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Summary 

Anticorrelation between the default network (DN) and dorsal attention network (DAN) is 

thought to be an intrinsic aspect of functional brain organization reflecting competing functions. 

However, the stability of anticorrelations across distinct DN subsystems, different contexts, and 

time, remains unexplored. Here we examine DN-DAN functional connectivity across six 

different cognitive states. We show that: (i) the DAN is anticorrelated with the DN core 

subsystem, but not with the two DN subsystems involved in mentalizing and mnemonic 

functions, respectively; (ii) DN-DAN interactions vary significantly across cognitive states; (iii) 

DN-DAN connectivity fluctuates across time between periods of anticorrelation and periods of 

positive correlation; and (iv) coupling between the frontoparietal control network (FPCN) and 

DAN predicts variation in the strength of DN-DAN anticorrelation across time. These findings 

reveal substantial variability in DN-DAN interactions, suggesting that these networks are not 

strictly competitive, and that the FPCN may act to modulate their anticorrelation strength. 
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Introduction 

The last decade has witnessed extraordinary interest and progress in network neuroscience―the 

understanding of how interconnected brain regions operate in concert as large-scale networks, 

and how these networks relate to healthy and pathological cognitive functioning (Buckner, 

Krienen, & Yeo, 2013; Bullmore & Sporns, 2009; M. Fox & Raichle, 2007; Medaglia, Lynall, & 

Bassett, 2015; Petersen & Sporns, 2015). Resting state functional connectivity (rs-FC) has 

emerged as a powerful, non-invasive tool for delineating the functional network architecture of 

the human brain. Correlated fluctuations in BOLD signal measured during the “resting state” are 

thought to reveal intrinsic networks that persists across time (Damoiseaux et al., 2006) and 

context (Cole, Bassett, Power, Braver, & Petersen, 2014; Smith et al., 2009) due to their 

presumed source in stimulus-independent brain activity reflecting the underlying polysynaptic 

structural neuroanatomy (M. Fox & Raichle, 2007; Van Dijk et al., 2010).  

 One of the most influential findings to emerge from network neuroscience is that the 

default network (DN) and dorsal attention network (DAN) are anticorrelated during rest (M. Fox 

et al., 2005; see also Fransson, 2005; Golland, Golland, Bentin, & Malach, 2008). The DN has 

been linked to internally directed processes including self-reflection, autobiographical memory, 

future event simulation, and spontaneous thought (Andrews-Hanna, Smallwood, & Spreng, 

2014; Buckner, Andrews-Hanna, & Schacter, 2008; Christoff, Irving, Fox, Spreng, & Andrews-

Hanna, in press; Ellamil et al., 2016; K. Fox, Spreng, Ellamil, Andrews-Hanna, & Christoff, 

2015; Raichle et al., 2001), whereas the DAN has been linked to externally directed processes 

including attending to, and acting on behaviorally-relevant stimuli that are present in the 

immediate perceptual environment (Buschman & Kastner, 2015; Corbetta & Shulman, 2002; 

Golland et al., 2007; Miller & Buschman, 2013; Serences & Yantis, 2006; Szczepanski, Pinsk, 

Douglas, Kastner, & Saalmann, 2013). Based on these findings, Fox et al. (2005) proposed that 

anticorrelation between the DN and DAN is an adaptive mechanism that prevents interference 

between internal and external information processing. This idea has been used to explain the 

origin of attentional lapses and behavioral variability in healthy adults (Keller et al., 2015; Kelly, 

Uddin, Biswal, Castellanos, & Milham, 2008; Weissman, Roberts, Visscher, & Woldorff, 2006), 

cognitive immaturity in children (Chai, Ofen, Gabrieli, & Whitfield-Gabrieli, 2014), and 

abnormal functioning in conditions such as ADHD (Sonuga-Barke & Castellanos, 2007). 

Although global signal regression can induce spurious anticorrelations when included as part of 

data preprocessing (Murphy, Birn, Handwerker, Jones, & Bandettini, 2009; Saad et al., 2012), 

DN-DAN anticorrelation is observed even without this step, suggesting that it is a true biological 

phenomenon (Chai, Castañón, Öngür, & Whitfield-Gabrieli, 2012; M. Fox, Zhang, Snyder, & 

Raichle, 2009).  

 While the idea that the DN and DAN are intrinsically anticorrelated has intuitive appeal, 

theoretical and empirical work suggests the possibility of a more variable relationship between 

these networks and the processes they support (E. Allen et al., 2014; Chang & Glover, 2010; 
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Dixon, Fox, & Christoff, 2014; Kelly, et al., 2008; Meyer, Spunt, Berkman, Taylor, & 

Lieberman, 2012; Spreng et al., 2014; Summerfield, Lepsien, Gitelman, Mesulam, & Nobre, 

2006). However, the potential variability of DN-DAN interactions has not been the primary 

focus of prior work, and to our knowledge, no studies have systematically investigated whether 

DN-DAN interactions differ across regions, cognitive states, and time. If observed, such 

variability would offer a novel perspective on large-scale network interactions underlying the 

capacity to process information about the internal and external environments.  

 Since the discovery of DN-DAN anticorrelation, developments in understanding the DN 

have now revealed that it is not a unitary entity, but rather, composed of three distinct 

subsystems (for a review see Andrews-Hanna, et al., 2014). Our first goal was to examine the 

extent to which anticorrelations are present for all three subsystems of the DN. Although it is too 

early to definitively characterize the function of each subsystem, preliminary evidence suggests: 

(1) a core subsystem involved in self-referential processing, including the construction of a 

temporally-extended self with attributes, preferences, and autobiographical details; (2) a 

dorsomedial subsystem involved in semantic processing and mentalizing (i.e., generating 

inferences about mental states including beliefs, desires, and intentions); and (3) a medial 

temporal subsystem involved in retrieving and binding together contextual details during the 

recollection of episodic memories and simulation of future events. Interestingly, studies have 

found coactivation of the DAN and dorsomedial subsystem during a social working memory task 

(Meyer, et al., 2012), and coactivation of the DAN and medial temporal subsystem during a 

memory-guided attention task (Summerfield, et al., 2006), raising the possibility that these 

subsystems may not be antagonistic (anticorrelated) with the DAN. Indeed, learning often 

requires a synergy between perceptual and memory processes (Chun & Turk-Browne, 2007; 

Hasselmo & McGaughy, 2004), and mental state inferences often draw upon perceptual input 

(e.g., facial expressions) (Baron-Cohen, Wheelwright, Hill, Raste, & Plumb, 2001). Discerning 

the nature of functional interactions between the DAN and the distinct DN subsystems would 

provide critical information about the cognitive processes that may or may not be inherently 

competitive.  

 A second goal of the present study was to systematically examine the stability of 

anticorrelations across time and different cognitive states. Evidence is accumulating that the 

strength and topography of functional connectivity patterns dynamically change across time and 

cognitive state (E. Allen, et al., 2014; Braun et al., 2015; Cole et al., 2013; Davison et al., 2015; 

Geerligs, Rubinov, Cam, & Henson, 2015; Gonzalez-Castillo et al., 2015; Hermundstad et al., 

2014; Hutchison, Womelsdorf, Gati, Everling, & Menon, 2013; Krienen, Yeo, & Buckner, 2014; 

Mennes, Kelly, Colcombe, Castellanos, & Milham, 2013; Shirer, Ryali, Rykhlevskaia, Menon, & 

Greicius, 2012). It is possible that anticorrelations are specifically related to the cognitive state 

elicited by rest, that is, spontaneous thoughts of current concerns, past events, and future plans 

(Andrews-Hanna, 2012; Delamillieure et al., 2010). A recent study observed that the default 

network can be engaged during an externally oriented working memory task when participants 
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leveraged prior knowledge of the stimuli to complete the task (Spreng, et al., 2014). This finding 

suggests there may be task conditions that afford greater cooperation between the DN and DAN. 

Furthermore, there is some evidence that anticorrelations may vary across time even during rest 

(E. Allen, et al., 2014; Chang & Glover, 2010). Here, we investigated possible contextual and 

temporal variability of DN-DAN interactions by examining their relationship across time and 

different cognitive states within the same participants.  

 Our third goal was to examine whether the frontoparietal control network (FPCN) plays a 

role in modulating DAN-DN functional connectivity. Recent theoretical and empirical work 

suggests that the FPCN contributes to the control of internal and external attention by modulating 

processing in specific regions based on current goals (Dixon, et al., 2014; Gao & Lin, 2012; 

Smallwood, Brown, Baird, & Schooler, 2012; Spreng, Stevens, Chamberlain, Gilmore, & 

Schacter, 2010; Vincent, Kahn, Snyder, Raichle, & Buckner, 2008). This idea is consistent with 

the role of the FPCN in executive control (Duncan, 2010; Miller & Cohen, 2001), the extensive 

functional interconnections linking the FPCN to the DN and DAN (Spreng, Sepulcre, Turner, 

Stevens, & Schacter, 2013), and evidence that the FPCN flexibly couples with other networks 

including the DN and DAN and drives large-scale network reconfiguration based on task 

demands (Braun, et al., 2015; Cole, et al., 2013; Fornito, Harrison, Zalesky, & Simons, 2012; 

Gao & Lin, 2012; Spreng, et al., 2010). In healthy older adults, reduced anticorrelation between 

the DN and DAN has been observed (Keller, et al., 2015; Spreng, Stevens, Viviano, & Schacter, 

in press), and may relate to a shift towards greater between-network connectivity with advancing 

age, particularly with the FPCN (Grady, Sarraf, Saverino, & Campbell, 2016). However, it is 

currently unknown whether there is a direct relationship between patterns of FPCN connectivity 

and the strength of DN-DAN anticorrelation. Here we aimed to assess this possibility. 

 To examine these three questions, we used fMRI in conjunction with functional 

connectivity and machine learning classification analyses. We monitored brain activation 

dynamics during six conditions (see Experimental Procedures): (i) rest; (ii) movie viewing; 

(iii) analysis of artwork; (iv) social preference shopping task; (v) evaluation-based introspection; 

and (vi) acceptance-based introspection. Because these conditions differ from traditional 

cognitive tasks, we refer to them as cognitive states or contexts, rather than tasks. They were 

designed to elicit mental states that resemble those frequently experienced in everyday life. 

Furthermore, they were designed to include a combination of external and internal processing 

requirements. Each condition elicited a continuous mental state and did not require any 

responses, making each similar to rest. All data underwent the same preprocessing procedure 

typically used with resting state fMRI that does not rely upon global signal regression 

(Whitfield-Gabrieli & Nieto-Castanon, 2012). 
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Results 

Presence of Anticorrelations Across DN Subsystems. We first examined whether the DAN is 

anticorrelated with all three DN subsystems during rest. To explore these interactions in relation 

to well-established network boundaries, we used regions of interest (ROIs) created by Yeo and 

colleagues (Krienen, et al., 2014; Yeo, Tandi, & Chee, 2015) based on their 17-network 

parcellation derived from the data of 1000 participants (Yeo et al., 2011) (see Supplemental 

Experimental Procedures; Figure 1A; Figure S1). We extracted the mean activation timeseries 

from each of 32 ROIs spanning the DAN and three DN subsystems, and calculated the timeseries 

correlation between pairs of regions belonging to the DN and DAN. We then computed the 

average strength of connectivity between the DAN and each DN subsystem. The results 

demonstrated that connectivity strength significantly varied across subsystems [F(2, 46) = 17.78, 

p < .001]. The DAN was anticorrelated with the Core subsystem (r = - .13), but showed little to 

no anticorrelation with the dorsomedial (r = - .01) or medial temporal subsystems (r = - .04) 

(Figure 1B). Consistent with this, whole-brain voxel-wise analyses revealed that DAN seed 

regions exhibited negative connectivity with voxels primarily located within the borders of the 

Core subsystem (Figure 1C). To further examine these relationships, we created connectivity 

fingerprints for DAN ROIs and observed that negative connectivity was mainly observed with 

Core subsystem regions (Figure 1D). These findings reveal that anticorrelations are spatially 

specific. For example, anticorrelation is robust for the rostromedial prefrontal cortex but weak 

for the adjacent dorsomedial prefrontal cortex, and robust for the posterior inferior parietal 

lobule, but weak for the adjacent temporoparietal junction. Moreover, region aMT of the DAN 

did not exhibit anticorrelation with any DN regions. Together, these findings demonstrate 

regional variability in DN-DAN interactions, with little evidence of an inherent competition 

between the dorsomedial and medial temporal subsystems and the DAN.  
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Figure 1. Anticorrelations as a function of DN subsystem. (A) Networks from Yeo et al. (2011) used for 

ROIs. (B) Mean correlation between the DAN and each DN subsystem. Data for each participant (black 

dots), with mean (red line), 95% CI (red shaded area) and 1 SD (purple lines). Anticorrelation was 

stronger for the Core subsystem relative to the dorsomedial and medial temporal subsystems [t(23) = 

5.59, p < .001 and t(23) = 4.02, p = .001, respectively]. (C) Seed-based connectivity analyses showing 

negative connectivity with DAN regions (Z > 2.57, p < .05 FDR corrected for cluster extent), with the 

borders of each DN subsystem highlighted. DAN seeds: FEF, frontal eye fields; aIPS/SPL, anterior 

intraparietal sulcus/superior parietal lobule; PrCv, ventral precentral cortex; aMT, anterior middle 

temporal region. Left hemisphere data is presented (see Figure S2 for right hemisphere data). (D) 

Functional connectivity fingerprints for each DAN region. Core subsystem: RMPFC, rostromedial 

prefrontal cortex; PCC, posterior cingulate cortex; pIPL, posterior inferior parietal lobule; SFS, superior 

frontal sulcus; rSTS, rostral superior temporal sulcus. DM subsystem: DMPFC, dorsomedial prefrontal 

cortex, TPJ, temporoparietal junction, TP/LTC, temporopolar cortex/lateral temporal cortex; IFG, inferior 
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frontal gyrus, pDLPFC, posterior dorsolateral prefrontal cortex. MT subsystem: MTL, medial temporal 

lobe; RSC, retrosplenial cortex; vpIPL, ventral posterior inferior parietal lobule. 

                 

Stability of Anticorrelations Across Cognitive States. Next, we examined whether 

anticorrelations exhibit stability across different cognitive states. Prior work has examined the 

stability of connectivity patterns by computing the correlation between context-specific 

connectivity matrices (Cole, et al., 2014; Geerligs, et al., 2015; Krienen, et al., 2014). Strong 

correlations imply that connectivity patterns are highly similar across contexts, thus suggesting 

stability. Here, we adopted this approach, but focused specifically on DN-DAN connections 

rather than whole-brain connectivity patterns (Figure 2A). As illustrated in Figure 2B, the 

similarity between DN-DAN connectivity patterns across different cognitive contexts was 

modest. Critically, across-context similarity was significantly lower than within-context 

similarity―that is, the similarity of DN-DAN connectivity from the first half to the second half 

of each context. This was the case when considering all DAN-DN pairwise connections [paired 

t-test: t(23) = 10.46, p < .001], and when breaking down the analysis by DN subsystem [Core: 

t(23) = 7.84, p < .001; dorsomedial: t(23) = 5.61, p < .001; medial temporal: t(23) = 9.35, p < 

.001]. The sizable difference between within- and across-context similarity reveals a substantial 

effect of context on DN-DAN connectivity. Importantly, this was not due to the separation of 

contexts in time; nearly identical results were obtained when comparing connectivity during one 

context to connectivity during the immediately preceding context (Figure S3). These findings 

reveal that anticorrelation strength varies considerably across different cognitive states. 

 

Figure 2. Comparison of within- and across-context similarity of DN-DAN connectivity. (A) Example of 

the analysis approach for one participant. We extracted DN-DAN correlation values (highlighted by the 

black box), and then calculated the correlation between the vector of connectivity values for each pair of 

cognitive contexts, and between the vector of connectivity values for the early and late period within each 

context. (B) Mean within- and across-context similarity of anticorrelations. DAN, dorsal attention 

network; DN, entire default network; DM, dorsomedial subsystem; MT, medial temporal subsystem. 

Error bars reflect within-subject SEM (Loftus & Masson, 1994). 
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 To further interrogate whether DN-DAN connectivity patterns flexibly reconfigure in 

each cognitive context, we examined whether a support vector machine (SVM) classifier could 

accurately distinguish each pair of cognitive states solely on the basis of DN-DAN connectivity 

patterns. Above chance-level accuracy would imply distinct connectivity patterns in each 

context. The SVM was fed training data (a vector consisting of all DN-DAN correlations) and 

learned a model that maximized the separation of two cognitive states (e.g., rest and movie 

viewing) in multidimensional space, based on the pattern of features defining each context. The 

SVM then used its model of the training data to predict the labels of new data. Classifier 

accuracy was determined using leave-one-out cross validation, and statistical significance was 

established using permutation testing. As depicted in Figure 3, the SVM achieved classification 

accuracy that was considerably above chance-level (ps < .05) in 12/15 comparisons. This 

suggests that the SVM classifier could distinguish each pair of cognitive states solely on the 

basis of DN-DAN connectivity patterns, thereby implying a relatively unique configuration of 

DN-DAN interactions within each context that was reliable across subjects.     

 

 

Figure 3. Accuracy of the pattern classifier in distinguishing each pair of cognitive contexts. 

Classification accuracy was significantly above chance level (p < .05) in all cases except for the Rest-

Shopping, Shopping-Evaluation, and Evaluation-Acceptance comparisons. Error bars reflect between-

subject SEM. 

 

 To provide more detail regarding the direction of changes in DN-DAN connectivity 

across different cognitive states, we conducted whole-brain seed-based analyses. The results 

demonstrated that anticorrelations flexibly increased or decreased in different cognitive contexts 

relative to rest (Figure 4; Z > 2.57, p < .05 FDR corrected for cluster extent). A pair of DN-DAN 

regions could exhibit anticorrelation in one context, but no anticorrelation or even positive 
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connectivity in other contexts. Moreover, it is apparent that the effect of context is region-

specific: some DN-DAN connections exhibit little contextual variance, whereas other 

connections shift considerably. This suggests that a broad interpretation of cognitive functions 

based on a single summary measure of DN-DAN interactions will not accurately capture the true 

nature of their relationship. Importantly, control analyses ruled out the possibility that the effect 

of context was driven by motion (see Supplemental Experimental Procedures).   

 

Figure 4. Whole-brain seed-based analyses. Positive and negative functional connectivity for each DAN 

seed region and context. Anticorrelations flexibly increase and decrease in different cognitive contexts 

relative to rest (Z > 2.57, p < .05 FDR cluster corrected). Right panel: mean connectivity strength, z(r), for 

specific pairs of DN-DAN ROIs for each context. Results for left hemisphere presented (see Figure S4 

for right hemisphere data). Colour bar shows t-values. 
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Stability of Anticorrelations Across Time. DN-DAN interactions are generally summarized as 

a single correlation value reflecting connection strength across a long period of time (e.g., 5-10 

minutes). While useful, this approach cannot reveal potential temporal variation in DN-DAN 

interactions. The contextual variance reported above raises the possibility that anticorrelation 

strength is influenced by an individual's current mental state, and could potentially shift across 

time even during rest in accordance with changing mental content. We investigated time-

resolved DN-DAN connectivity using a 60-second sliding window approach (Hutchison et al., 

2013). Prior work has shown that functionally-relevant connectivity patterns can be isolated from 

~ 60 seconds of data (Gonzalez-Castillo, et al., 2015; Leonardi & Van De Ville, 2015; Liegeois 

et al., 2015; Shirer, et al., 2012). For each participant, we computed average DN-DAN 

connectivity within each window during rest, and then calculated the percentage of windows 

during which anticorrelation was present. The results demonstrated considerable temporal 

variability, with the DN and DAN alternating between anticorrelated and uncorrelated/positively 

correlated states (Figure 5A). On average, the DAN was anticorrelated in 67.09% of windows 

with the Core subsystem, in 52.75% of windows with the dorsomedial subsystem, and in 56.16% 

of windows with medial temporal subsystem (Figure 5B). Anticorrelation was observed in a 

greater number of windows for the Core subsystem relative to the dorsomedial and medial 

temporal subsystems (paired t-test: t(23) = 4.38, p < .001 and t(23) = 3.68, p = .001, 

respectively), recapitulating the distinction between the subsystems observed in the standard 

analysis. However, even in the case of the Core subsystem there were frequent shifts away from 

an anticorrelated state.  

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 1, 2016. ; https://doi.org/10.1101/056424doi: bioRxiv preprint 

https://doi.org/10.1101/056424


11 

 

Figure 5. Temporal variability in DN-DAN interactions during rest. (A) Data for four randomly chosen 

example participants demonstrating average correlation strength between the DAN and each DN 

subsystem within successive 60-second windows. For each subsystem, connectivity with the DAN 

alternated between periods of anticorrelation and periods of positive correlation. (B) Percentage of 

windows during which DN-DAN connectivity was anticorrelated, averaged across all participants. DM, 

dorsomedial subsystem; MT, medial temporal subsystem. Error bars represent between-subject SEM. 

 

Frontoparietal Control Network Connectivity and Anticorrelations. Having demonstrated 

that anticorrelations vary in strength across time, we next sought to identify potential modulatory 

influences that may help to explain this variance. Based on evidence that the frontoparietal 

control network (FPCN) (Figure S5) flexibly couples with the DN and DAN, we hypothesized 

that it may play a role in modulating the strength of anticorrelations. Because only the Core 

subsystem showed evidence of reliable anticorrelation with the DAN, we focused on this 

subsystem in the following analysis. We adapted recently derived methods from dynamic 

network science (Bassett, Wymbs, Porter, Mucha, & Grafton, 2014; Davison, et al., 2015) to 

provide a hypothesis-driven examination of whether changes across time in the strength of DAN-

Core anticorrelations were correlated with temporal fluctuations in FPCN-DAN and FPCN-Core 

connectivity patterns. Within each 60-second window, we computed the average strength of 

FPCN-DAN, FPCN-Core, and DAN-Core connectivity, providing a timeseries of between-

network connectivity values. We then computed the correlation between the timeseries to 

examine the co-evolution of temporal variation in FPCN connectivity patterns and 

anticorrelation strength. The results demonstrated a strong positive correlation between temporal 

fluctuations in FPCN-DAN connectivity and DAN-Core connectivity―a relationship that held in 

every context (Figure 6A and 6B). Periods of time characterized by stronger negative FPCN-

DAN coupling were associated with stronger DAN-Core anticorrelation, whereas periods of little 

to no FPCN-DAN coupling were associated with weaker DAN-Core anticorrelation. Importantly, 

this result cannot be attributed to a general effect such as global fluctuations in BOLD signal, as 

temporal fluctuations in FPCN-Core connectivity demonstrated the opposite pattern, at least 

during rest and movie viewing (Figure 6A and 6B). Periods of time characterized by stronger 

positive FPCN-Core coupling were associated with stronger DAN-Core anticorrelation during 

these conditions. Finally, in four of six contexts, we found that periods of stronger positive 

FPCN-Core coupling were associated with stronger FPCN-DAN anticorrelation (Figure S6), 

supporting the idea of a triadic relationship. Thus, when FPCN signal was more coupled with the 

Core it was more anticorrelated with the DAN, and this was accompanied by stronger DAN-Core 

anticorrelation (Figure 6C). These systematic relationships are consistent with the idea that the 

FPCN may potentially modulate the strength of anticorrelations via interactions with the DN and 

DAN.  
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Figure 6. Relationship between FPCN connectivity and DN-DAN anticorrelation. (A) Data for an 

example participant showing that fluctuations across time in FPCN connectivity are associated with the 

strength of DAN-Core anticorrelation. (B). Temporal fluctuations in FPCN-DAN coupling are associated 

with DAN-Core anticorrelation strength in every context (all p < .001). Temporal fluctuations in FPCN-

Core coupling are associated with DAN-Core anticorrelation strength during rest (p = .055), movie 

viewing (p = .028), and acceptance-based introspection (p = .026), but not in other contexts (ps > .05). 

Error bars reflect between-subject SEM. (C) Schematic illustration of the relationship between FPCN 

connectivity and DN-DAN anticorrelation. Width of the lines represents connectivity strength.  

 

Discussion 

Delineating the nature of functional interactions between the DN and DAN is critical for 

understanding how attention is efficiently allocated to internal thoughts and external perceptual 

information. Although prior work suggests that the DN and DAN are intrinsically anticorrelated, 

our findings, using well-established network boundaries (Yeo, et al., 2011), provide compelling 

evidence that DN-DAN interactions are more variable than previously thought: (i) the DAN was 

not anticorrelated with all three DN subsystems; (ii) DN-DAN interactions flexibly reconfigured 
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across different cognitive states; and (iii) DN-DAN connectivity fluctuated across time between 

periods of anticorrelation and periods of positive correlation. Notably, we did observe one 

consistent relationship: temporal fluctuations in FPCN-DAN coupling were correlated with 

changes across time in the strength of DN-DAN anticorrelation within every context, suggesting 

that the FPCN may play a role in modulating the strength of anticorrelations. Together, these 

findings suggest that the DN and DAN and the functions they support are not strictly 

antagonistic.   

Anticorrelations Vary Across DN Subsystems. The DAN exhibited modest anticorrelation 

with the Core subsystem, but little to no anticorrelation with the dorsomedial and medial 

temporal subsystems. Notably, Fox et al.'s (2005) original report of DN-DAN anticorrelation was 

based on seed regions located within the Core subsystem. We therefore replicate Fox et al.’s 

(2005) original results, while providing evidence against the hypothesis that the DN as a whole is 

competitive with the DAN. The relationship between these networks has often been interpreted 

in terms of competing internally- and externally-directed functions, however, our results 

highlight the complex nature of interactions between the DN and DAN, and do not support the 

idea of a strict antagonism between internal and external processing (Dixon, et al., 2014). Rather, 

antagonism is specifically related to the function of the DN Core subsystem. The DN Core is 

invariably recruited when individuals reflect on the self as an object of awareness with particular 

goals, attributes, and a linear narrative that connects past, present, and future experience (Denny, 

Kober, Wager, & Ochsner, 2012; Farb et al., 2007; Murray, Schaer, & Debbane, 2012; Schmitz 

& Johnson, 2007; Wagner, Haxby, & Heatherton, 2012), consistent with the idea that it 

contributes to an autobiographical mode of self processing (Araujo, Kaplan, Damasio, & 

Damasio, 2015; Christoff, Cosmelli, Legrand, & Thompson, 2011; Farb, et al., 2007; Gallagher, 

2000). One possibility is that anticorrelations shield this type of abstract self-reflection from 

potential interference by perceptual processes supported by the DAN.  

 In agreement with our results, numerous lines of evidence suggest that mentalizing and 

mnemonic processes associated with the dorsomedial and medial temporal subsystems are not 

inherently antagonistic with perceptual processes associated with the DAN (Dixon, et al., 2014). 

For example, memory can facilitate the deployment of attention to the external environment 

(e.g., remembering where one last put the car keys) and this is subserved by co-activation of 

medial temporal and DAN regions (Summerfield, et al., 2006). Similarly, another study found 

that working memory performance was facilitated for famous relative to unfamiliar faces, and 

this was accompanied by medial temporal subsystem activation, consistent with the idea that 

mnemonic representations can facilitate perceptual encoding when it is congruent with task 

demands (Spreng, et al., 2014). Furthermore, during the encoding of new information, medial 

temporal regions decouple from other DN regions (Huijbers, Pennartz, Cabeza, & Daselaar, 

2011), and become more sensitive to afferent sensory input, as a result of acetylcholine's 

modulatory influence on medial temporal lobe circuit dynamics (Hasselmo & McGaughy, 2004). 

Finally, in the case of rest, the spontaneous reactivation of information stored in memory may in 

some cases lead to an autobiographical stream of thought that becomes elaborated upon by the 
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Core subsystem, but in other cases may trigger a sensorimotor stream of thought (e.g., an 

imagined interaction with the environment) that may elicit cooperative medial temporal 

subsystem-DAN dynamics. Accordingly, the medial temporal subsystem may go in and out of 

phase with the DAN depending on whether mnemonic and perceptual processes pertain to the 

same or different goals, thus resulting in uncorrelated activation on average.  

 Similarly, mentalizing and perceptual processing may sometimes operate in concert, as 

perception of body language, facial expression, and eye-gaze often inform the inferences we 

make about others' thoughts, and vice versa (Baron-Cohen, et al., 2001). Supporting this idea, 

coactivation of the DAN and dorsomedial subsystem is observed when individuals view dynamic 

animations and attend to the social intentional meaning of the movements (Tavares, Lawrence, & 

Barnard, 2008). Thus, mentalizing and memory processes are sometimes, but not always 

associated with perceptual decoupling (Schooler et al., 2011; Smallwood, et al., 2012). The brain 

has limited attentional resources, and consequently, has difficulty performing more than one goal 

at a time (Marois & Ivanoff, 2005). When mentalizing and mnemonic processes can be linked to 

perceptual processing in service of a unified goal, there may be little to no interference, but when 

they pertain to different goals (e.g., during mind wandering) they are likely to compete (Dixon, 

et al., 2014). In line with this, our dynamic connectivity analysis revealed that the DAN flexibly 

shifts between periods of anticorrelation and periods of positive correlation with the dorsomedial 

and medial temporal subsystems even during rest. This may reflect the exploration of frequently 

occurring network states.  

Contextual and Temporal Variability of Anticorrelations. A burgeoning literature has 

revealed context-dependent FC patterns, with an emerging picture of the brain as a dynamic 

evolving system that flexibly adapts to changes in internal and external states (E. Allen, et al., 

2014; Braun, et al., 2015; Cole, et al., 2013; Davison, et al., 2015; Geerligs, et al., 2015; 

Gonzalez-Castillo, et al., 2015; Krienen, et al., 2014; Mennes, et al., 2013; Milazzo et al., 2014; 

Shirer, et al., 2012; Spreng, et al., 2010). Connectivity patterns have been linked to individuals' 

mental states (Andrews-Hanna, Reidler, Huang, & Buckner, 2010; Doucet et al., 2012; 

Gorgolewski et al., 2014), and flexibility appears to be adaptive, given that it correlates with task 

performance (Braun, et al., 2015; Hermundstad, et al., 2014). Building upon this work, we report 

convergent findings revealing that anticorrelations exhibit variability across different cognitive 

states.  

 Our similarity analysis revealed little stability in DAN-DN connectivity across different 

cognitive contexts. Consistent with this, a prior study found that anticorrelations were more 

similar from early to late during a flanker task (r = .61) than between rest and the flanker task (r 

= .34) (Kelly, et al., 2008). This is comparable to the values that we observed, and suggests that 

DN-DAN interactions are dynamically tailored to one's current context. Furthermore, we found 

that a machine learning classifier was able to distinguish each pair of contexts solely on the basis 

of DN-DAN connectivity patterns. While the classifier's ability to distinguish cognitive states in 

the current study was noticeably less accurate than results obtained in other studies using whole-
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brain connectivity patterns (Gonzalez-Castillo, et al., 2015; Milazzo, et al., 2014; Shirer, et al., 

2012), it is quite remarkable that patterns of anticorrelations are sufficiently distinct in each 

context to allow for above chance-level classification. Together, these findings suggest that DN-

DAN connectivity dynamically reconfigures in each cognitive context, thus emphasizing 

flexibility rather than stability in the relationship between these networks. This implies that DN-

DAN interactions during rest do not necessarily reflect the nature of interactions between these 

networks in general, and cautions against making conclusions about group differences in 

anticorrelations strictly based on resting state data. Individual and group differences in 

anticorrelations could potentially reflect differences in mental state rather than fundamental 

differences in brain function, although parallel age-related reductions in anticorrelation during 

task and rest have been observed (Spreng, et al., in press).    

 While anticorrelation may be a frequently occurring state of network organization, 

particularly for DAN-Core interactions, our findings provide unequivocal support for the idea 

that current task demands can easily enhance or weaken anticorrelations. In fact, we found that 

some DN-DAN nodes demonstrated no anticorrelation or even positive connectivity in some 

cognitive contexts, and during a considerable percentage of windows during rest. The current 

results suggest that departures from anticorrelation are a typical phenomenon, and not 

necessarily indicative of maladaptive processing. Specifically, it appears that the DN and DAN 

may alternate between periods of segregation (modular processing) and periods of integration. 

Consistent with this, prior studies have reported that anticorrelations involving the DN vary 

across time (E. Allen, et al., 2014; Chang & Glover, 2010) and global brain dynamics also 

exhibit shifts between periods segregation and integration (Liegeois, et al., 2015; Shine, Koyejo, 

& Poldrack, 2016). The idea that the DN and DAN may not be not strictly antagonistic is 

consistent with a large body of work indicating that the relationship between internal and 

external processing is context dependant (Dixon, et al., 2014). Moreover, given that the 

variability of mind-wandering is predictive of enhanced externally-oriented task performance 

(i.e., error awareness), this suggests a complex relationship between internal and external 

processing (M. Allen et al., 2013). In sum, DN-DAN interactions exhibit substantial temporal 

and contextual variability, suggesting that their relationship is influenced by changing mental 

states.  

FPCN and Anticorrelations. We found that variation in the strength of anticorrelations was not 

random, but rather, systematically related to FPCN connectivity. Within each context, periods of 

time characterized by greater negative coupling between the FPCN and DAN, and to some extent 

greater positive coupling between the FPCN and DN Core, were associated with stronger DAN-

Core anticorrelation. Given the opposing nature of these relationships, it seems unlikely that they 

could be due to noise or a general factor (e.g., arousal). A more likely possibility is that shifting 

attentional priorities encoded by the FPCN exert a top-down influence on anticorrelations. 

Given that we necessarily used a limited range of tasks, it is possible that different network 

relationships could emerge in other contexts (e.g., perhaps greater positive FPCN-DAN coupling 
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would be associated with stronger DAN-Core anticorrelations during a visuospatial working 

memory task). However, the important point is that our findings demonstrate  a heretofore 

unrecognized relationship between FPCN connectivity and the strength of anticorrelations. 

 While acknowledging that our analyses do not speak to causality, when considered in 

light of the broader literature on the FPCN, they are consistent with the possibility of a top-down 

modulatory role over DN-DAN interactions. Abundant evidence suggests that the FPCN encodes 

task demands, and transmits signals about the current relevance of stimuli, actions, and outcomes 

to other regions, thus coordinating processing across wide swaths of the cortex (Buschman & 

Miller, 2007; Cole, Ito, & Braver, 2015; Crowe et al., 2013; Dixon & Christoff, 2012, 2014; 

Duncan, 2010; Miller & Cohen, 2001; Tomita, Ohbayashi, Nakahara, Hasegawa, & Miyashita, 

1999). Consistent with a top-down role, FPCN connectivity with other networks is flexible and 

adapts in line with task demands (Braun, et al., 2015; Cole, et al., 2013; Gao & Lin, 2012; 

Spreng, et al., 2010). Here, we extend these findings by demonstrating that FPCN connectivity 

patterns are tightly coupled with the strength of DN-DAN anticorrelation. One possibility is that 

the FPCN modulates DN-DAN dynamics based on the extent to which perceptual and 

conceptual/self-referential processes are currently needed to meet one's goals (Dixon, et al., 

2014; Gao & Lin, 2012; Smallwood, et al., 2012; Spreng, et al., 2013; Spreng, et al., 2010; 

Vincent, et al., 2008). Thus, variability of anticorrelations across time and context may reflect 

moment-to-moment and context-to-context shifts in the balance of external versus internal 

information within the focus of attention―and this may be driven by the FPCN.  

Limitations. A limitation of the current study is that we lack information about the nature and 

timing of ongoing cognitive activity, and how it relates to the variability of anticorrelations. 

Future studies could benefit from using online experience sampling to determine the precise 

cognitive state of each participant as it evolves across time (Christoff, 2012; Fazelpour & 

Thompson, 2014). Additionally, experimenter controlled variations in task demands on the scale 

of tens of seconds could also be useful in linking connectivity patterns to mental states 

(Gonzalez-Castillo, et al., 2015). The present study is also unable to establish whether the FPCN 

plays a causal role in modulating anticorrelations. This could be addressed in future work by 

perturbing FPCN functioning via TMS and monitoring the impact on DN-DAN connectivity. 

Although we have characterized DN-DAN interactions in relation to well-established network 

boundaries (Yeo, et al., 2011), there is variance in network organization across individuals 

(Mueller et al., 2013), and hence, future work could improve precision by using individually-

tailored network ROIs (Wang et al., 2015). Finally, it could be argued that the contextual 

variation in anticorrelations that we observed was due to idiosyncratic numbers of attentional 

lapses in each context. However, several factors make this very unlikely. First, and foremost, the 

effect of context was not uniform across all DN-DAN connections. For example, from rest to the 

movie condition, some DN-DAN connections exhibited increased anticorrelation, others 

exhibited reduced anticorrelation, and some connections exhibited no change. This finding is 

inconsistent with a general, non-specific factor such as attention/arousal driving the effect of 
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context on anticorrelations. Second, participants reported high levels of attention during the 

conditions requiring an external focus (range: 5.83 - 6.41 on a 7-point scale, from 1 = not at all 

paying attention to 7 = paying very much attention). Finally, the machine learning classifier was 

able to accurately discriminate mental states for each participant based on the data from other 

participants, implying that there was structure in how anticorrelations varied across contexts. 

Thus, changes in DN-DAN connectivity across contexts appear to be specifically related to 

differences in the required cognitive demands.  

Conclusions. To summarize, DN-DAN interactions are more variable than previously 

appreciated, suggesting that these networks and the functions they support are not strictly 

competitive. The DAN exhibits distinct interactions with the three DN subsystems. Furthermore, 

anticorrelations are not stable, but rather, exhibit a surprising degree of flexibility, increasing and 

decreasing across time and different cognitive states. Finally, we found a systematic relationship 

between FPCN-DAN connectivity and anticorrelations, consistent with a possible role for the 

FPCN in regulating the strength of anticorrelations based on current goals.  

 

Experimental Procedures 

Participants. Participants were 24 healthy adults (Mean age = 30.33, SD = 4.80; 10 female; 22 

right handed), with no history of head trauma or psychological conditions. This study was 

approved by the UBC clinical research ethics board, and all participants provided written 

informed consent, and received payment ($20/hour) for their participation.  

Experimental Conditions. Each participant performed six conditions in separate six-minute 

fMRI runs (see Supplemental Experimental Procedures): (1) Resting state. Participants lay in 

the scanner with their eyes closed and were instructed to relax and stay awake, and to allow their 

thoughts to flow naturally. (2) Movie watching. Participants watched a clip from the movie “Star 

Wars: Return of the Jedi”, during which Luke Skywalker engages in a light-saber duel with 

Darth Vader. (3) Artwork analysis. Participants viewed four pieces of pre-selected artwork, each 

for 90 seconds, and were instructed to attend to the perceptual details and the personal meaning 

of the art. (4) Shopping task. Participants viewed a pre-recorded video shot from a first-person 

perspective of items within several stores in a shopping mall, and were instructed to imagine that 

they were shopping for a birthday gift for a friend, and to think about whether each item would 

be a suitable gift based on their friend's preferences. (5) Evaluation-based introspection. 

Participants reflected on a mildly upsetting issue involving a specific person in their life and 

were asked to analyze why the situation is upsetting, who caused it, what might happen in the 

future, and to become fully caught up in their thoughts and emotions. (6) Acceptance-based 

introspection. Participants reflected on a mildly upsetting issue involving a specific person in 

their life and were asked to cultivate a present-centered awareness, grounded in the acceptance of 

moment-to-moment viscero-somatic sensations (i.e., to notice and experience arising thoughts, 
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emotions, and bodily sensations with acceptance, and without any elaborative mental analysis or 

judgment).  

fMRI Data Acquisition. fMRI data were collected using a 3.0-Tesla Philips Intera MRI scanner 

(Best, Netherlands) with an 8-channel phased array head coil with parallel imaging capability 

(SENSE).  Head movement was restricted using foam padding around the head.  T2*-weighted 

functional images were acquired parallel to the anterior commissure/posterior commissure 

(AC/PC) line using a single shot gradient echo-planar sequence (repetition time, TR = 2 s; TE = 

30 ms; flip angle, FA = 90°; field of view, FOV = 240 mm; matrix size = 80 × 80; SENSE factor 

= 1.0).  Thirty-six interleaved axial slices covering the whole brain were acquired (3-mm thick 

with 1-mm skip). Each session was six minutes in length, during which 180 functional volumes 

were acquired. Data collected during the first 4 TRs were discarded to allow for T1 equilibration 

effects. Before functional imaging, a high resolution T1-weighted structural image was acquired 

(170 axial slices; TR = 7.7 ms; TE = 3.6 ms; FOV = 256 mm; matrix size = 256 × 256; voxel 

size = 1 x 1 x 1 mm; FA = 8°). Total scan time was ~ 60 minutes. Head motion was minimized 

using a pillow, and scanner noise was minimized with earplugs.  

Preprocessing. Full details are provided in Supplemental Experimental Procedures. Standard 

preprocessing steps were conducted with SPM8, including slice-timing correction, realignment 

(using a 6 parameter rigid body transformation), coregistration with the structural image, 

normalization to the MNI 152 atlas, and spatial smoothing). Global signal regression was not 

performed, as it may induce spurious anticorrelations. Additional sources of noise were 

estimated and regressed out using “CONN” software (Whitfield-Gabrieli & Nieto-Castanon, 

2012). Eroded white matter (WM) and CSF masks were used as noise ROIs. Signals from the 

WM and CSF noise ROIs were extracted from the unsmoothed functional volumes to avoid risk 

of contaminating WM and CSF signals with gray matter signals. The following nuisance 

variables were regressed out: three principal components of the signals from the WM and CSF 

noise ROIs; head motion parameters (three rotation and three translation parameters) along with 

their first-order temporal derivatives; artifact outlier images; linear trends. A band-pass filter 

(0.009 Hz < f < 0.10 Hz) was simultaneously applied to the BOLD time series during this step.  

Seed-based voxel analyses. The timeseries of all voxels within the ROIs were averaged, and 

then first-level correlation maps were produced by computing the Pearson correlation between 

that seed timeseries and the timeseries of all other voxels. Correlation coefficients were 

converted to normally distributed z scores using the Fisher transformation to allow for second-

level GLM analyses. Results were visualized with CARET brain mapping 

software (http://brainmap.wustl.edu/caret; Van Essen, 2005; Van Essen et al., 2001). 

Similarity Analysis. For each participant we extracted DN-DAN node-to-node connections 

(excluding interhemispheric connections), applied a Fisher r-to-z transformation, and then 

calculated the correlation between the vectors of connectivity values for each pair of contexts, as 

well as for the first half (first 3 minutes) and second half (last 3 minutes) of each context. We 
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then computed the average across-context similarity and average within-context similarity on 

Fisher-transformed correlations. Importantly, we computed similarity for each participant 

separately (rather than on group averaged connectivity matrices), and then determined average 

similarity across the group, thus accounting for individual variability.  

Classifier analysis. To determine whether pairs of conditions could be correctly classified based 

on patterns of anticorrelations, we used a SVM classifier implemented with The Spider toolbox 

(Weston, Elisseeff, BakIr, & Sinz, 2005). Following prior work (Dosenbach et al., 2010), we set 

the cost parameter, C, to 1, and used a radial basis function (RBF) kernel, with sigma set to 2 

(similar results were obtained with a linear classifier). For each individual we created a vector 

consisting of all DN-DAN z-transformed correlations (excluding inter-hemispheric connections) 

for each condition. The between-network correlations served as input features (96 in total), and 

were assigned a value of 1 or −1 to specify the condition to which they belonged. We tested the 

accuracy of the classifier using leave-one-out cross validation: the classifier was trained on the 

anticorrelation patterns for all but one participant, and then tested on that left-out participant, and 

this was repeated for each individual. For statistical testing, we obtained an empirical null 

distribution by performing the classification analysis 1000 times with condition labels randomly 

permuted. The mean classification accuracy over the 1000 iterations ranged from 49.62% to 

50.43% with a standard deviation that ranged from 6.03% to 6.73%, depending on the specific 

pair of conditions. In each case, inspection of the null distribution revealed that 95% of these 

models had accuracies below 60.4%. Classification accuracies larger than the 95th percentile of 

the null distribution were considered to be statistically significant at p < .05. 

Dynamic FC analysis: To examine time-dependent changes in connectivity, we used a sliding 

window of 60 seconds, shifted by one timepoint (2 seconds) each time. To limit the possibility of 

detecting spurious temporal fluctuations in connectivity, we bandpass filtered the data (0.0167 

Hz < f < 0.10 Hz) such that frequencies lower than 1/w were removed, where w is the width of 

the window (Leonardi & Van De Ville, 2015). 
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