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Abstract

Background: Branching events in phylogenetic trees reflect strictly
bifurcating and/or multifurcating speciation and splitting events. In the presence
of gene flow, a phylogeny cannot be described by a tree but is instead a directed
acyclic graph known as a phylogenetic network. Both phylogenetic trees and
networks are typically reconstructed using computational analysis of multi-locus
sequence data. The advent of high-throughput sequencing technologies has
brought about two main scalability challenges: (1) dataset size in terms of the
number of taxa and (2) the evolutionary divergence of the taxa in a study. The
impact of both dimensions of scale on phylogenetic tree inference has been well
characterized by recent studies; in contrast, the scalability limits of phylogenetic
network inference methods are largely unknown. In this study, we quantify the
performance of state-of-the-art phylogenetic network inference methods on
large-scale datasets using empirical data sampled from natural mouse populations
and synthetic data capturing a wide range of evolutionary scenarios.
Results: We find that, as in the case of phylogenetic tree inference, the

performance of leading network inference methods is negatively impacted by both
dimensions of dataset scale. In general, we found that topological accuracy
degrades as the number of taxa increases; a similar effect was observed with
increased sequence mutation rate. The most accurate methods were probabilistic
inference methods which maximize either likelihood under coalescent-based
models or pseudo-likelihood approximations to the model likelihood. Furthermore,
probabilistic inference methods with optimization criteria which did not make use
of gene tree root and/or branch length information performed best – a result that
runs contrary to widely held assumptions in the literature. The improved accuracy
obtained with probabilistic inference methods comes at a computational cost in
terms of runtime and main memory usage, which quickly become prohibitive as
dataset size grows past thirty taxa.
Conclusions: We conclude that the state of the art of phylogenetic network

inference lags well behind the scope of current phylogenomic studies. New
algorithmic development is critically needed to address this methodological gap.

Keywords: Phylogenetic network; Phylogenetic inference; Phylogenomics;
Phylogenetics; Scalability; Large-scale; Incomplete lineage sorting; Gene flow;
Mutation; Performance study; Mouse

Background
In recent studies, gene flow – the process by which genetic material is exchanged

between different populations and/or species existing at the same point in time –

has been shown to have played a major role in the evolution of a diverse array of

metazoans, including humans and ancient hominins [1, 2], mice [3], and butterflies
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[4]. Each of these organisms (as well as many others across the Tree of Life [5, 6, 7])

has a phylogeny, or evolutionary history, which cannot be represented as a tree,

where a branching event reflects strict bifurcating and/or multifurcating specia-

tion/splitting and subsequent genetic isolation of the resulting species/populations.

In these cases, the phylogeny takes the more general form of a directed acyclic graph

known as a phylogenetic network [8].

Similar to phylogenetic trees, phylogenetic networks are typically inferred using

computational analyses of multi-locus biomolecular sequence data. The most widely

used approach is a concatenated analysis which estimates a single phylogeny for all

loci [9]. Methods used for this analysis typically only account for sequence muta-

tion and gene flow [10]; all local genealogical discordance is ascribed to gene flow.

Representative examples include NeighborNet [11] and the least squares method

of Schliep [12], which we refer to here as SplitsNet. A primary complication with

the concatenated approach is that different loci in a genome commonly exhibit lo-

cal genealogical incongruence (i.e., gene trees can differ from each other and the

species phylogeny in terms of topology and/or branch length) due to the complex

interplay of different evolutionary processes that shaped the genomes. These in-

clude gene flow, sequence mutation, gene duplication and loss, recombination, and

incomplete lineage sorting (ILS). ILS occurs when genetic drift causes lineages from

two isolated populations to coalesce at a time more ancient than their most recent

ancestral population, and is known to play a crucial role in the evolution of much

of the Tree of Life [9].

In contrast to concatenated analysis, multi-locus methods infer species phylogenies

in the presence of these evolutionary processes acting in combination. The most

widely used multi-locus methods perform inference that account for a broad set of

evolutionary processes, including sequence mutation, gene flow, and ILS [13, 14,

15]. Multi-locus methods are broadly classified by whether or not they impose the

requirement that a phylogenetic hypothesis be specified a priori.

The main focus of our study is the category of methods that perform full inference

by searching among all possible phylogenies defined on a set of taxa. Many of these

methods utilize a gene-tree/species-phylogeny reconciliation approach (or summary

approach), where local trees estimated from different loci – referred to as gene trees

– are used as input rather than sequence alignments from the loci [16, 17, 18, 19].

The full inference procedure therefore requires two phases: a first phase where a

set of gene trees is estimated from biomolecular sequence alignments, and a second

phase where the gene trees are used to estimate a species phylogeny. The multi-locus

methods are further classified by the optimization criterion used for inference. Ear-

lier parsimony-based approaches (e.g., the method of [20], which we refer to here as

MP, which stands for maximum parsimony) utilize the minimize deep coalescence

(MDC) criterion proposed by [8], which seeks the species phylogeny that minimizes

the number of deep coalescences necessary to explain a given set of gene trees. More

recently, probabilistic approaches perform phylogenetic network inference under an

explicit evolutionary model that combines the coalescent model with biomolecular

substitution models. Examples include two different methods proposed by [21] that

are implemented in the PhyloNet software package [22], which differ primarily in

their use of branch length information: one method uses the approach of [23] to
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calculate model likelihood using only gene tree topologies, and the other method

substitutes an alternative approach to calculate model likelihood using gene tree

topologies and branch lengths. We therefore refer to these methods as MLE (which

stands for maximum likelihood estimation) and MLE-length, respectively. These

probabilistic approaches have been noted to have high computational requirements,

and model likelihood calculations were found to be a major performance bottleneck

[24]. For this reason, pseudo-likelihood approximations to full model likelihood cal-

culations have been proposed, including the method of [24] (referred to here as MPL,

which stands for maximum pseudo-likelihood), which substitutes pseudo-likelihoods

in the optimization criterion used by MLE, and SNaQ (Species Networks applying

Quartets) [25], which combines the use of pseudo-likelihoods under a coalescent-

based model with quartet-based concordance analysis [26]. As suggested by [14],

the techniques used by [27] to infer a species tree directly from an input sequence

alignment – effectively integrating over gene tree distributions at different loci –

would provide an alternative to reconciliation-based species network inference, but

scalable inference methods using this alternative approach have yet to be proposed

and remain for future work as of this writing; preliminary experiments by [14]

suggest that the scalability challenges of this approach will be greater than with

state-of-the-art reconciliation-based approaches. All of these multi-locus methods

address problems that are either known or suspected to be NP-hard [14, 15]. For

this reason, heuristics are necessary to enable efficient inference under the optimiza-

tion criteria associated with these methods. The practical design of the heuristics

are essential to accuracy and computational efficiency.

A second category of methods requires a fixed phylogeny to be required as input.

We note that the fixed-phylogeny inference problem is contained within the general

phylogenetic inference problem. Fixed-phylogeny inference methods are typically

used to address high-level questions such as detecting gene flow (e.g., the D-statistic

[1] and its extensions [13]), inferring ancestral population sizes and other popula-

tion genetic quantities (e.g., the CoalHMM method [28] which utilizes a hidden

Markov model (HMM) to capture within-genome sequence dependence), and de-

tecting genomic loci involved in gene flow (e.g., PhyloNet-HMM [29]). Since the

primary focus of our study is the general phylogenetic network inference problem

rather than special cases thereof, we do not consider these methods further.

Thanks to rapid advances in genome sequencing and related biotechnologies [30],

large-scale phylogenetic studies involving many dozens of genomes or more are now

common (see [31] for a survey). These developments pose two primary scalability

challenges: (1) the number of taxa in a study, and (2) sequence divergence, which

reflects the evolutionary divergence of the taxa in a study.

For the special case of phylogenetic tree inference from phylogenomic data, recent

studies have examined these scalability challenges [32, 17, 33] (including evolution-

ary scenarios involving gene flow [34, 35]) and proposed new methods for large-scale

analysis [32, 36, 37]. In contrast, for the more general case of phylogenetic network

inference, the limits of scalability on inputs with more than a few dozen taxa as

well as performance at these limits have yet to be established. What are the com-

putational requirements of state-of-the-art methods, and what is their accuracy on

large-scale inputs with dozens of taxa or more?
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To resolve these open questions, we conducted a scalability study of state-of-

the-art phylogenetic network inference methods on both simulated and empirical

datasets. To our knowledge, our study is the first to address these open questions.

We chose representative methods from the different categories discussed above:

Neighbor-Net and SplitsNet (from the category of concatenated methods), MP

(from the category of parsimony-based multi-locus inference methods), MLE and

MLE-length (from the category of probabilistic multi-locus inference methods that

use full likelihood calculations), and MPL and SNaQ (from the category of proba-

bilistic multi-locus inference methods that use pseudo-likelihood approximations to

the full model likelihood). Following the practice of prior simulation studies [25, 14],

our performance comparison focuses on the simpler case of search among phyloge-

netic networks with the correct number of network nodes (which is one in all model

conditions). The more general case of search among network hypotheses with dif-

fering network nodes necessitates the use of model selection techniques to balance

model fit versus complexity, and is suspected to be more difficult for this reason

[14, 38]. Our performance study utilized empirical data from past studies of natural

mouse populations and synthetic data which were simulated to capture a wide range

of evolutionary scenarios reflecting prior empirical studies. The performance of the

phylogenetic network inference methods on the empirical and synthetic data was

evaluated using three performance measures: (1) computational time, (2) memory

usage, and (3) topological accuracy.

Results
Performance evaluation on simulated datasets

Runtime and memory usage. We began by assessing the effect of dataset size on

computational time and memory requirements. We focused on the probabilistic

multi-locus methods since they were the most accurate methods in our study (see

below). Of the full likelihood methods in this category, we focused on MLE instead

of MLE-length since the former is more accurate than the latter when inferred

gene trees were used as input. The other methods – SNaQ and MPL – consisted of

pseudo-likelihood-based approaches.

Based on sampled dataset sizes, the full likelihood method had runtime and mem-

ory usage that was strictly greater than the pseudo-likelihood-based methods (Fig-

ure 1i). The performance difference approached an order of magnitude. For all meth-

ods, runtime grew super-linearly as dataset size increased. The observed growth in

runtime is consistent with previous performance studies [39, 40, 25]. For all meth-

ods, runtime became impractical on datasets that were much smaller than those

used in current genomic studies. Given a maximum runtime of one week, the full

likelihood and pseudo-likelihood-based methods were able to analyze datasets with

13 and 20 taxa, respectively. The two classes of methods required more than a week

of runtime on datasets with 17 and 25 taxa, respectively. We also attempted anal-

yses of datasets with 30, 40, 50, and 100 taxa; none of these analyses had finished

after multiple weeks of runtime as of this writing.

Relative to runtime performance, the main memory requirements of the different

methods contrasted to a greater degree. On datasets with more than a dozen taxa,

the full likelihood method exhibited super-linear growth in main memory usage,
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similar to its performance in terms of runtime (panel (ii) in Figure 1). MLE’s main

memory requirements are projected to become prohibitive on datasets with more

than a few dozen taxa. In contrast, the pseudo-likelihood-based methods had peak

memory usage below 10 GiB on datasets with up to 25 taxa. MPL’s memory usage

was flat as dataset size increased from 10 to 15 taxa, and increased by just a few

GiB as dataset size increased from 15 to 25 taxa. SNaQ’s memory usage was largely

constant at around a few GiB on datasets with sizes up to 25 taxa.

Topological accuracy. We next examined topological accuracy of the inference

methods as dataset scale grew in two ways: the number of taxa and sequence di-

vergence. We evaluated the topological accuracy of inferred phylogenetic networks

using bipartition-based measures (see Methods) that generalize the Robinson-Foulds

distance, a widely used bipartition-based distance defined on phylogenetic trees. We

also explored an alternative tripartition-based measure [41]. Consistent with a prior

study [25], we found that the tripartition-based measure was too sensitive for useful

performance comparison: small topological edits tend to result in a large change in

the tripartition-based distance. For this reason, we focus on comparisons using the

bipartition-based measures.

As shown in Figures 2, 3 and 4, the methods fell into three categories based upon

their topological accuracy: on all model conditions except for the model condition

with the highest sequence divergence (the seven-taxon model condition with mu-

tation rate θ = 1.6), (1) SNaQ was the most accurate, (2) MLE, MPL, and MP

had intermediate accuracy relative to the other methods, and (3) MLE-length and

the concatenated methods (Neighbor-Net and SplitsNet) were the least accurate

methods. Note that, for each replicate, the same set of gene trees was provided to

each multi-locus method as input. For each method, the largest topological error

was seen on the largest datasets (relative to smaller datasets) and on the model con-

ditions with the highest mutation rate (relative to model conditions with smaller

mutation rates).

Overall, topological accuracy degraded as the number of taxa increased (Figures

2 and 4). Two exceptions to this observation were noted on the smallest datasets

in our study: SNaQ’s topological accuracy increased as dataset size increased from

five to nine taxa, and a similar general trend was observed with MPL and MP on

datasets with between five and ten taxa.

Topological accuracy of the multi-locus methods also degraded as sequence diver-

gence increased due to larger mutation rate θ (Figure 3). Compared to the rest of

our simulation study, the seven-taxon model condition with mutation rate θ = 1.6

was unique for three reasons. First, on this model condition, all methods returned

the highest topological error observed in our simulation study. Second, the relative

performance of methods on this model condition was unlike the rest of the study:

MP, MPL, and SNaQ had comparable topological accuracy (within standard er-

ror), and MLE was least accurate. Third, the relative difference in performance was

among the smallest observed in our study (e.g., the difference in topological accu-

racy between the two most accurate methods was smaller on this model condition

than any others in our study).

We next examined the impact of gene tree error on the downstream accuracy of

the multi-locus inference methods. When gene tree topologies and branch lengths
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were perfectly accurate, MLE-length was more accurate than all other multi-locus

methods, including MLE (Figure 5). In fact, MLE-length inferred topologies that

were virtually identical to the model phylogeny. MLE-length’s performance using

true gene trees was diametrically opposite to its performance using inferred gene

trees, where it was strictly the least accurate among all multi-locus methods. Of the

remaining methods, MP was the least accurate overall, and all other methods were

intermediate in accuracy with the following exceptions. On the smallest datasets

with five taxa, MP and SNaQ were comparable in accuracy. On the largest datasets

with nine taxa, MLE-length’s performance advantage over SNaQ diminished and

the two had roughly comparable accuracy; furthermore, MPL and MP had compa-

rable accuracy on this model condition. As dataset sizes increased from five to nine

taxa, MP and MPL’s accuracy decreased, SNaQ’s accuracy improved, and MLE

and MLE-length’s accuracy was largely unchanged. We note that the last obser-

vation differs from the experiment using inferred gene trees, whereas the first two

observations are largely consistent with the experiment using inferred gene trees.

All multi-locus methods were more accurate using true gene trees as input in place

of inferred gene trees.

Performance evaluation on empirical datasets

Our performance study utilized empirical samples from natural populations of Mus

musculus subspecies and sister species (M. spretus, M. spicilegus, M. macedonicus,

and M. cypriacus). Prior studies detected gene flow between the M. musculus sub-

species [42] and between M. musculus domesticus and M. spretus [43, 44]. We fo-

cused our comparison on the most accurate methods from each category of multi-

locus methods: MLE from the full likelihood methods, SNaQ from the pseudo-

likelihood-based methods, and MP. We omitted the concatenated methods from

our comparison since they were among the least accurate of all methods in our

simulation study.

At a coarse level, probabilistic inference using MLE was able to accurately detect

gene flow in the empirical datasets. Specifically, the model selection criterion used

by MLE consistently chose solutions with gene flow (i.e., phylogenetic networks

with one network node) as opposed to solutions without gene flow (i.e., phyloge-

netic trees). However, as shown in Table 1, all of the methods inferred phylogenies

with topologies that differed across replicates (with the exception of the phyloge-

netic trees inferred by MLE, which were never preferred by the model selection

criteria). Greater topological agreement was observed among phylogenies inferred

using the same method as opposed to phylogenies inferred using different methods.

Furthermore, greater topological agreement was observed when solutions were con-

strained to have no gene flow, as opposed to solutions involving gene flow. Based on

intra-method comparison, the greatest topological agreement was observed among

MLE trees, followed by MP trees, SNaQ trees, MP networks, MLE networks, and

then SNaQ networks. Based on inter-method comparison, the greatest topological

agreement was observed between MP trees and MLE trees, between MP networks

and MLE networks, and between MLE networks and SNaQ networks; all other

cross-method comparisons involved topological distances that were larger.
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Discussion
The probabilistic multi-locus methods were the most accurate methods in our study,

but they were also among the most computationally intensive methods in terms of

runtime. Given a week of runtime, none of these methods completed analyses of

datasets with more than a few dozen taxa. Our finding resolves an open question

in the literature: can state-of-the-art phylogenetic network inference methods scale

to dataset sizes typically seen in today’s phylogenomic studies? Surprisingly, the

answer is no. We were particularly surprised by our finding given the methodolog-

ical tradeoff made by the pseudo-likelihood-based methods, which use a statistical

approximation to full likelihood calculations under the coalescent model to improve

scalability. Based on the discussion in [25], we expected that the tradeoff would yield

order(s) of magnitude improvements in runtime compared to full likelihood meth-

ods, at the cost of reduced topological accuracy. Instead, for datasets with sequence

length on the order of 100 kb, the tradeoff only scaled up analyses of around 20

taxa to around 25 taxa. On datasets with more than 30 taxa, the computational re-

quirements of the probabilistic multi-locus methods are projected to be nearing the

limits of the most powerful computational clusters available to us. This dataset size

is the largest in our study and yet is not considered large in the context of today’s

phylogenomic studies. We expect that, like the full likelihood method, the pseudo-

likelihood-based methods’ memory requirements will grow super-linearly as dataset

sizes increase past an inflection point. Finding the inflection point will require ad-

ditional experiments using larger dataset sizes than those explored in our study.

However, we note that the runtime requirements of pseudo-likelihood methods will

prove prohibitive on datasets with far more than 25 taxa.

The relative topological accuracy of the methods depended upon whether gene

trees were inferred with error – as is the case in virtually all empirical studies – or

whether true gene trees were available – a purely theoretical scenario (outside of a

few special settings such as experimental evolution in the laboratory). The inferred

gene tree error observed in our study (Supplementary Table 2) was comparable to

that of other performance studies [45, 46].

When gene trees were inferred, SNaQ was the most accurate method. Our finding

overturns a widely held assumption (e.g., [25] asserted that SNaQ was less accurate

than MLE and MLE-length). While pseudo-likelihood-based methods were designed

to tradeoff inference accuracy for computational efficiency, they are not necessar-

ily less accurate than full likelihood methods. For each replicate, all multi-locus

methods used exactly the same set of gene trees as input. We attribute the per-

formance difference to the issue of rooting phylogenies. Prior phylogenetic studies

have confirmed the difficulty of accurately rooting phylogenies [47, 48, 49]. Cru-

cially, SNaQ was the only multi-locus method that treated gene trees as unrooted

inputs to a quartet-based analysis. In contrast, the other multi-locus methods used

rooted gene trees as input and assumed that the root of each gene tree was in-

ferred without error. Intuitively, treating an incorrectly inferred root as correct will

propagate error “downstream” during subsequent inference. We note that it is not

clear whether using unrooted gene trees is always the best approach. For example,

the input for an intermediate approach could utilize a distribution of gene trees

for each locus, where the distribution summarized confidence in different rooted
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versions of unrooted topologies (as well as confidence in different topologies). This

approach would strike a balance between two extremes: one where gene tree rooting

is completely uncertain (where SNaQ’s approach would be preferred) and the other

where there is complete certainty (where the other multi-locus methods’ approach

would be reasonable). A Bayesian framework would naturally incorporate gene tree

distributions as input.

It is widely assumed in the literature that inference under models incorporating

branch length information will be generally more accurate than inference under re-

lated models that ignore branch length information [27] (although see the review

of Nakhleh [10] for an opposing viewpoint). Our study included probabilistic meth-

ods that perform inference under both types of models. In particular, MLE-length

and MLE were identical methods with one major exception: the former calculated

model likelihood using gene tree topologies and branch lengths, whereas the latter

substituted the approach of [23] which calculates model likelihood using only gene

tree topologies. When true gene trees were available, MLE-length was the most

accurate method. On the other hand, when using inferred gene trees, MLE was

more topologically accurate than MLE-length, which we attribute to the difficulty

of accurately inferring phylogenetic branch lengths (as noted by [38, 50, 51]). Our

findings are consistent with the observations of [14] on a simulation study using a

species phylogeny with four taxa (as well as a supplementary set of experiments

involving slightly larger species phylogenies); our study more generally shows that

the performance comparison holds as dataset size and divergence increases, and

further quantifies the impact upon topological accuracy using bipartition-based

distance measures. We note that the performance comparison of methods based

on their use of branch length information was similar to the comparison of meth-

ods that used either rooted or unrooted gene tree inputs. We again observed two

extremes: with perfect branch length information (and perfect topological informa-

tion), MLE-length was strictly more accurate than MLE and the other methods;

however, when gene tree branch lengths were inferred with error, treating branch

lengths as correct resulted in reduced accuracy compared to methods that ignored

branch lengths. Once again, an intermediate approach might offer more flexibility

and possible improvements in inference accuracy. One possibility would be infer-

ence using a probability distribution over gene tree topologies and branch lengths

for every locus in a multi-locus dataset. The distributions would reflect confidence

in “upstream” inference. Such an approach would likely increase computational

requirements even further.

Consistent with other performance studies examining the related problem of scal-

able phylogenetic tree estimation [17, 52, 53], the parsimony-based multi-locus

method were not as accurate as the most accurate probabilistic multi-locus method.

The concatenated methods were among the least accurate methods in our study.

Increasing either of the two dimensions of scale – the number of taxa and sequence

divergence – generally reduced the topological accuracy of each method (where true

gene trees were not available). Both observations are consistent with related studies

of phylogenetic tree inference in the presence of gene flow [34, 35]. One contributing

factor was inferred gene tree error. Increased sequence divergence due to increasing

mutation rates reduced the accuracy of inferred gene trees, which is consistent with
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theoretical expectations and empirical observations about long branch attraction

in other phylogenetic studies [52]. We note that, compared to the effect of increas-

ing the mutation rate, increasing dataset size had relatively little effect upon gene

tree inference error but generally increased downstream species phylogeny infer-

ence error. The heuristic approaches necessary for analysis of NP-hard optimization

problems also contribute to the methods’ scalability; practical issues such as local

optima in the search space can pose major challenges to the performance of these

heuristics. The relative difference in topological accuracy of gene tree inference com-

pared to species phylogeny inference suggests that the heuristics used for the former

performed better than the heuristics used for the latter. One minor exception to

these scalability trends was observed. On the smallest datasets, the topological ac-

curacy of SNaQ and MP was either unchanged or improved somewhat as dataset

size increased from 5 to 9 taxa. We attribute this finding to long branch attraction.

The impact of long branches on parsimony-based phylogenetic inference is well un-

derstood [53], and we hypothesize that SNaQ’s use of quartet-based inference may

cause it to be more vulnerable to long branch attraction issues compared to the

other probabilistic methods in our study.

The findings from our empirical study were consistent with prior studies [44, 42].

Using an information theoretic approach for model selection, MLE consistently

inferred historical gene flow between the sampled mouse populations in our study.

However, none of the methods were robust to the choice of taxa sampled from

the populations under study. This suggests low support which could be due to

several causes, including the impact of dataset size and sequence divergence on

inference error (consistent with the simulation study) and/or a soft polytomy due

to a short branch involving M. musculus subspecies (consistent with the consensus

phylogeny proposed by Guénet and Bonhomme [54]). Furthermore, the topological

distances observed in the empirical study were larger than the topological errors

observed in comparable datasets from our simulation study. Even assuming that a

species phylogeny inferred on one of the replicates was correct (or close to correct),

the topological distances between inferred phylogenies imply that inferences on

many of the other replicates would have error comparable to or greater than those

observed in the simulation study. One contributing factor is that the empirical

datasets may pose a more difficult inference problem since they reflect a broader

array of evolutionary processes than those involved in the simulation study. For

example, positive selection and recombination have been shown to play significant

roles in the evolution of the natural house mouse populations that were sampled in

our study [44, 43, 42].

Conclusions
In this study, we examined the scalability of state-of-the-art phylogenetic network

inference methods. We quantified the performance of the methods in terms of com-

putational runtime, main memory usage, and topological accuracy on datasets that

varied along two separate dimensions of scale: the number of taxa and sequence

divergence.

The methods face tremendous scalability challenges on datasets that are well

within the scope of today’s phylogenomic studies. In terms of accuracy, the proba-

bilistic multi-locus methods consistently outperformed the other methods, which is
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consistent with the state of the art of phylogenetic tree inference. For this reason,

we generally recommend using the former – particularly SNaQ, a pseudo-likelihood-

based approach – rather than the latter. The latter included concatenated methods

– the predominant approach used in today’s phylogenomic studies. More taxa and

greater sequence divergence degraded the topological accuracy of all methods. While

the probabilistic multi-locus methods retained a performance advantage in terms of

topological accuracy, their computational requirements were excessive. On datasets

with fewer than 20 taxa and sequence length of 100 kb, the pseudo-likelihood-based

multi-locus methods generally completed analysis within a day using around a few

GiB of main memory or less; the full likelihood multi-locus method was able to

analyze datasets with around 10 taxa within a day and required around 10 GiB

of main memory. The computational requirements of the probabilistic multi-locus

methods grew rapidly as the number of taxa increased and became prohibitive on

datasets with more than 30 taxa. We note that, in a sense, the two dimensions

of scale act in opposition: increasing taxon sampling can help reduce evolutionary

divergence and inference error, but comes at the cost of increasing the number of

taxa which increases runtime requirements and can also increase inference error as

well.

We were surprised by several findings which differed from the existing litera-

ture. We expected that the pseudo-likelihood-based approaches would scale to much

larger datasets than full likelihood methods were capable of analyzing. However, this

was clearly not the case. Second, contrary to the assumption of SNaQ’s developers

[25], SNaQ’s use of pseudo-likelihood-based calculations did not lead to reduced in-

ference accuracy compared to the full likelihood methods (MLE and MLE-length).

In fact, SNaQ was the most accurate method in our study (except in the mostly

theoretical situation where true gene trees were available). Third, we came to a

conclusion that we feel is understated in the existing literature: when it comes to

gene trees, details matter – a lot! The accuracy with which gene trees are rooted

appears to impact the downstream accuracy with which species phylogenies are in-

ferred. Furthermore, the accuracy of gene tree branch length inference has a similar

effect. The only situation in which MLE-length’s use of gene tree branch length in-

formation resulted in more accurate species phylogenies compared to methods that

ignored branch length information was when gene tree branch lengths were provided

without error. Otherwise, MLE-length was among the least accurate methods in our

study.

We highlight several aspects of our study for future work. Most importantly, our

study has highlighted the clear need for new phylogenetic inference methods that

can cope with the scale of current phylogenomic studies, involving as many as hun-

dreds of genomes; the near future will bring studies that are orders of magnitude

larger. We anticipate that our study foreshadows new methodological development

on the topic of large-scale phylogenetic network inference. We highlighted one pos-

sibility involving methods that performed phylogenetic inference using distributions

of gene tree topologies and/or branch lengths as input. We note that such an ap-

proach would only magnify the scalability issues that we observed in our study.

An expanded empirical study with larger datasets will be possible as future studies

follow up on initial reports of gene flow among natural populations (particularly
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involving different species) and perform additional sequencing. Finally, we propose

that the dichotomy between the different categories of methods in our study rep-

resents an algorithmic engineering opportunity. By synthesizing these approaches,

advantages in one category of methods can help offset disadvantages in the other.

Methods
Simulated datasets

Generation of random model trees using r8s. Random model trees were generated

using r8s version 1.7 [55]. The following script was used to simulate random birth-

death model trees for 5, 6, 7, 9, 10, 15, 20, and 25 taxa:

begin rates;

simulate diversemodel=bdback seed=<integer random seed>

nreps=20 ntaxa=<5 or 6 or 7 or 9 or 10 or 15 or 20 or 25 or 30> T=0;

describe tree=0 plot=chrono_description;

end;

Twenty random model trees (replicates) were generated using r8s. Using a custom

script, the branches of each random model tree were scaled by a factor x so that

the model height phylogeny h is 5.

Generation of random model networks using ms. We added a single network edge

to each random model tree using the following procedure: (1) choose a random

time unit tM such that 0.1 ≤ t ≤ h
4 , and (2) add unidirectional migration, with a

rate of 0.4 which was used in [29], between two taxa or subpopulations such that

migration occurs from tM − 0.1 to tM + 0.1. A single outgroup was added for each

model network at coalescent time 20. We simulated 1000 gene trees for each random

model network using ms [56]. The following ms command was used to generate the

model network:

ms <number of taxa> <number of gene trees>

-T -I <number of taxa> <n_1 n_2 ... n_k> -ej <t_0> i j

-em <t_1> i j 0.4 -em <t_2> i j 0

The -T parameter outputs the gene trees that represent the history of the sampled

taxa. The -I parameter is followed by k that represents the number of subpopula-

tions. The list of integers (n1 n2 . . . nk) represents the number of taxa sampled for

each subpopulation. We sampled one taxa per subpopulation. The -ej parameter

specifies to move all lineages in subpopulation i to subpopulation j at time t0. The

first -em parameter sets migration at time t1 from subpopulation j to subpopulation

i to 0.4. The second -em parameter sets migration at time t2 from subpopulation j

to subpopulation i to zero.

Simulation of sequences using seq-gen. The gene trees output by ms were used

as input to seq-gen [57], a sequence evolution program, which can simulate the

evolution of sequences according to a finite-sites model. For each local genealogy

simulated by ms, we simulated DNA sequence evolution using the Jukes-Cantor

mutation model [58]. The total length of the simulated sequences was 100 kb dis-

tributed equally across all the local genealogies (100 bp per local genealogy). The

following command was used to simulate the evolution of sequences:
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seq-gen -mHKY -l 100 -s <0.02 or 0.08 or 0.32 or 1.6>

< genetreefile > seqfile

The -mHKY parameter specifies the Jukes-Cantor mutation model. The -s param-

eter specifies mutation rate θ of 0.02, 0.08, 0.32, or 1.6. The -l parameter specifies

the length of a sequence in base pairs.

Phylogenomic inference using inferred gene trees.

A single pipeline with two stages was used to infer a species phylogeny.

Stage one: local gene tree inference using FastTree. FastTree [59, 60] under the

Jukes-Cantor model was used to infer the maximum-likelihood unrooted gene tree

for each sequence alignment generated by seq-gen. Using a custom script, we con-

verted the branch lengths from expected number of substitutions to coalescent time

using equation (3.1) in [61]. The unrooted gene trees were rooted based on the out-

group using PAUP* [62]. Each unrooted gene tree was used as a backbone and the

outgroup was added to root each gene tree under the maximum-likelihood criterion.

After rooting each inferred gene tree, the outgroup taxon and its pendant edge was

pruned.

Stage two: reconciliation of local gene trees into species phylogeny. The inferred

gene trees were used as input to MLE-length, MLE, MP, MPL, and SNaQ. MLE-

length, MLE, MP, and MPL are implemented as part of the PhyloNet [22] package.

The following is a sample NEXUS script file that was used to execute the PhyloNet

commands:

#NEXUS

BEGIN TREES;

TREE gt1 = gene tree 1 in Newick format

TREE gt2 = gene tree 2 in Newick format

...

...

...

TREE gt1000 = gene tree 1000 in Newick format

END;

BEGIN PHYLONET;

InferNetwork_ML (all) 1 -bl;

InferNetwork_ML (all) 1;

InferNetwork_MP (all) 1;

InferNetwork_MPL (all) 1;

END;

The commands located in the TREES block contain the inferred gene trees. The

commands located in the PHYLONET block contain the inference methods and pa-

rameters used to infer a species network. The InferNetwork ML command infers

a species network with one reticulation node using maximum likelihood. The -bl

parameter specifies the use of branch lengths of gene trees in the inference. In the

absence of -bl, only the topologies of gene trees are used in the inference. The In-

ferNetwork MP command infers a species network with one reticulation node using
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a parsimony-based method under the MDC criterion. The InferNetwork MPL com-

mand infers a species network with one reticulation node using maximum pseudo-

likelihood.

The following is a sample script used to execute the SNaQ commands:

d=readTrees2CF(<gene trees filename>);

T=readStartTop(<starting topology filename>, d);

snaq!(T, d, hmax=1, <output filename>);

END;

The gene trees are summarized as quartet concordance factors using the read-

Trees2CF function. The readStartTop reads the tree used as a starting point for

the search. The starting tree was estimated using the MDC criterion. The snaq!

command estimates a network using the input quartet concordance factors T and

starting from tree d. hmax specifies the number of reticulation nodes.

Phylogenomic inference using true gene trees

The true gene trees generated by ms were used as input to the following phyloge-

nomic inference methods: MLE-length, MLE, MP, MPL, and SNaQ.

Concatenated analysis

For the concatenated analyses, we inferred species networks using two distance-

based methods implemented in the phangorn software package [63]: (1) NeighborNet

[11], a clustering method that extends the neighbor-joining algorithm, and (2) the

least squares method of Schliep [12]. Throughout this manuscript, we refer to the

latter as SplitsNet, since it infers a split graph. The Hamming distance matrix was

used as input to the distance-based concatenated methods.

Measuring accuracy

Accuracy was computed by comparing the inferred phylogeny to the model phy-

logeny using minimum-weight edge cover [64]. This measure compares the simi-

larity between the set of trees induced by the inferred and model networks using

Robinson-Foulds (RF) distance [65], and then identifies the minimum sum of weights

in a bipartite graph where a weight is the RF distance between a tree induced in

the inferred network and a tree induced in the model network. The RF distance

counts the number of false positive bipartitions (bipartitions found only in the in-

ferred network) and false negative bipartitions (bipartitions found only in the model

network). A tripartition-based measure, which finds the proportion of tripartitions

that are not shared between two networks, was also used to compute the distance

between an inferred and model rooted networks [64]. Finally, the splits distance,

which identifies the proportion of bipartitions found in the inferred species network

but not in true species network and proportion of bipartitions found in true species

network but not in inferred species network, was used. The second evaluation crite-

ria used was the computational requirements of the inference methods, which was

measured in terms of running CPU time and memory usage.
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Empirical datasets

We used genomic sequence data sampled from natural mouse populations. A recent

study has highlighted historical gene flow between some of the populations in our

study [3]. The samples were collected in previous studies [3, 42, 66, 43, 67, 68].

The collected sample information contained 100 haploid mouse genomes that are

either wild or wild-derived samples. The procedure that was used to generate the

sequence data is described in [3]. The sequences were filtered to 414,376 SNPs that

were genotyped across all samples.

Datasets were constructed from the empirical samples using the following sam-

pling procedure. For each dataset, we randomly selected a sample from each of

the following mouse species or subspecies: Mus musculus domesticus, M. musculus

musculus, M. musculus castaneus, M. spretus, M. spicilegus, M. macedonicus, and

M. cypriacus. The sampling was repeated twenty times to obtain twenty datasets.

We estimated recombination-free intervals for use as the input loci to the phy-

logenetic network inference methods. This required inferring recombination break-

points. We obtained breakpoints using RecHMM, a hidden Markov model-based

method [69], resulting in 3013 recombination-free genomic regions. FastTree using

Generalized Time-Reversible model [70] was used to infer the gene tree for each

recombination-free genomic region resulting in 3013 gene trees. We used rat (the

rn5 assembly downloaded from the UCSC Genome Browser [71]) as an outgroup to

root each gene tree generated by FastTree.

MLE, MPL, MP, and SNaQ were used to infer species networks with zero or one

reticulation nodes. For inferred networks with zero reticulation nodes, Robinson-

Foulds distance was used to measure the topological distance between all inferred

network replicates. For inferred networks with one reticulation node, the minimum

weight edge cover distance was used to compute the topological distance between all

inferred network replicates. The tripartition measure was also used to compute the

distance between all inferred network replicates with one reticulation node for the

MLE, MPL, and MP methods. For the concatenated methods (Neighbor-Net and

SplitsNet), we used the splits distance to measure the topological distance between

all inferred network replicates.
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All software implementations and datasets are publicly available under open license.

More information and download URLs can be found at https://gitlab.msu.edu/
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Figure 1 The impact of dataset size on the computational requirements of the probabilistic
inference methods. Results are shown for MLE, MPL, and SNaQ analyses of simulated datasets.
(i) Average runtime (h) and (ii) main memory usage (GiB) are shown with standard error bars
(n = 5).
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Figure 2 The impact of dataset size on the topological accuracy of multi-locus methods. The
model conditions had dataset sizes ranging from 5 to 25 taxa and a mutation rate θ of 0.08. Five
inferred networks – the phylogenetic networks inferred by a parsimony-based inference method
(MP), two full likelihood inference methods (MLE and MLE-length), and two
pseudo-likelihood-based inference (MPL and SNaQ) methods – were compared against the model
phylogeny in each replicate. The minimum-weight edge cover distance between an inferred
network and the model network was used to measure topological accuracy. Average distance and
standard error bars are shown (n = 20).
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Figure 3 The impact of mutation rate on the topological accuracy of multi-locus inference
methods. We assessed the performance of MLE to characterize the full likelihood inference
methods since MLE was generally more accurate than MLE-length (Figure 2). The four model
conditions had mutation rate θ ranging from 0.02 to 1.6 and 7 taxa in each replicate. The
minimum-weight edge cover distance between an inferred network and the model network was
used to measure topological accuracy. Average distance and standard error bars are shown
(n = 20).
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Figure 4 The impact of dataset size on the topological accuracy of the multi-locus inference
methods and the concatenated methods. The splits distance between the inferred network and
the model network was used to measure topological accuracy. Otherwise, figure layout and
description are identical to Figure 2.
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Figure 5 Topological accuracy of multi-locus methods using true gene trees instead of inferred
gene trees. The model conditions involved dataset sizes ranging from five to nine taxa. The
minimum-weight edge cover distance between an inferred network and the model network was
used to measure topological accuracy. Average distances and standard error bars are shown
(n = 20).
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Tables

Table 1 Topological distances between inferred phylogenies in the empirical study.
Phylogenies were inferred using the most accurate methods from each category of multi-locus
methods: MLE (a full likelihood probabilistic method), MP (a parsimony-based method), and SNaQ
(a pseudo-likelihood-based probabilistic method). The top matrix shows the normalized
Robinson-Foulds distance between solutions that excluded gene flow (i.e., phylogenetic trees). The
bottom matrix shows the normalized minimum weight edge cover distance between solutions that
included gene flow (i.e., phylogenetic networks with one network node). Average (standard error)
topological distance is shown (n = 20). Since the matrices are symmetric, only upper triangular
entries are shown.

Average (SE) topological distance
between inferred phylogenetic trees

MLE MP SNaQ
MLE 0 (0) .26 (.01) .55 (.02)
MP .05 (.011) .79 (.02)

SNaQ .08 (.009)

Average (SE) topological distance
between inferred phylogenetic networks

MLE MP SNaQ
MLE .183 (.012) .59 (.03) 1.16 (.03)
MP .156 (.023) 1.19 (.04)

SNaQ .295 (.019)
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