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Abstract 

Gene regulatory networks (GRNs) are increasingly used for explaining biological processes 

with complex transcriptional regulation.  A GRN links the expression levels of a set of genes 

via regulatory controls that gene products exert on one another. Boolean networks are a 

common modeling choice since they balance between detail and ease of analysis.  However, 

even for Boolean networks the problem of fitting a given network model to an expression 

dataset is NP-Complete.  Previous methods have addressed this issue heuristically or by 

focusing on acyclic networks and specific classes of regulation functions.  In this paper we 

introduce a novel algorithm for this problem that makes use of sampling in order to handle 

large datasets.  Our algorithm can handle time series data for any network type and steady 

state data for acyclic networks.  Using in-silico time series data we demonstrate good 

performance on large datasets with a significant level of noise.  

keywords:  Boolean network, Inference, Sampling   

 

Introduction 

Numerous biological phenomena arise through interactions between cellular 

components[1].  Gene regulatory networks (GRNs) are a paradigm that explains various 

processes such as embryonic development, circadian rhythms and disease progression as a 

product of interactions between genes that regulate each other's expression levels [2-4].  

Various methodologies were suggested for modeling and analyzing these networks [5]. 

One of the simplest GRN models is the Boolean network[6].  Gene expression levels are 

marked as either expressed (Boolean 1) or not expressed (Boolean 0), and regulatory 

interactions such as those performed by transcription factors are described using Boolean 

functions.  Although this formulation is simple, it can characterize a broad range of networks 

and dynamic behaviors [7, 8].   

Researchers have successfully used Boolean networks for establishing various biological 

hypotheses.  For example, Marr et al. [9] showed that the steady states of their Boolean 

network correspond to the differentiation states of lymphocytes.  Similarly, Orlando et al. 

showed that a Boolean network model can predict cell cycle states, and explain the cyclic 

gene expression patterns that they observed in their dataset [10].  There exist examples 

from a diverse range of systems, including sporulation in B.subtillis [11], tryptophan 

biosynthesis in E.coli [12], floral organ determination in A.thaliana [13], and more.  Usually 
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the network's states are not derived directly from the data, but rather are determined using 

independent analysis or simulation and then compared to the data. 

A different approach derives the Boolean states of the network directly from the data, such 

that each measurement is assigned an inferred network state.  This allows for example 

comparison of the network behavior in cases and controls, or of the differences in 

trajectories of wild-type and mutant strains [14].  Karlebach and Shamir showed that the 

problem of finding the best dataset fit to a Boolean network is NP-Complete [15], and 

therefore a solution that can handle every instance of the problem efficiently is not likely to 

exist.  Our goal in this work is not to prove the biological merit of this approach since this has 

been done elsewhere [14-16], but to systematically investigate a proposed method for 

alleviating intractability in large datasets. 

Several methods that apply to specific network types or greedily search for a solution have 

been developed. Karlebach and Shamir proposed an inference algorithm that gradually 

updates the belief in each Boolean value, and can be used with small datasets and uncertain 

network topologies [15].  Sharan and Karp used linear programming to solve the problem for 

acyclic networks in steady state, and showed that it performs well, in particular for a specific 

class of regulation functions, and that it reliably predicts the regulation functions of signaling 

networks [16].  Some methods exist for deriving Boolean states from the dataset alone, 

which can then be compared to a network model [17, 18].  In addition, there are various 

algorithms for computing the Boolean regulation functions [19-21]. 

In this paper we take a different approach by making assumptions about the nature of the 

noise.  If the noise is not correlated with a specific regulation function, then as datasets 

become large, inferring individual network states is more difficult than inferring the types of 

regulatory interactions, since regulatory interactions occur repeatedly in the data, whereas 

individual states may occur just once or a few times.    Based on this argument, we present a 

novel algorithm that uses random sampling in order to infer individual states.  The algorithm 

is suitable for time series data or for steady state data in acyclic networks, and we 

demonstrate its performance using the former.  The main idea behind the algorithm is 

finding a trajectory that fits the largest number of Boolean data points in a sample.  With 

enough data points for the fit, the sample is sufficient for overcoming the effect of incorrect 

measurements and detecting the correct trajectory.  Since going over all possible initial 

states is infeasible for medium or larger networks, we devise a method that can perform the 

fit without need of doing so.  Our experiments also establish a link between the level of 

error in the data and the running time required for finding an optimal solution. 

The paper is organized as follows:  the next section defines the problem, describes the 

inference algorithm and explains how it achieves good performance and accuracy.  The 

Testing section demonstrates the performance and accuracy of the algorithm using a large 

simulated dataset.  Finally, in the Conclusion section we summarize our findings and outline 

future work. 
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 Inference Algorithm 

A Boolean network is a dynamic model that contains N nodes, which we will refer to as 

genes, and N Boolean functions, which we will refer to as regulation functions.  The inputs 

of a regulation function are the Boolean values that are assigned to a subset of the genes 

(the genes in this subset are the regulators) at a time i, and the output of a function assigns 

a value to a single gene, called the target, at time i+1.  A state is an assignment of Boolean 

values to all the genes at a given time point.  An initial state assigns a Boolean value to every 

gene.  Then, the states at subsequent times can be derived by simultaneous application of 

the regulation functions.  A set of time consecutive states is known as a trajectory of the 

network (Figure 1).  The graph that represents the relations between genes and their sets of 

regulators is called the network topology.  

The state inference problem requires finding the correct trajectory of a given Boolean 

network model given a trajectory that contains errors, where errors are Boolean values that 

changed.  In such a noisy trajectory, when the Boolean value of a data point is different than 

the output of its regulation function, we say that it constitutes a discrepancy.  A Boolean 

value assigned to a specific gene at a specific time in the input trajectory will be referred to 

as a data point.  Here we will assume that the changes are i.i.d random variables, in other 

probability of data point to correspond to an incorrect Boolean value is the same for every 

data point.  The number of Boolean values in a trajectory of length T is N·T.  In terms of 

computational complexity, neither T nor N is assumed to be constant, and therefore there 

are 2
NT 

different (noisy) trajectories for every network with N nodes and T time points. 

The input for the maximal fit problem is a set of noisy trajectories and a network topology, 

and the output is a minimal set of changes that is necessary for eliminating all discrepancies.  

This objective is intended to reconstruct the original trajectories before noise was added.  If 

the noise level is very high, e.g. every data point is flipped with probability 0.5, the problem 

is still defined, but the reconstruction will be meaningless. 

Following is an outline for the suggested inference algorithm: 

1. Infer the Boolean functions by selecting those functions that agree with the maximal 

number of states in the input trajectories. 

2. For each input trajectory, 

a. Find the initial state that fits the largest number of data points in a random 

sample from this trajectory (Figure 2). 

b. If there are several initial states that fit the largest number of Boolean 

values, select the one that generates a trajectory with minimal difference 

from the input trajectory. 

c. Generate a trajectory starting from the selected initial state and return it as 

a solution for the corresponding input trajectory. 

Step 1 can be performed using Branch & Bound, as described in [15].  In short, for each row 

in the truth table of a Boolean function, each one of the two alternative outputs is assigned 
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a score that is proportional to the number of its occurrence in the data.  Then, for selecting 

the best combination of outputs that constitute the Boolean function, we branch at each 

Boolean output, bound when the greedy, highest scoring completion of the sub-solution 

scores below the best solution found, and reject illegal solutions.  A combination of outputs 

is an illegal solution if the function that it defines does not depend on the value of one of its 

regulators.  

Assuming that the number of initial states returned by step 2a is constant, Steps 2b and 2c 

are computed trivially in O(N·T), and so next we focus on step 2a. 

Denote a data point as (g,t,b), where g is some gene, t is some time and b is some Boolean 

value.  An initial state S fits the data point (g,t,b) if the trajectory generated from S assigns 

the Boolean value b to gene g at time t (Figure 2).  For each data point, a recursive strategy is 

used for finding all the initial states that fit it: 

For a gene g, time t and Boolean value b: 

1. For each combination of regulator values that generates b: 

a) Assign this combination of values to the regulators of g at time t-1 

b) Solve the problem recursively for each regulator  

c) Intersect the results returned from the recursive calls 

2. Return a union of the results from step 1 

The recursion returns a set that can contain an exponential number of states.  However, its 

representation can be represented succinctly by marking genes that can take either Boolean 

value with a special character '?'.  For example, if we have 3 genes, the following annotation: 

(1,?,0) represents two Boolean states: (1,0,0) and (1,1,0).  All union and intersection 

operations can make use of this symbolic representation, and compress their results 

accordingly.  For example, a union between states (1,?,?) and (1,1,?) can be represented by 

(1,?,?), and an intersection between these states by (1,1,?).  We implement these operations 

using tries. 

The stopping condition of the recursion occurs at the initial state, where the solution is 

trivial – all the states that contain a given set of data point values.  Since a memoization 

table can be built once and used for every possible trajectory, even if this takes time 

exponential in N, for large T it is still constant per trajectory.  In cases where the 

memorization table needs to be built frequently, for example if there is uncertainty about 

the network topology, the sets of states can be computed inaccurately.  In other words, a 

larger set of states can be kept at each entry, such that its representation is smaller.  This 

can be implemented in various ways.  For the network in this study, the best tradeoff we 

found between preprocessing, running time and accuracy occurred when randomly 

replacing sub-tries that have over 100 leaves and represent a large number of sub-states by 

the full sub-state representation (a chain of ? nodes). 

Given a representation of all the states for each data point, we can select an initial state that 

fits the largest number of sampled data points using Branch & Bound.  We bound whenever 

the current sub-state is common to less data points than the value of the optimal solution 
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found so far.  An initial bound can be obtained as follows:  Let π be the proportion of 

erroneous data points in the sampled data points.  A good value for an initial bound would 

be (1-π) ·(# sampled data points), because that is exactly the proportion of correct data 

points.  However, since π is not known, we will initialize π to p, the probability of error, and 

use the following loop: 

1. Perform B&B using (1-p)·(# sampled data points) as an initial bound 

2. Increase p by 0.05 

Until a solution is found. 

When the sample size is large enough, the initial state that we will fit to will be the same one 

that fits the largest number of data points in the complete trajectory.  If in practice there is 

more than one initial state that fits them, we select as the solution the one that is most 

similar to the input trajectory.  For the network in this study we observed that as T increases, 

data points become less informative about the initial state, and so we adjusted the sampling 

probability to decrease with T. 

Note that step 2 of the algorithm can be parallelized, although this functionality is currently 

not implemented in our code.  The next section describes the tests that we performed in 

order to confirm efficiency and accuracy of the inference algorithm. 

 

Testing 

Since the state inference problem is NP-Complete [15], an algorithm's ability to cope with 

large datasets is crucial for its general applicability.  Our algorithm optimizes the same 

objective function as in [14-16], and therefore its usefulness in analyzing biological datasets 

follows directly from the findings of these studies.  In order to demonstrate that it is suitable 

for larger datasets and more complex network topologies, we construct the following 

Boolean network:  The network has 25 genes, each of which has 2 regulators (Figure 3).  The 

regulators are chosen such that by iterating backwards from a gene to its regulator and to 

that regulator's regulator and so on, we can reach any other gene.  This choice ensures that 

the network cannot be simplified into independent subnetworks, and that every pair of 

genes has the potential to influence one another in every trajectory.  The regulation 

functions are XOR, as this choice produces complex dynamic behaviors. 

The test dataset contains 100,000 data points, divided into 40 trajectories of length 100 

each.  A trajectory of length 100 of a cyclic network with 25 nodes has the same number of 

data points as a steady state acyclic network with 2,500 nodes.  The following probabilities 

are used for generating errors in the input dataset: p1=0.05, p2=0.1, p3=0.15 and p4=0.2.  For 

example, when using p4 we change on average every fifth Boolean value in the input.  The 

effects of these noise levels on the first 15 states of the first trajectory in the dataset are 

illustrated in Figure 4. 
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Then, for each probability pi we measure the running time of the algorithm and the number 

of incorrectly inferred Boolean values.  Figure 5 summarizes the performance of the 

algorithm using these error levels.  As can be seen in the figure, increasing the error level 

increases the running time and reduces the accuracy of prediction.  This is to be expected 

since higher error levels mean that more flipped data points are sampled, and therefore 

finding an initial state that is shared between the maximal number of points is harder.  For 

each sample size and noise level, we computed a new memorization table and included its 

construction time in the average running time per trajectory. 

So far we assumed that the probability of error of data points is the same.  In order to test a 

different pattern of noise, we now define a probability of error pt as follows: 

  �
�
� � 0 � � �1,3,5… . �

0.3 � � �2,4,6… . ��    

where t corresponds to time.  At even times the probability pt that a Boolean value be 

incorrect is 0.3, and at odd it is 0.  Therefore, the overall number of errors for pt is the same 

as p3, but there is an association between time and error.  Figure6A illustrates the effect of 

this noise scheme on the first 15 states of the first trajectory in the dataset.  Figure 6B shows 

the number of mistakes the algorithm makes for different sample sizes, and Figure 6C the 

running time as a function of sample size.  As can be seen in the figure, the algorithm makes 

more mistakes at small sample sizes than it makes for noise level p3, which indicates that the 

association of noise with time makes data points with incorrect values share more initial 

states.  Nevertheless, when the sample size is large enough the algorithm does not make any 

mistakes.   The running times of the algorithm are shorter, most likely since this noise 

pattern creates a favorable search space for the branch and bound step of the algorithm. 

For executing our program we used a Macbook air with a 2.2 GHz Intel Core i7 processor 

with 8 GB of memory.  For optimal performance, we implemented the algorithm in C.   The 

binary, source code and input files that were used in this study can be obtained for free by 

contacting the author. 

Conclusion 

Network models have been shown to agree well with observed patterns of gene expression.  

Currently, a gold-standard methodology for generating hypotheses about a network model 

given a dataset of gene expression does not exist.  An important aspect in quantifying the 

usefulness of a given model is the analytical tools that are available when one adopts the 

model.  Boolean networks are expressive, which means that they can describe a broad range 

of observations, and at the same time they are simple.  Due to the latter property, inference 

algorithms can be developed and studied using existing theory [15, 16, 22-24].    

In this paper we showed that very large datasets can be used for accurate inference despite 

the computational complexity of the problem.  Our algorithm offers researchers a powerful 

tool for exploring network hypotheses and provides an incentive for generating large 

datasets.  In addition, it provides insight into the network inference problem that can be 

used for development of new analysis methods. 
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There are several research directions that we plan to pursue in future work.  First, The 

minimal amount of data that is needed in order to reconstruct a trajectory is an important 

quantity both for inference and for designing biological experiments.  This includes the 

minimal trajectory length T, and the minimal number of trajectories in the input.  It may be 

possible to derive the information dynamically when constructing the state memorization 

table.  In addition, we have observed that for the XOR network data points with larger time T 

are less useful for inferring the initial state, and it is of interest to quantify this property.  

Another interesting question is what is the maximal level of noise that can be corrected.  

This level may depend on the dataset and network topology, and so a related question is 

whether there are trajectories or network topologies that are more robust to noise.   Given a 

dataset, it is also desirable to find bounds on the number of changes needed to remove all 

discrepancies.  A lower bound clearly exists, since a single change in a data point value 

cannot solve more discrepancies than one plus the number of targets of a gene.  We believe 

that answers to these questions will be important for the understanding of complex 

systems. 
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Figure 1:  A Boolean network model and one trajectory.  The leftmost table represents the 

trajectory, with the initial state (1,0,0).  The middle diagram is the network topology.  It 

shows the regulators of each gene, where there is a directed edge from every regulator to its 

target.  In this case, A regulates B, B regulates C, and C regulates A.  Since the trajectory is 

noiseless, by comparing it with the network topology it is easy to infer that the regulation 

functions that determine the values of B and C are identity functions, whereas the function 

that determines A is negation.  The tables on the rightmost column specify the model's 

regulation functions. 

Figure 2:  Intersecting sets of states in order to find an initial state that is common to as 

many sampled data points as possible (2 in this example).  Given a network topology, a 

memorization table that encodes sets of initial states that lead to each sampled data point 

value is generated.   Then, the corresponding sets of initial states (represented in this figure 

both as tries, in which ‘?’ means “0 or 1”, and as strings) are intersected.   The memorization 

table can also store sets that only contain the source states of each data point value, as long 

as the intersection of the sampled data point states will retrieve an initial state that solves 

the maximal fit problem.  Note that some entries of the memorization table contain two 

sets, one corresponding to a Boolean 0 and one to a Boolean 1.  This can occur during the 

recursive construction of the table. 

Figure 3: A diagram of the gene network that was used for testing the inference algorithm.  

The genes are drawn as circles, and there is a directed edge between every regulator and its 

target.  The network has 25 genes, and each gene has two other genes as regulators, and is 

itself a regulator of another genes. 

Figure 4:  Illustration of the effect of noise on the first 15 states in the test network’s first 

trajectory.  The original states (blue) and the states with addition of noise (red) are 

subjected to multidimensional scaling, where the distance function is the number of 

different Boolean values between a pair of states.  The states are numbered according to 

their order in the trajectory.  When the level of noise is 0.05 (top left frame), corresponding 

noisy and noiseless states are relatively close, or even identical in the case of states 2, 7 and 

10.   As noise level increases the distances between corresponding states grow. 

Figure 5:  A: The percentage of incorrectly classified data points as a function of sample size, 

for the four different noise levels tested in the paper.  For error levels p1=0.05 (magenta) 

and p2=0.1 (blue), all sample sizes result in mistake-free reconstruction.  The higher the 

noise level, the larger the sample size needed for eliminating errors.  B:  Running times of 

the algorithm for different sample sizes and noise levels.  The y-axis is in log(seconds) scale 

for display purposes.  Running times consistently increase with noise level for all sample 

sizes.  

 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2016. ; https://doi.org/10.1101/056358doi: bioRxiv preprint 

https://doi.org/10.1101/056358
http://creativecommons.org/licenses/by/4.0/


Figure 6:  A: Multidimensional scaling of the first 15 states in the first trajectory in the 

dataset, without noise (blue) and time-correlated noise (also see text).  The distance 

function is the number of different Boolean values between a pair of states.  The states are 

numbered according to their order in the trajectory.  The first state and every odd state are 

noiseless, and therefore the blue and red odd numbers are completely overlapping.  The 

other time points contain an error with probability 0.4 B: The percentage of incorrectly 

classified data points as a function of sample size, for the time-correlated error level pt.   C:  

Running times of the algorithm for different sample sizes, measured in seconds.   
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