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Abstract

Background: The human gut microbiome harbors microbes that perform diverse

biochemical functions. Previous work suggested that functional variation between gut

microbiota is small relative to taxonomic variation. However, these conclusions were

largely based on broad pathways and qualitative patterns. Identifying microbial genes

with highly variable or invariable abundance across hosts requires a new statistical test.

Results: We develop a model for microbiome gene abundance that allows for dif-

ferences in means between studies and accounts for the mean-variance relationship in

shotgun data. Applying a test based on this model to stool metagenomes from three

populations of healthy adults, we discover many signi�cantly variable genes, including

components of central carbon metabolism and other pathways comprised primarily of

more stable genes. By integrating taxonomic pro�les into our test for gene variability,

we reveal that Proteobacteria are a major source of variable genes. Stable genes tend to

have broad phylogenetic distributions, but several two-component signaling pathways

and carbohydrate utilization gene families have relatively constant levels across hosts

despite being taxonomically restricted.

Conclusions: Gene-level tests shed light on adaptation to the gut environment,

and highlight microbially-encoded functions that may respond to or cause variability

in host traits.

Keywords

human gut microbiome, variance, shotgun metagenomics, statistical methods, functional

redundancy

1 Background

The microbes that inhabit the human gut encode a wealth of proteins that contribute to

a broad range of biological functions, from modulating the human immune system [1, 2, 3]

to participating in metabolism [4, 5]. Shotgun metagenomics is revolutionizing our ability

to identify and quantify protein-coding genes from these microbes. However, we still lack

a comprehensive understanding of the factors that govern host-microbe interactions and

microbial �tness within the gut. For example, some bacteria become long-term gut resi-

dents while others (e.g., some probiotics [6]) only inhabit the gastro-intestinal (GI) tract

transiently. Di�erences in microbiome composition and diversity have been associated with

many diseases. Establishing causality and designing microbiome therapies will require much

deeper understanding of microbially-encoded genes and their relationships to human genetics

2



and the gut environment. This knowledge could not only o�er mechanistic explanations for

host-microbe associations, but may ultimately help us to engineer the gut microbiome for

human health.

Recent screens have shed light on bacterial genes allowing human colonization, such

as sugar or polysaccharide utilization genes (e.g. [7, 8]). These screens, while highly in-

formative, are labor-intensive and limited to speci�c bacterial clades (e.g., Bacteroides or

Lactobacilli). They also require not only that a particular species be culturable, but also

that techniques for forward genetics (e.g., transposon insertion) have been developed in that

species. Furthermore, it is likely that multiple niches exist within the human gut, and that

the metabolic environment of the gut may be in�uenced by factors like diet [9, 10], variation

in immune function [11, 12], prior antibiotic use [13, 14], and host genetics [15]. This sug-

gests that many di�erent symbiotic gut microbial lifestyles are possible and that selective

pressures are likely to di�er between individual hosts. For these reasons, a computational

approach incorporating high-throughput microbiome sequencing data from multiple human

populations could o�er unique insights.

Gene families that are necessary for life in the gut are expected to have consistent levels

across di�erent human hosts, spanning geography and other variables like age and sex. Con-

versely, gene families that contribute to survival in one particular type of gut environment

(e.g., associated with a particular diet) should vary between subjects. Therefore, we propose

that the variability of gene families, rather than only their average abundance across sam-

pled metagenomes, is a statistic that can be informative regarding selection in the gut and

di�erences in host-microbe interactions across people.

There is substantial interest in characterizing the extent of functional variation across gut

microbiomes [16, 17]. Previous work suggested that the overall variability of gene functions

across metagenomes is lower than 1. the variability of those same functions across fully-

sequenced genomes [17] and 2. the variability of taxa in the same metagenomes [16] (the

�functional stability� hypothesis). However, these analyses tended to be qualitative or binary

in nature, as opposed to probabilistic, and/or have been conducted on relatively broad units

of function, such as biological pathways or the entire set of annotated functions. On the other

hand, microbe-host interactions usually depend upon speci�c genes, such as colitis-inducing

cytolethal distending toxins of Helicobacter hepaticus [18] and the enzymes of commensal

bacteria that protect against these toxins by producing anti-in�ammatory polysaccharide

A [19]. Similarly, di�erences in drug e�cacy [20] or side-e�ects [21] across patients can be

attributed to levels of speci�c microbiome proteins.

To enable high-resolution, quantitative analysis of functional stability in the microbiome,

we developed a statistical test that identi�es individual gene families whose abundances
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are either signi�cantly variable or invariable across samples, without needing to choose a

comparison group from either metagenomes or whole genomes. Our method �ts gene fam-

ily abundances to a model and calculates the variance of the residuals, then compares this

residual variance statistic to a data-driven null distribution based on the negative bino-

mial distribution. Using simulated data, we show that under certain assumptions, this test

has high power (>90%) and controls the false-positive rate appropriately. When these as-

sumptions are violated, we can use simulations to control the false discovery rate (FDR)

empirically.

We apply this test to healthy gut metagenomes (n = 123) spanning three di�erent shotgun

sequencing studies and �nd both signi�cantly invariable (3,768) and variable (1,219) gene

families (FDR<5%). Many pathways, including some commonly viewed as �housekeeping�

or previously identi�ed as stable across gut microbiota (e.g., central carbon metabolism),

include signi�cantly variable gene families. Phylogenetic distribution (PD) correlates overall

with variability in gene family abundance, and exceptions to this trend highlight functions

that may be involved in adaptation, such as two-component signaling and specialized se-

cretion systems. Proteobacteria emerge as a source for genes with the greatest variability

in abundance across hosts, suggesting a relationship between in�ammation and gene-level

di�erences in what gut microbiota are doing.

2 Results

2.1 The residual variance statistic captures the variability of gene

families across hosts

In metagenomics data, di�erent gene families vary widely in average abundance. Gene

family abundances can also vary by study, both because of biological di�erences between

populations, and for technical reasons including library preparation, ampli�cation protocol,

and sequencing technology. To account for such e�ects, we �t a linear model of log abundance

Dg,s for gene g in sample s as a function of a per-gene-family mean Gg, �o�sets� Xg,y for

each study y, and residual variation εg,s:

Dg,s = Gg +
∑
y∈Y

Iy,sXg,y + εg,s (1)

where Iy,s is an indicator variable that is 1 if sample s belongs to study y and 0 otherwise.

We take the variance of the residuals, Vs(εg,s), or V
ε
g for short, as our statistic. This statistic

captures how much variance remains after accounting for dataset-speci�c and gene-family-
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speci�c shifts in abundance (Figure 1).

2.2 A null distribution based on the negative binomial allows de-

tection of signi�cant (in)variability

While calculating the residual variance statistic V ε
g allows a ranking of gene families by

variability, by itself, it does not tell us whether this variability (or lack thereof) is surprising.

Since there is no straightforward formula for the p-value associated with this statistic, we

developed a method to assess signi�cance (Supplemental Figure S1). We choose the null

hypothesis that the metagenomic read count data (before any normalization, e.g., for gene

length and average genome size) are distributed negative-binomially. The negative binomial

distribution is frequently used to model high-throughput sequencing data [22], and can be

conceptualized as an overdispersed Poisson where the variance can exceed the mean.

To obtain our null distribution, we allow the mean value to change for di�erent gene

families as observed, but �x the overdispersion parameter k that controls the mean-variance

relationship across genes. This has similarities to previous approaches to model RNAseq

distributions [23] and to identify (in)variable genes from single-cell RNAseq data [24] (see

also Discussion). Intuitively, this null hypothesis means that the gene families we identify

as signi�cantly variable or invariable will be those whose abundances are over- or under-

dispersed, respectively, relative to the median gene family. This choice of null is important:

if we instead simply test for high variance, regardless of mean abundance, highly abundant

gene families (e.g., single-copy proteins in the bacterial ribosome) are signi�cantly variable

despite being nearly universally present at equal abundance in each bacterial genome, because

genes with high mean abundance will have high variance in any sequencing experiment.

Conversely, thousands of lower-abundance gene families would appear to be signi�cantly

invariable simply by virtue of having relatively low read counts.

Based on simulations with similar properties to real data (see Methods, Supplemental

Figure S3), we �nd that this test has high power (> 0.9). The false positive rate (i.e.,

type I error α) is well-controlled as long as the overdispersion parameter k used in the null

distribution is accurately estimated. This appears to be easiest to achieve when fewer than

50% of gene families are signi�cantly variable or invariable. To make the test more robust to

estimation of k, we developed a simulation based method to empirically identify signi�cance

thresholds that control FDR for both variable and invariable families (Supplemental Table

S7).
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2.3 Thousands of gene families in the gut microbiome are signi�-

cantly (in)variable

To describe variation within healthy gut microbiota across di�erent human populations,

we randomly selected 123 metagenomes of healthy individuals from the Human Microbiome

Project (HMP) [16], controls in a study of type II diabetes (T2D) [25], and controls in a study

of glucose control (GC) [26]. These span American, Chinese, and European populations,

respectively (see Methods). We map these metagenomes to KEGG Orthology families with

ShotMAP [27] and quantify gene family abundance using log-transformed reads per kilobase

of genome equivalents (RPKG) [28]. This produces an n ×m data matrix D of log-RPKG

abundances consisting of n = 17,417 gene families across m = 123 healthy human gut

samples.

Before testing for signi�cantly variable and invariable KEGG families, we conducted

a simulation that mirrored this dataset (n = 120, variable-to-invariable gene family ratio

between 1:2 and 1:3). The observed α was somewhat higher than the targeted level for the

variable gene families (Supplemental Figure S4). We therefore used the simulation results

to empirically identify FDR controlling signi�cance thresholds.

We �nd 2,357 gene families with more variability than expected and 5,432 with less (leav-

ing 9,628 non-signi�cant) at an empirical FDR of 5% (Supplemental Figure S5). Restricting

ourselves further to gene families with at least one annotated representative from a bacterial

or archaeal genome in KEGG, we obtain 1,219 signi�cantly variable and 3,813 signi�cantly

invariable gene families (and 2,194 non-signi�cant). The di�erences in the residual vari-

ation of these gene families can be visualized using a heatmap of the residual εg,s values

(Supplemental Figures S6, S7).

Importantly, the magnitude of the residual variance statistic V ε
g is not the sole determi-

nant of signi�cance, as observed by the overlap in distributions of V ε
g between the variable,

invariable, and non-signi�cant gene families. For example, both low-abundance gene families

with many zero values and high-abundance but invariable gene families will tend to have low

residual variance, but the evidence for invariability is much stronger for the second group.

Our test accurately discriminates between these scenarios, tending to call the second group

signi�cantly invariable and not the �rst (Supplemental Figure S5, inset).

2.4 Biological pathways, including those in central metabolism, con-

tain a range of stable and variable components

It has been observed that person-to-person di�erences in the taxonomic composition of

healthy gut microbiomes are much larger than di�erences in functional composition [16].
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This has been interpreted as evidence that diverse gut microbiota are doing the same things

[16, 17].

Our results support but also qualify this conclusion. Many of the speci�c pathways iden-

ti�ed as stable (e.g., aminoacyl-tRNA metabolism, central carbon metabolism) have more

stable than variable genes in our analysis. However, these pathways also include signi�-

cantly variable genes (Figure 2). For example, even the highly conserved KEGG module set

�aminoacyl tRNA� includes one variable gene at an empirical FDR of 5%, SepRS. SepRS is an

O-phosphoseryl-tRNA synthetase, which is an alternative route to biosynthesis of cysteinyl-

tRNA in methanogenic archaea [29]. Methanogen abundance has previously been noted to

be variable between individual human guts, though this may be due to variability in DNA

extraction for archaea and not due to true di�erences in abundance [30]. Another gene in

this category is variable at a weaker level of signi�cance (10% empirical FDR): PoxA, a

variant lysyl-tRNA synthetase. Recent experimental work has shown that this protein has

a diverged, novel functionality, lysinylating the elongation factor EF-P [31, 32].

By comparison, in the KEGG module set �central carbohydrate metabolism�, 77% of the

tested prokaryotic gene families were signi�cantly stable, and 5.6% (5 genes) were signi�-

cantly variable (Figure 2) at an empirical FDR of 5%. In this case, the variable gene families

highlight the complexities of microbial carbon utilization. Glucose can be metabolized by

two alternative pathways: the more famous Embden-Meyerhof-Parnas (EMP) pathway (i.e.,

classical �glycolysis�), or the Entner-Doudoro� pathway (ED). Both take glucose to pyruvate,

but with di�ering yields of ATP and electron carriers; ED also allows growth on sugar acids

like gluconate [33]. Indeed, while all genes in the �core module� of glycolysis dealing with

3-carbon compounds were signi�cantly invariable across individuals, the ED-speci�c gene

family edd, which takes 6-phosphogluconate to 2-keto-3-deoxy-phosphogluconate (KDPG),

was signi�cantly variable according to our test.

We discovered signi�cant variability in abundance for other unusual glycolytic enzymes

and enzymes in the tricarboxylic acid cycle (TCA). Multifunctional (K16306, K01622) vari-

ants of fructose-bisphosphate aldolase were signi�cantly variable, while the typical FBA

enzyme (FbaA) was signi�cantly stable. A subunit of fumarate reductase, frdD, was also sig-

ni�cantly variable. Fumarate reductase catalyzes the reverse reaction from the typical TCA

cycle enzyme succinate dehydrogenase and can be used for redox balance during anaerobic

growth [34]. Conversely, the standard succinate dehydrogenase genes sdhA, sdhB and sdhC

were signi�cantly invariable. These results suggest that using our test to identify variable

genes within otherwise stable pathways can reveal diverged functionality as well as families

that play domain or clade-speci�c roles.

We also �nd that the majority of signi�cantly variable gene families annotated to �bacte-
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rial secretion system� (16 out of 18) are involved in specialized secretion systems, especially

the type III and type VI systems (Figure 2D). These secretion systems are predominantly

found in Gram negative bacteria and are often involved in specialized cell-to-cell interactions,

between microbes and between pathogens or symbionts and the host. They allow the injec-

tion of e�ector proteins, including virulence factors, directly into target cells [35, 36]. Type

VI secretion systems have also been shown to be determinants of antagonistic interactions

between bacteria in the gut microbiome [37, 38]. In contrast, gene families in the Sec (gen-

eral secretion) and Tat (twin-arginine translocation) pathways were nearly all signi�cantly

stable at an empirical FDR of 5%, with only one gene in each being found to be signi�cantly

variable. This contradicts previous suggestions that the Sec and Tat pathways were some of

the most variable in the human microbiome [16]. This discrepancy is probably due to our

accounting for the mean-variance relationship in shotgun data; the Sec and Tat systems are

abundant and phylogenetically diverse [39].

2.5 Phylogenetic distribution correlates with, but does not totally

explain, gene family variability

To explore the relationship between gene family taxonomic distribution and variability in

abundance across hosts, we constructed trees of the sequences in each KEGG family using

ClustalOmega and FastTree. We then calculated phylogenetic distribution (PD), using tree

density to correct for the overall rate of evolution [40] (Figure 4a).

The 2,046 stable families with below-median PD were enriched for the pathways �two-

component signaling� (FDR-corrected p-value q = 1.5×10−15), �starch and sucrose metabolism�

(q = 1.8× 10−3), �amino sugar and nucleotide sugar metabolism� (q = 0.063), �ABC trans-

porters� (q = 2.4× 10−5), and �glycosaminoglycan [GAG] degradation� (q = 0.053), among

others (Supplemental Table S1). Enriched modules included a two-component system in-

volved in sporulation control (q = 0.018), as well as transporters for rhamnose (q = 0.14),

cellobiose (q = 0.14), and alpha- and beta-glucosides (q = 0.14 and q = 0.19, respectively).

These results are consistent with the hypothesis that one function of the gut microbiome is

to encode carbohydrate-utilization enzymes the host lacks [41]. Additionally, recent experi-

ments have also shown that the major gut commensal Bacteroides thetaiotaomicron contain

enzymes adapted to the degradation of sulfated glycans including GAGs [42, 43], and that

many Bacteroides species can in fact use the GAG chondroitin sulfate as a sole carbon source

[44].

Out of the 298 signi�cantly-variable gene families with above-median PD, we found no

pathway enrichments but three module enrichments. Only the archaeal (q = 1.5 × 10−3)
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and eukaryotic (q = 8.7 × 10−9) ribosomes were enriched, as expected from the abundance

patterns of ribosomal proteins from di�erent domains of life across hosts (2b). We also

discovered an enrichment for the type VI secretion system (q = 0.039). Finally, gene

families described as �hypothetical� were also enriched in the variable/high-PD gene set

(p = 2.4×10−8, odds ratio = 2.2) and depleted in the invariable/low-PD set (p = 5.4×10−13,
odds ratio = 0.41). Intriguingly, specialized secretion systems were also observed to vary

within gut-microbiome-associated species in a strain-speci�c manner, using a wholly separate

set of data [45].

Transporters were also recently observed to show strain-speci�c variation in copy number

across di�erent human gut microbiomes [45], and analyses by Turnbaugh et al. identi�ed

membrane transporters as enriched in the �variable� set of functions in the microbiome [17].

However, we mainly �nd transporters enriched amongst gene families with similar abundance

across hosts, despite being phylogenetically restricted (invariable/low-PD genes). Part of this

di�erence is likely due to our stratifying by phylogenetic distribution, which previous studies

did not do.

2.6 Proteobacteria are a major source of variable genes

To explore which taxa contribute variable and stable genes, we �rst computed correlations

between phylum relative abundances (predicted using MetaPhlAn2 [46]) and gene family

abundances. This analysis revealed that Proteobacterial levels are correlated with abundance

of many variable genes (Figure 5b). Proteobacteria are a comparatively minor component of

these metagenomes (median = 1%), compared to Bacteroidetes (median = 59%) and Firmi-

cutes (median = 33%). However, some hosts had up to 41% Proteobacteria. Overgrowth of

Proteobacteria has been associated with metabolic syndrome [47] and in�ammatory bowel

disease [48]. Also, Proteobacteria can be selected (over Bacteroidetes and Firmicutes) by

intestinal in�ammation as tested by TLR5-knockout mice [49], and some Proteobacteria can

induce colitis in this background [50], potentially leading to a feedback loop. Thus, the

variable gene families we discovered could be biomarkers for dysbiosis and in�ammation in

otherwise healthy hosts.

We also examined correlations between gene abundance and three taxonomic summary

statistics that have been previously linked to microbiome function: average genome size

(AGS) [28], the Bacteroidetes/Firmicutes ratio [17, 51], and α-diversity (Shannon index). All

of these statistics were less often correlated with variable gene families than with invariable

or non-signi�cant gene families (see Supplemental Information, Supplemental Figure S9).

These statistics therefore do not explain the variability of gene families in this dataset.
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2.7 Each major bacterial phylum has a largely unique complement

of variable gene families

The variable gene families we identi�ed seem to include both genes whose variance is ex-

plained by phylum-level variation (e.g., Proteobacteria), and genes that vary within �ne-

grained taxonomic classi�cations, such as strains within species. Also, some gene families

may confer adaptive advantages in the gut only within certain taxa. We were therefore

motivated to detect lineage-speci�c variable and invariable gene families, independent of

phylum-level trends. To do so, we repeated the test, but using only reads that mapped best

to sequences from each of the four most abundant bacterial phyla (Bacteroidetes, Firmicutes,

Actinobacteria, and Proteobacteria). Because we do not necessarily expect the assumption

that fewer than 50% of gene families will be signi�cantly (in)variable to hold within each

individual phylum, we estimate the average level of overdispersion from the full dataset

instead.

Most (77%) gene families showed phylum-speci�c e�ects. Invariable gene families tended

to agree, but the reverse was true for variable gene families: 19.4% of gene families that

were invariable in one phylum were invariable in all, compared to just 0.34% (8 genes) in

the variable set. Gene families invariable in all four phyla were enriched for basal cellular

machinery, as expected (Supplemental Table S3).

Mirroring results we obtained in Figure 5, Proteobacteria-speci�c variable gene families

also tended to be variable overall (59%); the opposite trend was true for Bacteroidetes- (12%),

Firmicutes- (29%), and Actinobacteria-speci�c (18%) variable gene families (Figure 6A). This

supports the hypothesis that Proteobacterial abundance is a dominant driver of functional

variability in the human gut microbiome. It further suggests that many overall-variable gene

families are not merely markers for a phylum that varies itself (i.e., Proteobacteria), but are

also variable at �ner taxonomic levels, such as the species or even the strain level [45, 52].

Comparing the two dominant phyla in the gut, Bacteroidetes and Firmicutes, we further

observe that the overall proportions of variable and invariable families are similar across path-

ways, with some exceptions: for example, lipopolysaccharide (LPS) biosynthesis has many

invariable gene families in Bacteroidetes and very few in Firmicutes, which we expect given

that LPS is primarily made by Gram-negative bacteria. Conversely, both two-component

signaling and the PTS system have many more invariable gene families in Firmicutes than in

Bacteroidetes (Figure 6B). However, phylum-speci�c variable gene families tend not to over-

lap (median overlap: 0%, compared to 46% for invariable gene families). This is even true

for pathways where the overall proportion of variable and invariable gene families is similar,

such as cofactor and vitamin biosynthesis and central carbohydrate metabolism (Figure 6C).
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Furthermore, the enriched biological functions of the phylum-speci�c variable gene fam-

ilies di�er by phylum (Supplemental Table S4). For instance, Proteobacterial-speci�c vari-

able gene families are enriched (Fisher's test enrichment q = 0.13) for the biosynthesis of

siderophore group nonribosomal peptides; iron scavenging is known to be important in the

establishment of both pathogens (e.g. Yersinia) and commensals (E. coli) [53]. Another

phylum-speci�c variable function appears to be the Type IV secretion system (T4SS) within

Firmicutes (q = 0.021): homologs of this specialized secretion system have been shown to

be involved in a wide array of biochemical interactions, including the conjugative transfer of

plasmids (e.g. antibiotic-resistance cassettes) between bacteria [54]. We conclude that our

approach enables the identi�cation of substantial variation within all four major bacterial

phyla in the gut, much of which is not apparent when data are analyzed at broader functional

resolution or without stratifying by phylum.

2.8 Variable genes are not biomarkers for body mass index, sex or

age

To explore associations of gene variability with measured host traits, we used a two-sided

partial Kendall's τ test that controls for study e�ects (Methods). Body mass index, sex,

and age were measured in all three studies we analyzed. None of these variables correlated

signi�cantly with any variable gene family abundances, even at a 25% false discovery rate.

This suggests that major sources of variation in microbiota gene levels, possibly including

diet and in�ammation, were not measured in these studies.

3 Discussion

Our test is the �rst to provide a statistical basis for determining stable versus variable

functions in the human gut microbiome, a �ner level of quanti�cation and speci�city than

previously possible. Prior work examining how gene families and metabolic pathways vary

across healthy human gut microbiome samples has tended to focus either on comparisons to

other body sites or environments, or on identifying general or qualitative trends in variability.

For example, Segata et al. [55] identi�ed pathways whose abundance di�ered in the gut

versus other body sites. While valuable, this type of analysis answers a distinct question,

as it tests the average abundance and not variance, and depends on comparisons between

groups. Thus, it would not identify gene families or pathways that these groups might share

(e.g., pathways necessary for human symbiosis more broadly). The second type of approach

is exempli�ed by studies from the HMP Consortium [16] and Turnbaugh et al. [17]. Both
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of these studies presented data showing that abundances of several Clusters of Orthologous

Groups (COGs) and KEGG modules across the metagenomes of human subjects varied less

than phylum abundances among the same samples. However, it is not clear a priori whether

phylum-level taxonomic variation should indeed be comparable to functional variation, since

many functions are so widely conserved, and since many of the tested pathways actually

include diverse biological functions (e.g., carbon metabolism). Moreover, these analyses do

not identify individual gene families that could break this overall trend.

Turnbaugh et al. [17] also compared the variance of gene families in particular pathways

across metagenomes to the variance across sequenced whole genomes. They concluded that

biological pathways tended to vary less in metagenomes than in whole genomes. However,

there are barriers to extending this test to individual gene families or biological pathways.

First, a set of representative whole genomes must be chosen to construct a null distribution.

Choosing an appropriate set of genomes to compare to a metagenome is not trivial, especially

since the most appropriate genomes may not have been sequenced. Second, samples from

a mixture of genomes should have lower variance than samples from individual genomes in

that mixture; accounting for this bias could be di�cult as it would depend on the precise

composition of the sample. This study did classify gene families into �stable� versus �variable�

subsets, by looking for families that were observed in all samples versus not observed in

at least one. However, while this approach is useful and intuitively appealing, it is more

descriptive or qualitative than our method, and would miss gene families that were reliably

observed, but whose abundances still varied more than expected between subjects.

We �nd that basic microbial cellular machinery, such as the ribosome, tRNA-charging,

and primary metabolism, are universal functional components of the microbiome, both in

general and when each individual phylum is considered separately. This �nding is consistent

with previous results [17], and indeed, is not surprising given the broad conservation of these

processes across the tree of life. However, we also identify candidate invariable gene families

that have narrower phylogenetic distributions. These include, for example, proteins involved

in two-component signaling, starch metabolism, and glycosaminoglycan metabolism. Pre-

vious experimental work has underscored the importance of some of these pathways in gut

symbionts: for instance, multiple gut-associated Bacteroides species are capable of using the

glycosaminoglycan chondroitin sulfate as a sole carbon source [42], and the metabolism of

resistant starch in general is thought to be a critical function of the human microbiome.

These results suggest that the method we present is capable of identifying protein-coding

gene families that contribute to �tness of symbionts within the gut.

We also identify signi�cantly variable gene families, including specialized secretion sys-

tems, e.g., the T6SS. Phylum-speci�c tests also reveal that gene families involved in the T6SS
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are also variable even within Proteobacteria. We �nd that variable but broadly-conserved

gene families include many genes of unknown function, and that these gene families tend to

correlate with Proteobacterial abundance (though others also correlate with the abundance

of Firmicutes, Bacteroidetes, and Actinobacteria). While fewer in number, we also �nd in-

variable gene families whose function is not yet annotated; these gene families may represent

functions that are either essential or provide advantages for life in the gut, and may therefore

be particularly interesting targets for experimental follow-up (e.g., assessing whether strains

in which these gene families have been knocked out in fact have slower growth rates, either

in vitro or in the gut).

Though the interpretation of invariable gene families is potentially more straightforward,

variable gene families have a variety of ecological interpretations, e.g., �rst-mover e�ects,

drift, host demography, and selection within particular gut environments. Computationally

distinguishing among these possibilities is likely to present challenges. For example, distin-

guishing selection from random drift will probably require longitudinal data and appropriate

models. Separating e�ects of host geography, genetics, medical history, and lifestyle will be

possible only when richer phenotypic data is available from a more diverse set of human

populations. To control for study bias and batch e�ects, it will be important to include

multiple sampling sites within each study.

While statistical tests focused on di�erences in variances are not yet common throughout

genomics, there is some recent precedent using this type of test to quantify the gene-level

heterogeneity in single-cell RNA sequencing data [56, 24], and to identify variance e�ects

in genetic association data [57]. Like Vallejos et al. [24], we model gene counts using the

negative binomial distribution, and identify both signi�cantly variable and invariable genes,

although we frame our method as a frequentist hypothesis test as opposed to a Bayesian

hierarchical model. Unlike previous approaches in this domain, the method we describe does

not explicitly decompose biological from technical noise, and therefore does not require the

use of experimentally-spiked-in controls, which are not present in most experiments involving

sequencing of the gut microbiome.

A similar statistical method for detecting signi�cant (in)variability such as the one we

present here could also be applied to other biomolecules measured in counts, such as metabo-

lites, proteins, or transcripts. Performing such analyses on human microbiota would reveal

patterns in the variability in the usage of particular genes, reactions, and pathways, which

would expand on our investigation of potential usage based on presence in the DNA of

organisms in host stool. Another important extension is to generalize our method for com-

paring hosts from di�erent pre-de�ned groups (disease states, countries, diets) to identify

gene families that are stable in one group (e.g., healthy controls) but variable in another
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(e.g., patients). Since metagenomic samples contain substantial heterogeneity, investigating

group di�erences in functional variability could allow the detection of di�erent trends from

the more common comparison of means.

4 Conclusion

This study present a novel statistical method that provides a �ner resolution estimate of

�functional redundancy� [58] in the human microbiome than was previously possible. We

found that most biological pathways, including tRNA charging, central carbon metabolism,

and bacterial secretion, have both invariable and variable components. Some variable genes

have surprisingly broad phylogenetic distributions, and Proteobacteria emerge as a major

source of variable genes. Since Proteobacteria have also been linked to in�ammation and

metabolic syndrome [47], we speculate that baseline in�ammation may be one variable in-

�uencing functions in the gut microbiome.

5 Methods

5.1 Data collection and processing

Stool metagenomes from healthy human guts were obtained from three sources:

1. two American cohorts from the Human Microbiome Project [16], n = 42 samples

selected;

2. a Chinese cohort from a case-control study of type II diabetes (T2D) [25], n = 44

samples from controls with neither type II diabetes nor impaired glucose tolerance;

3. and a European cohort from a case-control study of glucose control [26], n = 37 samples

from controls with normal glucose tolerance.

After downloading these samples from NCBI's short read archive (SRA), the FASTA-formatted

�les were mapped to KEGG Orthology (KO) [59] protein families as previously described

[27]. For consistency, each sample was rare�ed to a depth of 1.5×107 reads, and additionally,
as reads from HMP were particularly variable in length, they were therefore trimmed to a

uniform length of 90 bp.

For each sample, we used ShotMAP to detect how many times a particular gene family

matched a read (�counts�; we add one pseudocount for reasons described below). The bit-

score cuto� for matching a protein family was selected based on the average read length of
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each sample as recommended previously [27]. For every gene family in every sample, we also

computed the average family length (AFL), or the average length of the matched genes within

a family. Finally, we also computed per-sample average genome size using MicrobeCensus [28]

(http://github.com/snayfach/MicrobeCensus). These quantities were used to estimate

abundance values in units of RPKG, or reads per kilobase of genome equivalents [28].

These RPKG abundance values were strictly positive with a long right tail and highly

correlated with the variances (Spearman's r = 0.99). This strong mean-variance relationship

is likely simply because these abundances are derived from counts that are either Poisson or

negative-binomially distributed. We therefore took the natural log of the RPKG values as a

variance stabilizing transformation. Because log(0) is in�nite, we add a pseudocount before

normalizing the counts and taking the log transform. Since there is no average family length

(AFL) when there are no reads for a given gene family in a given sample, we impute it in

those cases using the average AFL across samples.

5.2 Model �tting

We �t a linear model to the data matrix of log-RPKG D of log-RPKG described above, with

n gene-families by m samples, to capture gene-speci�c and dataset-speci�c e�ects:

Dg,s = Gg +
∑
y∈Y

Iy,sXg,y + εg,s (2)

where g ∈ [1, n] is a particular gene family, s ∈ [1,m] is a particular sample, Gg is the grande

or overall mean of log-RPKG
∑

s
Dg,s

m
for a given gene family g, Y is the set of studies, Iy,s

is an indicator variable valued 1 if sample s is in study y and 0 otherwise, Xg,y is a mean

o�set for gene family g in study y, and the residual for a given gene family and sample are

given by εg,s. For each gene family, the variance across samples of these εg,s, which we term

the �residual variance� or V ε
g , becomes our statistic of interest.

Overall trends in these data are explained well by this model, with an R2 = 0.20. The

residuals, which are approximately symmetrically distributed around 0, represent variation

in gene abundance not due to study e�ects.

5.3 Modeling residual variances under the null distribution

Having calculated this statistic V ε
g for each gene family g, we then need to compare this

statistic to its distribution under a null hypothesis H0. This requires us to model what the

data would look like if in fact there were no surprisingly variable or invariable gene families.

To do this, we use the negative binomial distribution to model the original count data (before
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adding pseudocounts and normalization to obtain RPKG).

The negative binomial distribution is commonly used to model count data from high

throughput sequencing. It can be conceptualized as a mixture of Poisson distributions with

di�erent means, which themselves follow a Gamma distribution. Like the Poisson distribu-

tion, the negative binomial distribution has an intrinsic mean-variance relationship. How-

ever, instead of a single mean-variance parameter as in the Poisson, the negative binomial

can be described with two, a mean parameter and a �size� parameter, which we refer to here

as k such that k = µ2

σ2−µ . k ranges from (0,∞), with smaller values corresponding to more

overdispersion (i.e., higher variance given the mean) and larger values approaching, in the

limit, the Poisson distribution.

To model the case where no gene family has unusual variance given its mean value, i.e.,

our null hypothesis, we assume that the data are negative-binomially distributed with the

observed means µg,y for each gene g and study y, but where the amount of overdispersion is

modeled with a single size parameter ky for each study y:

H0 : V ε
g = V ε

g |Dg,s ∼ NB(µg,y, ky)

Halt : V ε
g 6= V ε

g |Dg,s ∼ NB(µg,y, ky)

To estimate this k̂y, the overall size parameter for a given study y, we estimate the mode

of per-gene-family size parameters kg,y within data set y, using the method-of-moments

estimator for each kg,y. We accomplish this by �tting a Gaussian kernel density estimate to

the log-transformed kg,y values, and then �nding the k̂y value that gives the highest density.

(From simulations, we found that the mode method-of-moments was more robust than the

median or harmonic mean: see Supplemental Figure S2.) We can then easily generate count

data under this null distribution, add a pseudocount and normalize by AFL and AGS, �t the

above linear model, and obtain null residual variances V ε0
g using exactly the same procedure

described above.

Statistical signi�cance is then obtained by a two-tailed test:

pg =

#

((
V
ε0
g −V

ε0
g

V
ε0
g

)2

≥
((

V εg−V
ε0
g

V
ε0
g

)2
))

+ 1

B + 1

Here, B refers to the number of null test statistics V ε0
g (in this case, B = 750), and the

overlined test statistics refer to their mean across the null distribution.

The resulting p-values are then corrected for multiple testing by converting to FDR

q-values using the procedure of Storey et al. [60] as implemented in the qvalue package

in R [61]. An alternative approach to determining signi�cance is based on the bootstrap.
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While using a parametric null distribution allows us to explicitly model the null hypothesis,

it also breaks the structure of covariance between gene families, which may be substantial

because genes are organized into operons and individual genomes within a metagenome. This

structure can, optionally, be restored using a strategy outlined by Pollard and van der Laan

[62]. Instead of using the test statistics V ε0
g obtained under the parametric null as is, we

can use these test statistics to center and scale bootstrap test statistics V ε′
g , which we derive

from applying a cluster bootstrap with replacement from the real data and then �tting the

above linear model (2) to the resampled data to obtain bootstrap residual variances:

V ε0′
g =

((
V ε′
g − V ε′

g

sd(V ε′
g )

)
× sd(V ε0

g )

)
+ V ε0

g

A similar non-parametric bootstrap approach has previously been successfully applied to

testing for di�erences in gene expression [63].

As expected, when the residuals are plotted in a heatmap as in Figure S6, variable gene

families are generally brighter (i.e., more deviation from the mean) than invariable gene

families, though not exclusively: this is because our null distribution, unlike the visualization,

models the expected mean-variance relationship. We visualize this information by scaling

each gene family by its expected standard deviation under the negative binomial null (i.e.,

by the mean root variance
∑
b∈[1,B]

√
V ε0
gb
/B) (Figure S7).

5.4 Power analysis

The test we present controls α as expected if the correct size parameter k is estimated from

the data (Supplemental Figure S2a-b). Estimating this parameter accurately is known to be

di�cult, however, particularly for highly over-dispersed data [64], and in this case we must

also estimate this parameter from a mixture of true positives and nulls. We �nd that the

mode of per-gene-family method-of-moments estimates is more robust to di�erences in the

ratio of variable to invariable true positives (Supplemental Figure S2e-g) than the median

or harmonic mean (the harmonic mean mirrors the approach in Yu et al. [23]).

Power analysis was performed on simulated datasets comprising three simulated studies.

For each study, 1,000 gene families were simulated over n ∈ {60, 120, 480, 960} samples.

Null data were drawn from a negative-binomial distribution with a randomly-selected size

parameter k in common to all gene families, which was drawn from a log-normal distribu-

tion (log-mean= −0.65, sd= 0.57). Gene family means were also drawn from a log-normal

(log mean= 2.94, sd = 2.23). True positives were drawn from a similar negative-binomial

distribution, but where the size parameter was multiplied by an e�ect size z (for variable
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gene families) or its reciprocal 1/z (for invariable gene families). The above test was then

applied to the simulated data, and the percent of Type I and II errors was calculated by

comparing to the known gene family labels from the simulation. Using similar parameters

to those estimated from our real data, we see that α decreases and power approaches 1

with increasing sample size (see Supplemental Figure S3) and that n = 120 appears to be

su�cient to achieve control over α.

However, at n = 120, we also noted that α appeared to be greater for variable vs.

invariable gene families (Supplemental Figure S4), possibly because accurately detecting

additional overdispersion in already-overdispersed data may be intrinsically di�cult. We

therefore performed additional simulations to determine q-value cuto�s corresponding to an

empirical FDR of 5%. We calculated appropriate cuto�s based on datasets with 43% true

positives and a variable:invariable gene family ratio ranging from 0.1 to 10, taking the median

cuto� value across these ratios (Supplementary Table S7). Using these cuto�s, the overall

dataset had 45% true positives and a variable:invariable gene family ratio of 0.43.

5.5 Calculating phylogenetic distribution of gene families

The phylogenetic distribution (PD) of KEGG Orthology (KO) families was estimated using

tree density [40]. We �rst obtained sequences of each full-length protein annotated to a

particular KO, and then performed a multiple alignment of each family using ClustalOmega

[65]. These multiple alignments were used to generate trees via FastTree [66]. For both the

alignment and tree-building, we used default parameters for homologous proteins.

For all families represented in at least 5 di�erent archaea and/or bacteria (6,703 families

total), we then computed tree densities, or the sum of edge lengths divided by the mean tip

height. Using tree density instead of tree height as a measure of PD corrects for the rate of

evolution, which can otherwise cause very highly-conserved but slow-evolving families like

the ribosome to appear to have a low PD [40]. Empirically, this measure is very similar to

the number of protein sequences (Supplemental Figure S8), but is not as sensitive to high or

variable rates of within-species duplication: for example, families such as transposons, which

exhibit high rates of duplication as well as copy-number variation between species, have a

larger number of sequences than even very well-conserved proteins such as RNA polymerase,

but have similar or even lower tree densities, indicating that they are not truly more broadly

conserved.

Many protein families (8,931 families) did not have enough observations in order to

reliably calculate tree density, with almost all of these being annotated in only a single

bacterium/archaeum. For these, we predicted their PD by extrapolation. To predict PD,

18



we used a linear model that predicted tree density based on the total number of annotations

(including annotations in eukaryotes). In �ve-fold cross-validation, this model actually had

a relatively small mean absolute percentage error (MAPE) of 13.1%. We also considered a

model that took into account the taxonomic level (e.g., phylum) of the last common ancestor

of all organisms in which a given protein family was annotated, but this model performed

essentially identically (MAPE of 13.0%). Predicted tree densities are given in Supplemental

Table S6. The PD of gene families varied from 1.2 (an iron-chelate-transporting ATPase

only annotated in H. pylori) to 434.9 (the rpoE family of RNA polymerase sigma factors).

5.6 Gene family enrichment

We were interested in whether particular pathways were enriched in several of the gene

family sets identi�ed in this work. For subsets of genes (such as those with speci�cally

low PD), a 2-tailed Fisher's exact test (i.e., hypergeometric test) was used instead to look

for cases in which the overlap between a given gene set and a KEGG module or pathway

was signi�cantly larger or smaller than expected. The background set was taken to be the

intersection of the set of gene families observed in the data with the set of gene families that

had pathway- or module-level annotations. p-values were converted to q-values as above.

Finally, enrichments were enumerated by selecting all modules or pathways below q ≤ 0.25

that had positive odds-ratios (i.e., enriched instead of depleted).

5.7 Associations with clinical and taxonomic variables

We were interested in using a non-parametric approach to detect association of residual

RPKG with clinical and taxonomic variables (e.g., the inferred abundance of a particular

phylum via MetaPhlan2). To take into account potential study e�ects in clinical and taxo-

nomic variables without using a parametric modeling framework, we used partial Kendall's

τ correlation as implemented in the ppcor package for R [67], coding the study e�ects as

binary nuisance variables. Kendall's τ was used over Spearman's ρ because of better han-

dling of ties (an issue with taxonomic variables especially, since many, particularly at the

�ner-grained levels, were often zero). The null distribution was obtained by permuting the

clinical/taxonomic variables within each study 250 times, and then re-assessing the partial

τ . Finally, p-values were calculated by taking the fraction of null partial correlations equally

or more extreme (i.e., distant from zero) than the real partial correlations.

Phylum-level relative abundances were predicted from the shotgun data using MetaPhlAn2

with the --very-sensitive �ag [46].
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5.8 Phylum-speci�c tests

We created taxonomically-restricted data sets in which the abundance of each gene family

was computed using only metagenomic reads aligning best to sequences from each of the

four most abundant bacterial phyla (Bacteroidetes, Firmicutes, Actinobacteria, and Pro-

teobacteria). Phylum-speci�c data were obtained from the overall data as follows. First, the

NCBI taxonomy was parsed to obtain species annotated below each of the four major bac-

terial phyla (Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria); these species

were then matched with KEGG species identi�ers. Next, the original RAPSearch2 [68] re-

sults were �ltered, so that the only reads remaining were those for which their �best hit� in

the KEGG database originally came from the genome of a species belonging to the speci�c

phylum in question (e.g., E. coli for Proteobacteria). Finally, when performing the test, nor-

malization for average genome size was accomplished by normalizing gene family counts by

the median abundance of a set of 29 bacterial single-copy gene families [69], which had been

�ltered in the same phylum-speci�c way as all other gene families; this approach is similar to

the MUSiCC method for average genome size correction [70]. This also controls for overall

changes in phylum abundance. Finally, k̂y values for individual studies were estimated based

on the non-phylum-restricted data, since the expectation that < 50% of gene families were

di�erentially variable might not hold for each individual phylum. We used the same q-value

cuto�s as in the overall test to set an estimated empirical FDR (Supplementary Table S7).

Otherwise, tests were performed as above.

5.9 Codebase

The scripts used to conduct the test and related analyses are available at the following URL:

http://www.bitbucket.org/pbradz/variance-analyze

Counts of reads mapped to KEGG Orthology (KO) groups and average family lengths

for all of the samples used in this study can be obtained at FigShare:

• https://figshare.com/s/fcf1abf369155588ae41 (overall)

• https://figshare.com/s/90d44cffdfb1d214ef83 (phylum-speci�c)

6 Author contributions

PHB performed the experiments and analyses. PHB and KSP developed the test, designed

the experiments, wrote the paper, and read and approved the �nal manuscript.
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8 Figures

Figure 1: The residual variance statistic captures variation in gene families after
accounting for between-study variation. The left panels (�original abundances�) show
�lled circles representing log-abundance (RPKG) for gene families from the KEGG Orthology
(KO), with per-study means shown in solid horizontal lines and the distance from these
means shown as dashed vertical lines. The right hand panels (�residuals�) show the same
gene families after �tting a linear model that accounts for these per-study means, with
an accompanying density plot showing the distribution of these residuals. V ε

g values in
bold underneath density plots are the calculated variances of these residuals. These gene
families are sets of orthologs corresponding to A) the waaL family of lipopolysaccharide O-
antigen ligases, an immunogenic component of Gram-negative bacterial outer membranes,
and B) the vicR family of OmpR family transcriptional regulators that is involved in two-
component vic signaling, is conserved across many Gram-positive bacteria, and is essential
in Streptococcus pneuomoniae [71]. Despite having similar overall mean log-abundances
and similar magnitude study-speci�c e�ects, waaL has much higher residual variance across
individual metagenomes than vicR.

Figure 2: Most pathways include a mixture of both variable and invariable gene
families. A) Stacked bar plots show the fraction of invariable (blue), non-signi�cant (gray),
and variable (red) gene families annotated to KEGG Orthology pathway sets (rows), at dif-
ferent false discovery rate (FDR) cuto�s (color intensity). Only gene families with at least
one annotated bacterial or archaeal homolog are counted. B) Fraction of strongly invariable,
non-signi�cant, and strongly variable gene families within the ribosomes of di�erent king-
doms. Row labels with only one kingdom indicate gene families unique to that kingdom,
while rows with multiple kingdoms (e.g. �Eukaryotes/archaea�) indicate gene families shared
between these two kingdoms. As expected, the bacterial ribosome is completely invariable.

Figure 3: Variable and invariable gene families within broad biological pathways
separate by gene function. A-C) Heatmaps showing scaled residual log-RPKG for gene
families (rows) involved in A) tRNA metabolism, B) central carbohydrate metabolism, and
C) bacterial secretion systems. Variable (red) and invariable (blue) gene families are clustered
separately, as are samples within a particular study (columns). log-RPKG values are scaled
by the expected variance from the negative-binomial null distribution.
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Figure 4: Phylogenetic distribution (PD) of gene families partially explains gene
family variability. Scatter plot shows log10 PD (x-axis) vs. log10 residual variance statistic
(y-axis). Red points are signi�cantly variable while blue points are signi�cantly invariable.
Gene families in speci�c functional groups are also highlighted in di�erent colors, speci�cally
the bacterial ribosome (pale green), the type VI secretion system (or �T6SS�; orange), the
KinABCDE-Spo0FA sporulation control two-component signaling (yellow), and hypothetical
genes (tan squares). Gene families that are signi�cantly invariable (ribosome and sporulation
control) or signi�cantly variable (hypothetical genes and the T6SS) at an estimated 5% FDR
are outlined in black. The bacterial ribosome, as expected, has very high PD and is strongly
invariable. The Type VI secretion system genes, in contrast, are conserved but variable, while
some genes involved in the Kin-Spo sporulation control two-component signaling pathway
have low PD but are invariable. Only gene families with at least one annotated bacterial or
archaeal homolog are shown.

Figure 5: Variable gene families correlate with the predicted abundance of Pro-
teobacteria. Bar plots give the fraction of gene families in each category (signi�cantly
invariable, non-signi�cant, and signi�cantly variable, 5% FDR) that are signi�cantly corre-
lated to predicted relative abundances of phyla, as assessed by MetaPhlan2, using partial
Kendall's τ to account for study e�ects and a permutation test to assess signi�cance. Aster-
isks give the level of signi�cance by chi-squared test of non-random association between gene
family category and the number of signi�cant associations. (***: p ≤ 10−8 by chi-squared
test after Bonferroni correction; **: p ≤ 10−4.)

Figure 6: Phylum-speci�c tests reveal hidden variability in the most prevalent
bacterial phyla. A) Bars indicate the fraction of phylum-speci�c variable gene families
that were also variable overall (red, �both tests�) or that were speci�c to a particular phylum
(yellow, �phylum-speci�c test only�). B) For the Bacteroidetes- (left) and Firmicutes- (right)
speci�c tests, the proportion of invariable (blue), non-signi�cant (gray), and variable (red)
gene families, at an estimated 5% FDR (using cuto�s from overall test). Pathways with
at least 5 total gene families across both phyla are shown. C) Rectangular Venn diagrams
showing the proportion of Bacteroides-speci�c (left), shared (center, bright), and Firmicutes-
speci�c (right) invariable (blue) and variable (red) gene families for each of the pathways
enumerated in B.
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9 Additional Files

Figure S1: Schematic shows overview of data processing and method. A) Data is
processed by taking reads from multiple datasets (represented by letters here) with a certain
number of samples (represented by SA, SB, etc.). These reads will eventually map to multiple
gene families G. MicrobeCensus [28] is used to estimate average genome size, while Shotmap
[27]is used to map reads, yielding both matrices of counts (right hand side) and matrices
of average lengths of the best-hit proteins (�average family length� or AFL). AFL and AGS
estimates are used to normalize counts. B) We calculate our statistic and assign p-values
as follows. First, we normalize counts from Shotmap using AFL and AGS, log-transform
the resulting reads per kilobase of genome (RPKG), then apply a simple linear model to �t
dataset- and gene-family-speci�c e�ects. The resulting residuals (�residual log RPKG�) form
a matrix of G genes by SA+SB+SC samples. We take the variance across all samples for each
gene to obtain a 1xG vector of residual variances. To get a null distribution, we can either
use data generated from a negative binomial �t, or, optionally, from a negative binomial �t
integrated with (shaded section) bootstrap resampling. For the negative binomial �t, from
the count matrices, we estimate the mean of each gene in each dataset, as well as dataset-
speci�c overdispersion parameters k. We then use these to make simulated count datasets
(�× B� indicating that this card is replicated once for each of B simulations), which we process
as in the case of the real data, yielding simulated log-RPKG matrices and simulated residual
variances for each gene family. For the resampling (if applicable), we sample with replacement
from each count dataset, yielding resampled counts. We process these in the same way to
obtain resampled residual variances. Finally, if using the resampled data, we center and scale
the resampled residual variances using per-gene-family means and standard deviations from
the simulated residual variances; otherwise, we simply take the values from applying the
test to the negative binomial simulations. These form the background distribution (bottom
panel, solid curve) for each gene in G (�× G� indicating that this card is replicated once for
each of G genes). The actual observed residual variance (dashed line) is then compared to
this distribution to obtain p-values (gray shaded area).
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Figure S2: Size parameter estimation a�ects power and α. For each mock dataset
y, simulated null data is generated from a negative binomial distribution, �xing the size
parameter ky but allowing the mean µg,y to vary for each of 1,000 genes; simulated true-
positive gene families are drawn from a negative-binomial distribution with size equal to
zky or ky/z, where z is the e�ect size. A-C) The choice of estimator a�ects the accuracy
of size estimates. The mode method-of-moments estimator (C, y-axis) more accurately
estimates the true size speci�ed in the simulation (x-axis) than the harmonic mean (A, y-
axis) or median (B, y-axis), and is more tolerant to di�erences in the ratio of true-positive
variable and invariable gene families (colors). D-E) When the size parameter is known, α
(D) and power (E) are well controlled, with α approximately equal to 0.05 at p ≤ 0.05 and
power approaching 1. Here, each simulation comprises three mock studies with di�erent size
parameters, mirroring our actual data. Bar heights are means from 4 simulations and error
bars are ±2 SD. The proportion of variable:invariable gene families was 0.5 and 44% of genes
were true positives.

Figure S3: Size parameter estimation a�ects power and α. α (A) is minimized
and power (B) is maximized when the mode method-of-moments estimator is used to get

estimates of the study-speci�c dispersion parameters k̂y. Bars are from 4 simulations. The
proportion of variable:invariable gene families was 0.4 and 43% of genes were true positives.

Figure S4: The mode estimator is robust to changes in the proportion of true
positives and the ratio of variable to invariable gene families. α (A-C) and power
(D-F) as a function of the proportion of true positives (x-axis) and the ratio of variable to
invariable true positives (y-axis) for n = 120. α = 0.05 and power = 1 are shown in color-
bars to the left of each heatmap for reference. α and power are calculated overall (left), for
variable gene families (center), and for invariable gene families (right). In general, α is better
controlled for the invariable gene families than for the variable gene families; we therefore
use di�erent empirical cuto�s for each set of genes.

Figure S5: We identify signi�cantly variable and invariable gene families. Density
plots of distributions of residual variance (VG) statistics for signi�cantly invariable (blue
dashed line), non-signi�cant (black solid line), and signi�cantly variable (red dashed line)
gene families. The distributions have the expected trend (e.g., signi�cantly variable gene
families tend to have higher residual variance) but also overlap, indicating the importance
of the calculated null distribution. The inset shows the proportion of zero values for the
non-signi�cant (black) and signi�cantly invariable (blue) gene families with VG falling in
the lowest range (vertical dashed lines), indicating that the test di�erentiates between gene
families that only appear invariable because they have few observations, and gene families
that are consistently abundant yet invariable.
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Figure S8: Number of leaves is correlated with tree density, but tree density cor-
rects for the overall rate of evolution. The number of leaves (i.e., individual sequences)
is plotted vs. tree density on a log-log scatter plot, with each circle representing one gene
family. Two outliers with lower density than expected are plotted in colors: a putative trans-
posase (green) and a Staphylococcus leukotoxin (red). Both families have large numbers of
sequences from the same organism.

Figure S9: Variable gene families are less-often correlated to measured host char-
acteristics. A) Bar plots give the fraction of gene families with at least one bacterial or
archaeal representative in each category (signi�cantly invariable, non-signi�cant, and sig-
ni�cantly variable) that are signi�cantly correlated to various sample characteristics, using
partial Kendall's τ to account for study e�ects and a permutation test to assess signi�cance.
These sample characteristics are average genome size (AGS), the ratio of Bacteroidetes to
Firmicutes (B/F ratio), and a measure of α-diversity (Shannon index). (***: p ≤ 10−8 by
chi-squared test after Bonferroni correction; **: p ≤ 10−4.)

Figure S6: Heatmap showing signi�cantly variable and invariable gene families
(unscaled). Heatmap showing residual log-RPKG abundances (i.e., after normalizing for
between-study e�ects and gene-speci�c abundances) of signi�cantly invariable (blue) and
signi�cantly variable (red) gene families. Variable and invariable gene families are clustered
separately, while samples are clustered within each dataset.

Figure S7: Heatmap showing signi�cantly variable and invariable gene families
(scaled). As with S6, but residual log-RPKG abundances scaled by their expected variance
under the negative binomial null model (see Methods).

Table S1: Module and pathway enrichments for variable and invariable gene sets (Fisher's
exact test q ≤ 0.25).

Table S2: Module and pathway enrichments for variable/high-PD and invariable/low-PD
gene sets (Fisher's exact test q ≤ 0.25).

Table S3: Module and pathway enrichments for gene families with invariable abundances in
every phylum-speci�c test (Fisher's exact test, q ≤ 0.25).

Table S4: Module and pathway enrichments for gene families variable in each phylum-speci�c
test (Fisher's exact test, q ≤ 0.25).
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Table S5: SRA IDs and characteristics (read length, average genome size from Microbe-
Census) for samples used in this study.

Table S6: Predicted tree densities.

Table S7: q-value cuto�s to reach a given empirical FDR, estimated from simu-
lation.

empirical FDR q value cuto�, variable q value cuto�, invariable

5% 0.0238 0.108
10% 0.0669 0.180
25% 0.181 0.294
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