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Abstract

Motivation: Next Generation Sequencing (NGS) has enabled studying structural genomic variants
(SVs) such as duplications and inversions in large cohorts. SVs have been shown to play important
roles in multiple diseases, including cancer. As costs for NGS continue to decline and variant databases
become ever more complete, the relevance of genotyping also SVs from NGS data increases steadily,
which is in stark contrast to the lack of tools to do so.
Results: We introduce a novel statistical approach, called DIGTYPER (Duplication and Inversion
GenoTYPER), which computes genotype likelihoods for a given inversion or duplication and reports
the maximum likelihood genotype. In contrast to purely coverage-based approaches, DIGTYPER
uses breakpoint-spanning read pairs as well as split alignments for genotyping, enabling typing also
of small events. We tested our approach on simulated and on real data and compared the genotype
predictions to those made by DELLY, which discovers SVs and computes genotypes. DIGTYPER
compares favorable especially for duplications (of all lengths) and for shorter inversions (up to 300 bp).
In contrast to DELLY, our approach can genotype SVs from data bases without having to rediscover
them.
Availability: https://bitbucket.org/jana ebler/digtyper.git
Contact: t.marschall@mpi-inf.mpg.de

1 Introduction
As of today, several population-scale sequencing
projects have been finalized (The 1000 Genomes
Project Consortium, 2015; The Genome of the
Netherlands Consortium, 2014; The UK10K Con-
sortium, 2015). These projects have revealed an
overwhelming amount of new genetic variants and
provide the basis to gain deeper insight into the
principles of evolution and the association of vari-
ants with phenotypes, where disease risks play a
particularly important role.

A crucial step in integrating variants into studies
on evolution and disease is to genotype and phase
them. That is, one has to first determine their zy-
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gosity status (genotyping) and then partition the
alleles at heterozygous loci into two groups reflect-
ing the two parents of the individual (phasing).
Thereby, the accuracy of the second step crucially
hinges on the first step. This implies that one has to
operate at utmost accuracy when genotyping—only
if genotypes have been determined carefully, vari-
ants can finally serve the purposes of downstream
studies.

Genotyping variants from next-generation-
sequencing (NGS) data, however, can pose
involved computational challenges. While geno-
typing single nucleotide polymorphisms (SNPs)
from NGS data already is a routine procedure,
genotyping more complex and larger variants is
not. Recent advances have pointed out how to
do this for shorter (≤ 20-30 bp) insertions and
deletions (indels), larger deletions and mobile
element insertions (The 1000 Genomes Project
Consortium, 2015; Hehir-Kwa et al., 2016). How-
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ever, the majority of inversions, duplications and
translocations are still lacking sound models that
allow to determine their genotypes from NGS
data. So far, only a few such variants have made
their way into phased reference panels (The 1000
Genomes Project Consortium, 2015; Hehir-Kwa
et al., 2016). The distinguishing feature of the
already phased such variants usually is that they
stem from genomic regions that exhibit particu-
larly favorable sequence context. This, however,
applies for only little of them. The major part of
inversions, duplications and translocations stem
from genomic regions that are “inaccessible”,
difficult to analyze by short read data. Therefore,
simple ad-hoc approaches to genotyping such
variants do not work.

In this paper, we will provide statistical mod-
els and efficient computation schemes that allow to
genotype tandem duplications and inversions even
though the corresponding read data does not nec-
essarily stem from highly “accessible” genomic re-
gions. The challenge in this is to control the sta-
tistical uncertainties that affect the NGS data that
give evidence of such variants. In the first place,
aligning the affected reads poses particular difficul-
ties for short read alignment programs such that
many of their alignments remain ambiguous. As a
result, many likely variant affected reads are uncer-
tain in terms of their placement. If an alignment is
incorrect, that is, the read does not even stem from
the variant region in question, it provides no in-
sight into the zygosity status whatsoever. Second,
even if correct, one can often interpret an alignment
in multiple ways, which may lead to contradicting
statements about the existence of variants.. The
latter case is due to the fact that fragment length
can vary and/or the ambiguous placement of align-
ment breakpoints, although the alignment overall
indicates the correct placement, among other is-
sues.

Here, we have been inspired by the models pre-
sented by Hehir-Kwa et al. (2016, Supplement, Sec-
tion 5.2), which have led to genotypes of high ac-
curacy for deletions and insertions. These models
follow the principle to infer the genotype that is
most likely in terms of the read data that supports
it. A major problem of such a maximum likelihood
(ML) approach for computing genotypes from NGS
read data is that a naive evaluation of all relevant
reads, together with their uncertainties, results in

exponential runtime algorithms. The exponential
“explosion” in runtime is a common problem when
taking uncertainties into additional account. Here,
for the first time, we present a computation scheme
that has runtime linear in the number of the rele-
vant data, even if affected by uncertainties.

An additional advantage of the rigorous statis-
tical approach presented is that the genotype like-
lihoods computed, that is the probabilities that a
variant is absent, heterozygous or homozygous, are
highly reliable. Unlike for simple ad-hoc counting
strategies, our approach does not get confused by
the uncertainties involved. As usual, the genotype
likelihoods can be further used for filtering, thereby
controlling the quality level one intends to operate
on in downstream analyses, which, in particular,
includes computational phasing pipelines. Very of-
ten, the underlying data may not allow to correctly
distinguish between two genotypes, because the un-
certainties affecting the data are too large, or there
is too little coverage. In this case, the genotype
likelihoods should reflect such situations, such that
downstream method can come to the appropriate
conclusions.

Related Work. In comparison to discovery,
there are relatively few approaches that allow
to genotype non-SNP genetic variants. Most of
these approaches specialize in genotyping insertions
and/or deletions of varying length. We cite a few
prominent and widely used such approaches and
refer the interested reader to Lin et al. (2015) for
further references. Platypus (Rimmer et al., 2014)
generally focuses on smaller indels, but, by mak-
ing use of local assembly, can also genotype larger
ones. Pindel (Ye et al., 2009) also offers a basic
procedure for genotyping indels of length up to 50-
60 bp. GenomeStrip (Handsaker et al., 2011) has
been in use at the 1000 Genomes project (The 1000
Genomes Project Consortium, 2015) for genotyping
large deletions. MATE-CLEVER (Marschall et al.,
2013) can genotype midsize and long deletions and
has been in use at the Genome of the Netherlands
project (Hehir-Kwa et al., 2016); the most recent
version implements the framework that inspired the
present paper.

There are also well-known methods that at least
in principle allow to genotype inversions. First,
Cortex (Iqbal et al., 2012) generally offers geno-
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typing for various kinds of non-copy-number vari-
ants using a colored de Bruijn graph approach, but
has not been evaluated for inversions. GASV-PRO
(Sindi et al., 2012) offers to discover inversions and
a sound statistical model for genotyping variants
in general, however, the genotyping option has not
been evaluated for inversions.

The only method we are aware of (and believe is
the only one) that offers to genotype tandem dupli-
cations and inversions at sufficiently high quality,
as per publicly available evaluation experiments,
since being in use at the 1000 Genomes project,
is DELLY (Rausch et al., 2012). This explains why
we will focus on DELLY as a comparison partner
in our benchmarking experiments.

Contributions. In this paper, we describe a
novel statistical framework called DIGTYPER
(Duplication and Inversion GenoTYPER) that al-
lows to genotype inversions and tandem duplica-
tions while keeping control of the uncertainties that
affect the corresponding read data. We provide an
efficient algorithm, by which to compute the geno-
type likelihoods while taking uncertainties into ac-
count. The algorithm has runtime linear in the
number of the affected read alignments, which over-
comes a classical obstacle when dealing with uncer-
tain data, because naive approaches lead to expo-
nential runtime. As results, we demonstrate that
we achieve very favorable results in comparison to
DELLY (Rausch et al., 2012), which, to our knowl-
edge, is the only approach available that allows
to genotype tandem duplications and inversions
at operable accuracy levels. On simulated data,
we clearly outperform DELLY for tandem duplica-
tions. For inversions, we are on a par with DELLY
for longer inversions. DELLY, however, cannot
genotype shorter inversions, for which we achieve
performance rates similar to those for longer in-
versions. Last but not least, unlike DELLY, our
method is able to acknowledge too large uncertain-
ties, in which case it will correctly point out the
corresponding ambiguities.

2 Methods
Our goal is to compute genotypes for given inver-
sions and tandem duplications based on aligned se-
quencing reads. To this end, we adapt a procedure

that we employed previously to genotype insertion
and deletions, see Hehir-Kwa et al. (2016, Supple-
ment, Section 5.2). For every variant to be geno-
typed, we consider all reads from the corresponding
region. This set of reads, referred to as R, is used
to determine the genotype for the respective vari-
ant. The goal is to compute probabilities for the
three possible genotypes Gi, for i = 0, 1, 2, given
all reads R, where G0, G1, G2 represent that the
variant in question is absent, heterozygous or ho-
mozygous, respectively. We use the reads fromR to
compute a posterior probability for each genotype.
Finally the genotype for which the probability is
highest is the result.

For each read R ∈ R, let P(A+(R)) denote the
probability that its alignment is correct and let
P(A−(R)) denote the probability that it is not.
Then, P(Gi|A+(R)) is the probability for genotype
Gi under the assumption that the read is mapped
correctly and P(Gi|A−(R)), the probability for a
genotype under the assumption that the alignment
of the read is wrong. Using Bayes’ theorem and the
assumption of constant priors over the genotypes,
the probability for a particular genotype given all
reads can be expressed as follows (Hehir-Kwa et al.,
2016):

P(Gi|R) ∝
∏
R∈R

[
P(A+(R))P(Gi|A+(R))+

(1− P(A+(R)))P(Gi|A−(R))
]
.

(1)

Note that this expression can be evaluated in
time linear in |R|, and hence avoids to explore
all 2|R| possible combinations of correctly/wrongly
mapped reads, which would result in exponential
runtime. In the following, we derive the terms
needed to evaluate (1). We set

P(Gi|A−(R)) = P(Gi),

where P(Gi) expresses our prior belief in genotype
Gi, because if the considered read does not stem
from the region it does not give any information
about the genotype.

The probabilities for the alignment of the read
to be correct, P(A+(R)), and to be incorrect,
P(A−(R)), can be obtained as follows.

P(A−(R)) = max
{

0.05, pwrong1 · pwrong2 + (1−
pwrong1) · pwrong2 + pwrong1 · (1− pwrong2)

}
(2)
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where

pwrong1 = 10−
MapQuality(left)

10

pwrong2 = 10−
MapQuality(right)

10

are the probabilities for the two read ends of a read
pair not to be mapped correctly, so pwrong1 gives
P(A−(R)) for the left end and analogously pwrong2
for the right end of the considered read pair. The
MapQuality of a read is directly taken from the
input BAM file. By considering the maximum in
Equation 2, we ensure to never fully “trust” a read
alignment, and hence account for mapping uncer-
tainties not recognized by the read aligner. Finally
P(A+(R)) is computed as 1− P(A−(R)).

The only yet unspecified probability to evalu-
ate (1) is P(Gi|A+(R)). Its choice depends on
whether inversions or duplications are considered,
as we see in the following sections.

2.1 Approach for Inversions
For inversions two cases must be distinguished, de-
pending on the positions of the mapped reads in the
dataset. In both cases, reads supporting the vari-
ant and such that support the reference are used
for the computation of the likeliest genotype.

2.1.1 Reversed Read Evidence

In this case one end of the paired-end read is
mapped left or right of the inversion and the other
end is mapped completely inside the inversion. Un-
der the assumption of no alignment uncertainty, a
read stems from a sequence that contains the in-
version if and only if the orientation of the read
end located inside the inversion is the same as for
the other read end. This means the read end in
the inversion was reversed when being mapped to
the reference. See Figure 1 for an example. Such a
read supports the presence of the considered inver-
sion in the sequence. Let R1 be a read that sup-
ports the inversion. According to Bayes’ theorem
and the assumption of constant priors, it holds that
P(Gi|A+(R1)) ∝ P(A+(R1)|Gi). The latter term
can be computed as follows. P(A+(R1)|G0) = 0,
because if the inversion is absent the read can-
not stem from the region. Then P(A+(R1)|G1) =
1
2 [P(A+(R1)|G0) + P(A+(R1)|G2)], reflecting the

Figure 1: Reversed Read Evidence. Above the original
read is shown and below the read is mapped to the reference.
Note that the end that stems from in between the inversion
breakpoints changes its orientation when being mapped to
the reference.

case that one randomly picks one of the two chro-
mosomal copies with only one containing the inver-
sion and then generates the read from it. These
considerations lead to the expression

P(Gi|A+(R1)) =


0 if i = 0,
1
3 if i = 1,
2
3 if i = 2.

(3)

If the orientation of the read mapped in between
the inversion breakpoints is not changed, the read
must stem from a sequence without the inversion.
Let R2 be such a read. This case is treated analo-
gously to the previous one, but this time we have
P(A+(R2)|G2) = 0, leading to

P(Gi|A+(R2)) =


2
3 if i = 0,
1
3 if i = 1,
0 if i = 2.

(4)

2.1.2 Split Read Evidence

Read pairs for which one read end stretches across
one of the inversion breakpoints cannot be mapped
by standard read mappers. To leverage these
reads for genotyping, we extended the read map-
per LASER (Marschall,T. and Schönhuth,A., 2013)
to detect inversion-type split alignments (see Fig-
ure 2). Since LASER is based on partial banded
alignments that extend seed hits, implementing this
feature only required to combine anchor alignments
of opposite directionality (showcasing the power of
this technique). When using option --inversions,
LASER output these split reads encoded as IV tags
in the BAM output.
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Figure 2: Split Read Evidence. The light part of the left
read end is reversed after mapping while the rest is not
changed. There will be a long gap between the light and
the dark part of the left read end.

For genotyping, we evaluate these tags and de-
cide whether a (split) alignment across an inversion
breakpoint supports the inversion or the reference.
After being mapped to the reference sequence, the
part of this read end located inside the inversion
breakpoints (:= A) is reversed, while the other part
outside the breakpoints (:= B) is not, as illustrated
in Figure 2. The distance between the alignments
of A and B equals length(inversion)− length(A).
To support the inversion the following requirements
have to be fulfilled besides the reversed orientation
of A: One end of part B must agree with the in-
version breakpoint the read stretches over and one
end of part A has to agree with the other inver-
sion breakpoint. The read supports the inversion if
and only if these requirements are fulfilled. Other-
wise it supports the reference sequence. Just as in
Section 2.1.1, the probability P(Gi|A+(R)) for the
genotype Gi is computed using Equation (3) and
Equation (4) for reads supporting inversion allele
and reference allele, respectively.

For split-reads P(A−(R)) is computed as

P(A−(R)) = max{0.05, 10−
MapQuality(read)

10 } (5)

Here read describes the read end which stretches
over the breakpoint. Since for split reads only these
read ends are considered, only the probability that
such an end is wrong, is taken into account. Again,
P(A+(R)) is computed as 1− P(A−(R)).

2.2 Approach for Duplications
To genotype duplications, we use a statistical
framework that considers all read pairs with at least
one read end aligned to lie completely inside the
duplication. Figure 5 shows how such read pairs

Figure 3: Definition of the insert size of a paired-end read.

can be placed on the originating duplication al-
lele and to how the resulting alignments look like.
Compared to inversions, we now have to overcome
an additional complication: No read pair gives di-
rect evidence of the reference allele. All read pairs
that originated from the reference allele could po-
tentially also have originated from the duplication
allele. Read types B and D in Figure 5 are examples
of this. For inversions, that was not the case and
we could restricted our attention to read pairs that
can uniquely be determined to either stem from the
variant allele or from the reference allele.

In the following, reads that unambigously sup-
port a duplication are denoted as supporting and
read pairs that can have originated from both alle-
les (reference/duplication) are denoted as neutral.
In order to genotype duplications, the main idea is
to consider the proportion of supporting and neu-
tral reads, which can be achieved within the same
framework as for inversions. Again, our goal is to
compute P(Gi|A+(R)) in order to evaluate Equa-
tion (1).

We will approach short and long duplications
separately since they are qualitatively different in
terms of read types shown in Figure 5. For short
duplications, read pairs of types A, B, C, D, and E
exist. Read pairs of type F do not exist when the
duplication is smaller than the fragment size (i.e.
insert size plus read lengths). For long deletions,
read pairs of type F are present but types A and C
do not exist. Note that read pairs of type E exist for
short and for long duplications, but their relative
placement on the reference genome depends on the
duplication length. For a deletion longer than the
fragment size, the order of forward and backward
read ends on the reference gets reversed as can be
seen in 5. We give a precise definition of “short”
and “long” after introducing some notation in the
following section.
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2.2.1 Insert Size Evidence

For duplications, the distance of the alignments of
the two read ends in a read pair can be leveraged
for genotyping. Consider a scenario where a read
pair stems from the duplication allele and the left
read end lies outside and the right read end lies in-
side the duplication. The right read end could have
originated from the first copy or the second copy of
the duplication in the donor genome. In the latter
case, we observe a reduced distance of the aligned
read pair, as illustrated in Figure 5, read type A.
In slight abuse of terminology, we refer to the dis-
tance of the two aligned reads as insert size, de-
picted in Figure 3. The insert size is computed by
subtracting the end position of the read end which
is mapped to the forward strand from the start po-
sition of the read end which maps to the reverse
strand. In case the orientations of the read ends
are reversed, this value is negative (Figure 3).

We adopt the common assumption (Marschall
et al., 2012) that the insert size follows a normal dis-
tribution under the null hypothesis (i.e. when the
read pair stems from the reference allele and has
been mapped correctly). Mean and standard devi-
ation of this distribution can be robustly estimated
from the aligned reads (Marschall et al., 2012). We
hence assume these quantities to be known and de-
note them as µ and σ in the following. A normal
distribution with this mean and standard deviation
is written as Nµ,σ2 .

Let ` denote the length of the duplication to be
genotyped, which we define as the length of the
repeat unit that is duplicated and therefore occurs
twice in the genome. Read pairs spanning a copy
of the duplicated sequence, such as read pairs A
and C in Figure 5, will have an observed insert
size distributed according to Nµ−`,σ2 , whereas read
pairs from the reference allele exhibit insert sizes
distributed according to Nµ,σ2 .

2.2.2 Short Duplications

We call a duplication short when its length ` is
smaller than µ+ len(ReadEnd). This implies that
read pairs of type F (Figure 5) are very unlikely to
exist.

The most important evidence for short duplica-
tions comes from read types A, B, C, and D. They
are characterized by one read end being aligned

Figure 4: Link between genotypes (left column) and distri-
butions of an observed insert size (right column) mediated
by the allele the read pair stems from (middle, blue) and, in
case of the duplication allele, by the copy of the duplication
the anchor read originates from (middle, grey). We show the
scenario where the left read end is the anchor; if the right
read end is the anchor, the roles of “first copy” and “second
copy” are swapped. Edge labels indicate probabilities.

completely inside the duplication and the other
read end being aligned (at least partially) outside
the duplication. We call the read completely inside
the duplication anchor read. As outlined above,
these read pairs can either lead to an observed
insert size distribution of Nµ,σ2 (for types B and
D) or of Nµ−`,σ2 (for types A and C). To derive
P(Gi|A+(R)), we consider how these read pairs can
be generated, as illustrated in Figure 4. The prob-
ability of whether a given read pair has originated
from the reference or from the duplication allele
obviously depends on the genotype. While they
equal 1 for homozygous genotypes, a heterozygous
genotype leads to probabilties to stem from the ref-
erence allele or duplication allele of 1/3 and 2/3, re-
spectively. The duplication allele is twice as likely
because the anchor read is completely inside the
duplicated region which exists twice on the dupli-
cation allele. In case a read came from the refer-
ence allele, we observe an insert size distribution of
Nµ,σ2 . In case it came from the duplication allele,
two scenarios are possible: either the anchor read
originated from its first copy or from it originated
from its second copy, leading to either an observed
insert size distribution of Nµ,σ2 or of Nµ−`,σ2 . The
whole process is illustrated in Figure 4.

Each path from left to right in Figure 4 con-
tributes to the probability that a given genotype
in the left column gives rise to read pairs with the
observed insert size distribution given in the right
column. By summing up all paths for each geno-
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type, we obtain

P(Gi|A+(R)) :=
1
Z

(1 · Nµ,σ2 (iR)) i = 0,
1
Z

( 2
3 · Nµ,σ2 (iR) + 1

3 · Nµ−l,σ2 (iR)) i = 1,
1
Z

( 1
2 · Nµ,σ2 (iR) + 1

2 · Nµ−l,σ2 (iR)) i = 2,

(6)

where iR denotes the insert size observed for read
R and Z is a normalization factor given by

Z := Nµ,σ2 (iR) + (
2
3
· Nµ,σ2 (iR) +

1
3
· Nµ−l,σ2 (iR))

+ (
1
2
· Nµ,σ2 (iR) +

1
2
· Nµ−l,σ2 (iR)). (7)

Read pairs of type E are processed using the same
formula. Summing over all read pairs by plugging
Equation (6) into Equation (1) yields the sought
genotype likelihoods.

2.2.3 Long Duplications

We call a duplication long when its length ` is
longer than or equal to µ + len(ReadEnd). This
makes it possible that read pairs of type F exist,
which require some extra attention. One observes
twice the number of such read pairs per duplication
allele than per reference allele and their expected
number grows linearly with the duplication length
(in fact constituting the signal that coverage-based
copy number estimation tools use). Like for short
duplications, we seek to only use those read pairs
that span a duplication breakpoint, either start or
end of the duplicated region or the internal break-
point between the two copies of the duplication.
That is, we want to use read pairs of type E but
exclude those of type F. For long duplications, how-
ever, this distinction can be made with very good
accuracy based on the observed insert size (for val-
ues of µ, σ, and len(ReadEnd) common in prac-
tice). Read pairs of type E have reversed orienta-
tions or at least they overlap after they have been
mapped to the reference. After discarding read
pairs of type F, the genotyping proceeds in the
same way as for short duplications. The sum over
all reads R ∈ R in Equation (1) runs over all read
pairs that have an anchor read mapped completely
inside the duplication. It is important to note that
read pairs of type E have two anchor reads and
hence need to be counted twice in this sum. This
ensures that the expected number of counted read
pairs of type E equals the expected number of read

pairs of types B and D. Note that observing reads
of types A or C becomes increasingly unlikely for
growing duplication lengths.

2.3 From Likelihoods to Genotypes

After genotype likelihoods have been computed as
explained above, the likeliest genotype is reported
as result. DIGTYPER also outputs genotype likeli-
hoods as phred-scaled posterior probabilities when
writing a VCF file. That is, −10 · log10(pi) is re-
ported as genotype likelihood for genotype i with
posterior probability pi. The difference of the
phred-scaled posterior of the likeliest and second-
likeliest genotype is used to decide whether to re-
port a genotype at all or ./. to indicate too large
ambiguity; the default threshold for this differ-
ence is set to 20 and used throughout the evalu-
ation. When this filter has not been passed but
the phred-scaled posterior for genotype 0/0 (ho-
mozygous in the reference allele) is below a user-
specifyable threshold (default set to 20), then geno-
type 1/. is reported to indicate that at least one
alternative allele is present, i.e. the genotype is be-
lieved to be either 1/0 or 1/1 but the data is in-
sufficient to distinguish these two cases.

3 Results

We evaluated our algorithm on simulated data and
on a data set provided by the Genome in a Bot-
tle Consortium (GIAB) (Zook et al., 2015). We
compare our algorithm with DELLY (Rausch et al.,
2012), which, as pointed out above, is the only ap-
proach that has been publicly evaluated on inver-
sions and tandem duplications. DELLY cannot be
run in “genotyping-only mode”, but can only geno-
type its own discoveries, which explains why we can
only evaluate DELLY on its own calls in the follow-
ing. For head-to-head comparison with DELLY,
we evaluate our own method on only DELLY calls.
As one can expect to see variant databases being
steadily filled with inversions and tandem duplica-
tions in the short and midterm future, there is an
obvious need for tools that do not depend on their
own discovery functionalities. So, we will further
also evaluate our own method on all variants known
relative to the respective evaluation scenario so as
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Figure 5: Different types of read pairs originating from a duplication allele. Thick horizontal line on top indicates the
donor genom with the duplication shown as grey boxes. Forward anchor reads are shown in red and reverse anchor reads
in green. Mapping supporting read pairs A, C, and E to the reference gives rise to shorter observed insert size, while the
insert size of neutral read pairs B and D agrees with the null distribution Nµ,σ2 .

to gauge the extent of variants that can be geno-
typed by a discovery independent approach.

3.1 Simulated Data
For generating simulated data, we used the refer-
ence sequence of human chromosome 1 (version:
hs37d5). We inserted inversions and duplications of
varying lengths into this chromosome, with neigh-
boring inserted variants seperated by one million
bp of reference sequence. We then used SimSeq
(Earl et al., 2011), a well known read simulator
used in the Assemblathon (citation) for generating
read data from the resulting sequence. The mean
µ of the length of the generated fragments was 550
bp, at a standard deviation σ of 140. Read ends
were of length 148 bp. This mimicks the parame-
ters from the real GIAB dataset, so as to have a
realistic simulation scenario. We used bwa (Li,H.
and Durbin,R., 2009) to map the reads to the ref-
erence sequence and to create BAM files as input
for the programs. Thereby, we varied the coverage
and obtained datasets at coverages of 4×, 12× and
60×, all of which reflect realistic settings. While
the length of the simulated inversions were 100,
300, 500, and 800 bp, the length of the duplica-
tions was set to 200, 300, 500, and 800bp—because
duplications shorter than read length cannot be
detected. Reads reflecting heterozygous variants
were generated by simulating reads from both our
simulated sequence and the reference chromosome
1, which were subsequently merged using SAM-
tools (Li et al., 2009).

We then ran DELLY on the generated datasets
in discovery mode to generate inversion and du-
plication calls. The positions of these calls were
then provided as input to our genotyping program.

Only predictions tagged as “precise” by DELLY
were considered, since for split read analysis the
breakpoints should be accurate. In our evaluation
experiments, we only considered DELLY variants
whose center points were found to not deviate by
more than 50 bp from the true center points. On
these variants, we compare our genotype predic-
tions (“DIGTYPER retype” in Figure 6) with the
ones from DELLY. Additionally, we also evaluate
our program on all variants we have inserted in our
simulated data, which DELLY does not allow to do
(“DIGTYPER all” in Figure 6).

3.1.1 Results for Inversions

Figure 6(left) shows results for inversions. DELLY
could not genotype inversions of length 100 bp, be-
cause its discovery module does not allow to de-
tect them in the first place, which kept us from
comparing our tool with DELLY on this (short)
length. However, our approach delivered substan-
tial amounts of well typed inversions if not depend-
ing on DELLY calls. This points out one first sig-
nificant advantage of our tool, as it thus estab-
lishes the first approach to genotype short inver-
sions (100-200 bp) at provably sufficiently high ac-
curacy, in particular for coverages at least 12×. In
general, our approach was superior to DELLY at
low coverage, where DELLY could not genotype
again due to its weakness to depend on the discov-
ery machinery, which does not deliver sufficiently
many calls at low coverage. In an overall account,
our method and DELLY largely agreed on all other
length ranges (starting from 500 bp) and coverage
rates (starting from 12×), with DELLY yielding
slighly more false predictions in comparison to our
approach. Using DELLY calls, the amount of vari-
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Figure 6: Results on simulated data for inversions (left) and duplications (right). Each triple of bars shows the
amount of variants found and genotyped by DELLY, the genotype predictions made for these variants by DIGTYPER
(called “DIGTYPER retype”), and the predictions made by DIGTYPER run on the full set of inserted variants without
running DELLY before (“DIGTYPE all”). Results are stratified by length (grey columns, length given at the top of each
column) and by coverage (rows).

ants for which a correct prediction could be given
was between 10 and 30% for inversions of length
300 and 500 bp, while it was between 35 and 40%
for the longer ones. When using the positions of all,
true inversions we had inserted into chromosome 1,
we found the amount of correct predictions to raise
to more than 60-70% for inversions of length 300 bp
and longer at coverage 4×, and to more than 80%
for inversions of all length ranges at coverage rates
of 12× and 60×. There is one weak spot, which
is to genotype short inversions at very low cover-
age (4×), where only 10% could be typed correctly.
However, this may point out a limitation of the data
rather than a limitation of our tool. By making use
of our statistical machinery, we could decide cor-
rectly in 40% of the cases that the variant existed
while refusing to type, since the data uncertainties
were too high to allow us to do so. while, still,
we could make use of our power to rate calls too

ambiguous, but still to decide whether they were
present (=’1/.’) or not in 40% of the cases. In gen-
eral, our program yielded very little errors, even at
low coverage. In particular at low coverage, this is
also due to correctly refusing to type based on the
data given, and to issue genotypes ’1/.’ or ’./.’ in
that case.

3.1.2 Results for Duplications

Figure 6(right) shows results for duplications.
DELLY was able to discover significant fractions
of implanted duplications only for lengths 500 bp
and 800 bp. Comparing genotyping performance
for 200 bp and 300 bp was hence not possible. These
length classes are particularly challenging since
only few anchor reads, which lie completely inside
the duplication exist. Furthermore, such duplica-
tions are also relatively short compared to the stan-
dard deviation of the insert sizes (σ = 140), in-
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ducing uncertainty when distinguishing supporting
from neutral read pairs. DIGTYPER recognized
this uncertainty and reported ./. and 1/. geno-
types. For longer duplications or higher coverage,
the uncertainty decreased, as expected.

Even for longer duplications, DELLY was not
able to distinguish homozygous and heterozygous
tandem duplications, since all variants found were
reported as 1/0. This leads to a very high amount
of false predictions, as evidenced by the red bars
in Figure 6(right). As for inversions, the fraction
of duplications discovered by DELLY was strongly
influenced by the coverage. Again, by genotyp-
ing the real positions of the variants inserted there
were more variants for which a genotype prediction
could be given, which mimicks the application of
genotyping data base variants. In contrast to the
results for inversions, for duplications there was a
larger amount of 1/. predictions, especially at cov-
erages 4× and 12×, indicating that at least one
chromosomes carries the variant with a high prob-
ability. This reflects the fact that duplications are
fundamentally more difficult to genotype than in-
versions, because no read pairs directly evidencing
the reference alleles can be used. For the highest
coverage of 60×, the amount of correct predictions
was much higher compared to DELLY and, at the
same time, also the amount of false predictions was
much smaller than for DELLY.

3.2 GIAB data
We used an Illumina HiSeq dataset from Genome
in a Bottle Consortium (Zook et al., 2015) for indi-
vidual HG003 of the Ashkenazi trio, which has cov-
erage 60×. Since we lacked reliable ground truth
data of genotyped inversions and duplications, we
conceived the following experiment. First, we ran
DELLY to discover and genotype inversions and
duplications on this data set. Second, we consid-
ered all inversions and duplications reported by The
1000 Genomes Project Consortium (2015) and The
Genome of the Netherlands Consortium (2014),
which we refer to as data base variants. Note that
the Ashkenazi trio is not part of either of the two
projects. We genotyped these data base variants in
the GIAB individual with DIGTYPER. Then, we
determined for each data base variant whether it
matched at least one variant discovered by DELLY
(with a center point distance and length difference

Figure 7: Shown are the overlaps of genotype predictions
(1/1,1/0,1/. and 0/0, ./. for inversions and duplications
given by The 1000 Genomes Project Consortium (2015) and
The Genome of the Netherlands Consortium (2014) made by
our program, and the genotype predictions for corresponding
variants found by DELLY. The gray areas hence represent
data base variants for which DELLY and DIGTYPER agree
that the variant is absent from that individual, while the
dark purple areas represent variants for which both methods
agree that the variant is present.

of up to 200 bp). Next, we determined the intersec-
tion between the sets of data base variants typed
1/1 or 1/0 or 1/. by DIGTYPER on the one
hand and the set of data base variants matching
a DELLY call on the other hand. The results are
shown in Figure 7.

Still lacking a ground truth, we can now compare
DELLY calls to DIGTYPER predictions. Since
DELLY often reports multiple overlapping predic-
tions (sometimes with different genotypes) match-
ing the same data base variant, we did not compare
genotypes, but only absence/presence signals. We
want to emphasize that data base variant typed as
0/0 by DIGTYPER and not discovered by DELLY
are not false negatives but, most likely, constitute
variants simple absent in the studied individual.

From 6 025 duplications given by The 1000
Genomes Project Consortium (2015), only two were
deemed present (i.e. 0/1 or 1/1 or 1/.) by DIG-
TYPER and two were deemed present by DELLY,
with one variant overlap. Because of these small
numbers, we omited 1000 Genomes duplications
from Figure 7, which summarizes the findings for
1000G inversions and GoNL inversions and dupli-
cations.

In all cases, most of the variants were genotyped
as 0/0. For the majority of those, no matching
DELLY variant was found and therefore they are
likely to be correctly genotyped as absent (grey
area). In all cases, there is a sizeable overlap be-
tween data base variants discovered by DELLY
and variants typed to be present by DIGTYPER

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 1, 2016. ; https://doi.org/10.1101/056432doi: bioRxiv preprint 

https://doi.org/10.1101/056432
http://creativecommons.org/licenses/by-nc-nd/4.0/


(darker purple area). Variants in this set are most
likely truly present in this individual. Combined
these two areas of putatively correct results rep-
resent large fractions of the total variants and in-
dicate 91.1% to 98.3% agreement. As is not un-
common for Venn diagrams of variant prediction
methods, there is also a sizeable symmetric differ-
ence of variants typed to be present by DELLY or
DIGTYPER but not both. The true status of these
variants remains unknown to us, but one might hy-
pothesize that not all these variants are false pos-
itives and that the two methods therefore comple-
ment each other.

4 Conclusion
In this paper, we have presented a new method to
genotype tandem duplications and inversions. The
issue in this is that the short read data that pro-
vides evidence of the genotype is affected by un-
certainties, which can decisively hamper the task.
Here, we have addressed this by a sound statisti-
cal framework that aims to determine the correct
genotype as the most likely one given the short read
data. It is common to maximum likelihood esti-
mation procedures that naive approaches have ex-
ponential runtime when taking data uncertainties
into account. One important achievement of ours
has been to provide a computation scheme that al-
lows to determine the genotype in runtime linear
in the supporting short read data. As results, we
have demonstrated that our method achieves signif-
icant improvements over DELLY, to date the only
method that allows to genotype tandem duplica-
tions and inversions, in various aspects.

Still, there is room for improvements. For ex-
ample, inversions, duplications, and deletions often
come in combination, which we have not addressed
here. Since our approach is flexible in terms of com-
bining variants, we will be able to address also this
case in the future. We consider it worthwhile to
further invest in re-aligning reads so as to achieve
refined alignment probabilities and even more accu-
rate read alignments. Extending our read mapper
LASER to also detect split alignments for duplica-
tions could potentially bring an improvement. Last
but not least, marrying our duplication genotyping
approach to coverage-based techniques is a promis-
ing future endeavor, for instance by using coverage

signals to obtain priors.
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