivers, such as R0, can be estimated with confidence, 285 

then the breadth of possibilities narrows, enabling more precise surveillance. For example, under a known 286 

moderate R0 scenario and with a 20% reporting rate, ten cumulative reported cases corresponds to an 287 

expected prevalence of 6 cases with a 95% CI of 1-16; under an unknown but high R0 scenario, the same 288 
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number of cases corresponds to an expected prevalence of 10 cases with a much wider 95% CI of 2-32 289 

(Fig 3B). 290 

We apply our model to characterize time-varying epidemic risk as cases accumulate in a given 291 

county. Under both a known moderate risk and unknown high risk scenario, we track the probability of 292 

epidemic expansion following each additional reported case (Fig 3C). Across the full range of reported 293 

cases, the probability of epidemic spread is always higher in the high risk scenario, with the moderate risk 294 

scenario showing more sensitivity to the reporting rate. These curves can support both real-time risk 295 

assessment as cases accumulate and the identification of surveillance triggers indicating when risk 296 

exceeds a specified threshold. For example, suppose a policymaker wanted to initiate an intervention 297 

upon two reported cases and thought the reporting rate was 20%, this would correspond with a 64% 298 

probability of an epidemic in the high risk county but only 35% in the known moderate risk county. 299 

Alternatively suppose a policy maker wishes to initiate an intervention when the chance of an epidemic 300 

exceeds 50%. In the high risk scenario, they should act immediately following the 1st reported case; in 301 

the moderate risk scenario, the corresponding trigger ranges from two to seven reported cases, depending 302 

on the reporting rate. As the policymaker’s threshold (risk tolerance) increases, the recommended 303 

surveillance triggers can be adjusted accordingly.  304 

To evaluate a universal intervention trigger of two reported autochthonous cases, we estimate 305 

both the probability of a trigger event (two such cases) in each county and the level of epidemic risk at the 306 

moment a trigger event occurs (second case reported) in each county. Assuming a baseline importation 307 

rate extrapolated from recent importations to August 2016 and a 20% reporting rate, only a minority of 308 

counties are likely to experience a trigger event (Fig 4A). While 231 of the 254 counties (91%) have non-309 

zero probabilities of experiencing two reported autochthonous cases, only 63 counties have at least a 10% 310 

chance of such an event, with the remaining 168 counties having a median probability of 0.017 (range 311 

0.0004 to 0.089). Next, assuming that a second autochthonous case has indeed been reported, we find that 312 

the underlying epidemic risk varies widely, with most counties having near zero epidemic probabilities 313 

and a few counties far exceeding a 50% chance of epidemic expansion. For example, two reported 314 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 26, 2016. ; https://doi.org/10.1101/056648doi: bioRxiv preprint 

https://doi.org/10.1101/056648


 

autochthonous cases in Starr County, along the Texas-Mexico border, correspond to a 99% chance of 315 

ongoing transmission. The greater San Antonio metropolitan region appears to be the highest risk 316 

metropolitan region with four of its eight counties having a higher than 25% probability of experiencing 317 

two reported autochthonous cases; in those four counties, the epidemic risk upon detection of a second 318 

case ranges from 19-90%. Houston metropolitan region is also a high risk region with its second (Fort 319 

Bend) and fourth (Brazoria) largest counties having a 39% and 45% chance of sustaining two reported 320 

autochthonous cases, respectively, with corresponding epidemic risks of 67% and 86% thereafter.  321 

 322 

Fig 4.  Texas county ZIKV risk assessment. (A) Probability of an outbreak with at least two reported autochthonous ZIKV 323 

cases.  (B) The probability of epidemic expansion at the moment the second autochthonous ZIKV case is reported in a county. 324 

White counties never reach two reported cases across all 10,000 simulated outbreaks; light gray counties reach two cases, but 325 

never experience epidemics. (C) Recommended county-level surveillance triggers (number of reported autochthonous cases) 326 

indicating that the probability of epidemic expansion has exceeded 50%. White counties indicate that fewer than 1% of the 327 

10,000 simulated outbreaks reached two reported cases. All three maps assume a 20% reporting rate and a baseline importation 328 

scenario for August 2016 (81 cases statewide per 90 days) projected from historical arbovirus data. (Figure S4 provides 329 

corresponding estimates under a worse case elevated importation scenario). 330 

 331 

Given that a universal trigger may signal highly disparate levels of ZIKV risk, policymakers 332 

might seek to adapt their triggers to local conditions. Suppose a policymaker wishes to design trigger that 333 

indicate a 50% chance of an emerging epidemic (Fig 4C). Under the baseline importation and reporting 334 

rates, only 21 of the 254 counties in Texas are expected to reach a 50% epidemic probability, with 335 
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triggers ranging from one (Starr County) to 21 (Dimmit County) reported autochthonous cases, with a 336 

median of two cases. The remaining counties have less than a 1% chance of experiencing sustained ZIKV 337 

transmission. Under an elevated importation scenario, assuming that only one fifth of ZIKV importations 338 

(the symptomatic proportion) have been observed, we find that the recommended triggers decrease by a 339 

mean of 1.5 reported cases (Fig S4) and the size of Texas’ population at risk for sustained ZIKV 340 

transmission is expected to increase from ~14% to ~30%, largely driven by increased risk in the Houston 341 

metropolitan area.   342 

  343 

Discussion 344 

US public health authorities are responding to ZIKV importations and preparing for the 345 

possibility of ZIKV outbreaks in vulnerable regions this season and in future seasons. A key challenge is 346 

knowing when and where to initiate interventions based on potentially sparse and biased ZIKV case 347 

reports. Our simple model is designed to address this challenge by providing county-specific epidemic 348 

risk estimates as a function of reported cases. We demonstrate its application across the 254 ecologically 349 

and demographically diverse counties of Texas, a high risk state [6,7,9]. Based on county-level estimates 350 

for ZIKV importation and transmission rates (Fig 2), we expect that most Texas counties are not at risk 351 

for a sustained ZIKV epidemic (Fig 4). However, 30% of Texas’ population may reside in vulnerable 352 

regions, including the cities of Austin, San Antonio, and Waco along the I-35 corridor, Houston, and the 353 

Rio Grande Valley. The higher the ZIKV importation rate in these locations, the higher the chance of an 354 

epidemic (Fig S4). However, even in the most high risk regions of Texas, we expect far more limited 355 

ZIKV transmission than observed in Central America, South America, and Puerto Rico, where R0 has 356 

been estimated to be as high as 11 [24,29,30]. Our analysis is consistent with recent introductions of 357 

DENV and CHIKV into Texas that have failed to spark large epidemics.  358 

Surveillance triggers--guidelines specifying situations that warrant intervention--are a key 359 

component of many public health response plans. Given the urgency and uncertainty surrounding ZIKV, 360 

universal recommendations can be both pragmatic and judicious. In choosing an appropriate trigger for an 361 
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environmentally and socioeconomically diverse region, policymakers must weigh the risks of acting 362 

unnecessarily with those of responding too late. A risk averse policymaker will likely select a low trigger 363 

(a small number of reported cases), ensuring early detection in the riskiest sites at the cost of false alarms 364 

in low risk locations (Fig 4C). In that vein, the CDC recently issued conservative guidelines to state and 365 

local public health agencies that suggest a two-case trigger for initiating interventions [16].   366 

To assist Texas policymakers in interpreting this recommendation, we assessed the likelihood and 367 

implication of a two-case trigger for each of Texas’ 254 counties, under a scenario projected from recent 368 

ZIKV data to August 2016. Across counties, there is enormous variation in both the chance of a trigger 369 

and the magnitude of the public health threat if and when two cases are reported. If and when two 370 

autochthonous ZIKV cases are reported, only 18 of Texas’ 254 counties have over a 20% chance of 371 

experiencing sustained transmission (under our baseline scenario); in most of the remaining 236 counties, 372 

the threat is much lower.  373 

Rather than implement a universal trigger, which may indicate different threats in different 374 

locations, one could design local surveillance triggers that correspond to a universal risk threshold. Our 375 

modeling framework can readily identify triggers (numbers of reported cases) for indicating any specified 376 

epidemic event (e.g., prevalence reaching a threshold or imminent epidemic expansion) with any 377 

specified risk tolerance (e.g., 10% or 50% chance of that the event has occurred), given local 378 

epidemiological conditions. As a case study, we identify epidemic expansion triggers in each of Texas’ 379 

254 counties, each designed to indicate when the probability of an epidemic exceeds 50%. Across the 21 380 

counties with non-negligible probabilities of an epidemic, the recommended triggers range from one to 21 381 

reported autochthonous cases, highlighting Texas’ spatial risk heterogeneity. These findings apply only to 382 

the early, pre-epidemic phase of ZIKV in Texas, when travel from affected regions outside the contiguous 383 

US is the primary importation source. If self-sustaining outbreaks emerge within Texas, there may be 384 

county-to-county importations, particularly in high risk regions, that are not yet included in the model. 385 

This simple framework offers a flexible means for bringing current data and expert knowledge to 386 

assist critical public health decision making. The design of a trigger--both the event to be detected and the 387 
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probability threshold upon which to take action--requires extensive public health expertise and 388 

deliberation. Our case studies were motivated by formal recommendations and informal discussions with 389 

state and national public health agencies. They demonstrate our data-driven approach for relating 390 

observed disease activity to underlying risk in the face of great uncertainty, and address the pros, cons and 391 

complexity of developing universal versus regional action plans. However, they are not meant to critique 392 

or validate any specific policies, and highlight the prudence of recent ZIKV planning efforts.  393 

Importantly, our analyses rest on the recent and limited scientific investigations of ZIKV’s 394 

biology and epidemiology, and should be continually updated as our understanding matures. Specifically, 395 

our county-level estimates of R0 are sensitive to many underlying assumptions, particularly regarding 396 

temperature-dependent and socioeconomic factors (Supplement §4). Although the risk of ZIKV 397 

transmission may be much higher or lower than assumed in our baseline scenario, the relative 398 

vulnerabilities of counties are fairly robust to our assumptions. Thus, counties with the highest estimated 399 

risks should likely be prioritized for surveillance and interventions resources. Given the minimal 400 

incursions of DENV and CHIKV into Texas, we suspect that, if anything, we may be underestimating the 401 

socioeconomic and behavioral impediments to ZIKV transmission in the contiguous US, and thus 402 

overestimating the transmission risk across Texas.  While it is beyond the scope of the current paper, 403 

these estimates may be further refined as more detailed arbovirus importation and outbreak data become 404 

available.  405 

The reporting rate dictates the relationship between observed cases and the underlying outbreak, 406 

and its magnitude impacts the timeliness and precision of detection. If only a small fraction of cases are 407 

reported, the first few reported cases may correspond to a wide range of underlying epidemiological 408 

conditions, from isolated introductions to a growing epidemic. In contrast, if most cases are reported, 409 

policymakers can wait longer (in terms of the number of reported cases) to trigger interventions and have 410 

more confidence in their epidemiological assessments. ZIKV reporting rates are expected to remain quite 411 

low, because an estimated 80% of infections are asymptomatic, and DENV reporting rates have 412 

historically matched its asymptomatic proportion [14,31]. Obtaining a realistic estimate of the ZIKV 413 
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reporting rate is arguably as important as increasing the rate itself, with respect to reliable situational 414 

awareness and forecasting. An estimated 8-22% of ZIKV infections were reported during the 2013-2014 415 

outbreak in French Polynesia [30]; similarly, an estimated 10% have been reported during the ongoing 416 

epidemic in Columbia [29]. While these provide a baseline estimate for the US, there are many factors 417 

that could increase (or decrease) the reporting rate, such as ZIKV awareness among both the public and 418 

health-care practitioners. Thus, rapid estimation of the reporting rate should be a high priority. While 419 

some methods require extensive epidemiological data not typically available early in an outbreak [32], a 420 

new method exploiting early outbreak viral sequence data was introduced during the recent West African 421 

Ebola epidemic [33]. However, as of July 2016, there are no US ZIKV sequences available on GenBank 422 

and few available from other regions. 423 

         Unlike other estimation methods, this framework is designed to support risk assessments both 424 

prior to ZIKV outbreaks and, in real-time, upon the early detection of cases through the lens of potentially 425 

sparse and biased surveillance data [34,35]. It can facilitate situational awareness, allowing analysts to 426 

translate case counts into estimates of overall prevalence and the potential for future spread, albeit with 427 

large error bars. It can also support the development of response plans, by forcing policymakers to be 428 

explicit about risk tolerance, that is, the certainty needed before sounding an alarm, and quantifying the 429 

consequences of premature or delayed interventions. For example, should ZIKV-related pregnancy 430 

advisories be issued when there is only 5% chance of an impending epidemic? 10% chance? 80%? A 431 

policymaker has to weigh the costs of false positives--resulting in unnecessary fear and/or intervention--432 

and false negatives--resulting in suboptimal disease control and prevention--complicated by the difficulty 433 

inherent in distinguishing a false positive from a successful intervention. The more risk averse the 434 

policymaker (with respect to false negatives), the earlier the trigger should be, which can be exacerbated 435 

by low reporting rates, high importation rate, and inherent ZIKV transmission potential. In ZIKV prone 436 

regions with low reporting rates, even risk tolerant policymakers should act quickly upon seeing initial 437 

cases; in lower risk regions, longer waiting periods may be prudent. 438 
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This approach can be readily applied to other at risk states in the US. Given that Florida has 439 

experienced a higher importation of ZIKV cases than Texas (more than 270 as of the end of July 2016) 440 

and more locally acquired DENV cases since 2009 [36–38], the probability of sustained ZIKV 441 

transmission and public health threat following a second reported autochthonous cases may be higher in 442 

Florida than estimated for Texas. 443 
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