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Abstract— Game theoretic methods are used to model the 
dynamics of cellular populations (tissues) in which it is 
necessary to account for changes in cellular phenotype (usually 
proliferation) resulting from cell-cell interaction. Results 
include prediction of long-term steady-state “equilibria” and 
transient dynamics. These results can be useful for predicting 
relapse after cytoreduction, assessing the efficacy of alternating 
combination therapy, and interpreting biopsy specimens 
obtained from spatially heterogeneous tissues. Mathematical 
tools range from simple systems of differential equations to 
computational techniques (individual-based models).  

I. PROBLEMS IN CANCER 

One of the goals of research into basic cancer biology and 
cancer therapy is to understand how the current condition of a 
population of cells can be used to predict future dynamics of 
the tissue, and ways to modify outcomes through therapeutic 
intervention. Addressing this goal promises to aid the search 
for prognostic markers to stratify risks for future occurrence 
and recurrence, the modeling of risks of developing drug 
resistance, the understanding of delayed recurrence after 
dormancy, the prediction and control of metastasis, and the 
development of therapeutics and dosing schedules. It is 
increasingly recognized that analyses of intracellular genetic 
regulatory networks will not alone be sufficient to provide 
theoretical insights for fully addressing these goals. Given the 
sophisticated interactions between cell types in both normal 
and malignant tissue microenvironments [1,2], mathematical 
modeling of the influences that subpopulations of cells (and 
non-cellular materials) exert on cellular phenotypes will be 
required. “Game theoretic” methods refer to a broad range of 
modeling techniques that incorporate these influences, often 
by describing how the fractional proliferation rates of cellular 
subpopulations vary with the fractional representation of 
these subpopulations in the population overall (Fig. 1). 

 
Figure 1. Expansion factor of a subpopulation depends on 
population composition. Reprinted from [5] Fig. 2.  
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II. ILLUSTRATIVE RESULTS OF APPLICATION OF METHODS 

Game theory has been used to understand dynamic 
changes in the proportions of cellular subpopulations during 
disease progression, treatment, and relapse. According to a 
mathematical model of interactions between multiple 
myeloma, osteoblast, and osteoclast cells developed by 
Dingli et al. [3], partial cytoreduction of the multiple 
myeloma subpopulation fails to eliminate the stable 
equilibrium point associated with eventually re-established 
dominance of the multiple myeloma subpopulation (Fig. 2). 
In addition to predicting equilibria, game theory can be used 
to predict transient dynamics preceding long-term steady 
states. For example, Basanta et al. [4] developed a model of 
glioblastoma multiforme that predicted that eventual 
dominance by the invasive phenotype might be preceded by 
oscillations in population composition. 

 
Figure 2. Using a simplex to illustrate eventual regrowth of 
multiple myeloma following therapeutic cytoreduction. Adapted 
by permission from Macmillan Publishers Ltd on behalf of 
Cancer Research UK: Br. J. Cancer. [3], Fig. 4(e), copyright 
2009. 

 

Velocity fields provide a graphical representation of 
replicator dynamics equations. In two-dimensions, such an 
illustration on a coordinate grid is referred to as a phase 
portrait (“simplex” in three dimensions). Wu et al. used 
phase portrait analysis to illustrate how multiple myeloma 
and stromal cells treated with doxorubicin in microfabricated 
habitat structures can initially exhibit an increase in the 
multiple myeloma subpopulation before eventually 
becoming dominated by stroma [6]. For such a trajectory, 
apparent failure can be merely temporary. Liao et al. [5] 
proposed using velocity fields to evaluate combination 
therapies. The efficacy of alternating between two therapies 
might be predicted by measuring the angles formed by 
quivers on a phase portrait (Fig. 3).  

Game theory has also been applied to model dynamics 
according to which a treated tumor and oncologist respond 
to each other [7]. 
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Figure 3. Game theory can be used to evaluate candidate 
schedules for combination therapy. Adapted from [5] Fig. 4.  

 

Kaznatcheev et al. [8] incorporated spatial effects into an 
analysis of the “go vs. grow” game to illustrate why core 
biopsies need to be interpreted with caution. In Fig. 4, cells 
in the interior bulk of a tissue interact with more neighbors 
than cells near a fixed edge (e.g. tissue interface). The 
number of neighbors in a cellular network strongly 
influences which phenotype will dominate (see Ohtsuki-
Nowak transform below). Histology supports concern that 
the invasive phenotype might dominate only a thin tissue 
layer near the interface. Thus, dominance of the invasive 
phenotype near the tissue interface might not be apparent 
from a core biopsy that mainly samples the bulk, diluting the 
contribution of cells near the edge. 

 
Figure 4. Biopsy with poor spatial resolution can provide 
misleading population composition information.  

 

Based on recent studies in microbial populations, we 
anticipate future applications of evolutionary game theory 
and related ecological approaches to cancer research. For 
example, the phenomenon of “critical slowing down” that 
can predict imminent population collapse [9,10,11] might be 
applied to detect when normal or malignant cell populations 
are near a critical transition. 

III. QUICK GUIDE TO METHODS 

We highlight two types of game theoretic models. For 
additional reading, tutorials [5] and [12] are suggested 
for mathematical novices. For a brief overview of 
methods see [13], and for more mathematical reviews, 
see [14] and [15] and additional reviews listed in [8].  

A. Well-mixed, continuous-time replicator dynamics 
One of the simplest forms of evolutionary game theory 
commonly applied can be derived from assumptions that 
cells are (1) vigorously mixed so that each cell collides with 
cells of various subtypes at frequencies proportional to the 
global population fractions of those cellular subtypes and 

that (2) cell-cell contact events temporarily modify rates of 
proliferation (Fig. 5) in a linear way. 

 
Figure 5. Assumption that pairwise collisions between cells 
induce proliferation events. Adapted from [12] Fig. 2.  

 

Equations 1 below follow from these assumptions.  
 dݔ

dݐ
ൌ ൫݌ܣ௫ ൅  (1.1) ݔ௬൯݌ܤ

 dݕ
dݐ

ൌ ൫݌ܥ௫ ൅  (1.2) ݕ௬൯݌ܦ

 ८ ൌ ቂܣ ܤ
ܥ ܦ

ቃ (1.3) 

Here, time rates of change (d/dt) of subpopulations (e.g. 
numbers of cells of type x and y) are proportional both to the 
cell numbers x and y, and to fitnesses that are linear 
functions of the global population fractions, px and py, of the 
cell types x and y, respectively. For example, in Eqn. 1.1, 
coefficient A is the replicative fitness of cells of type x in a 
population consisting only of cells of type x, coefficient B is 
the replicative fitness of rare cells of type x in a population 
consisting almost completely of cells of type y, and the 
fitness function Apx + Bpy linearly interpolates between these 
extremes to provide fitness values for intermediate 
population compositions. Taken together, as in Eqn. 1.3, the 
coefficients are often referred to as a payoff matrix. 

B. Ohtsuki-Nowak transform 
The preceding model can be made more realistic by 
assuming that cells interact with local neighbors and 
proliferate on a spatially-resolved random network.  
Fig. 6 illustrates examples of compositions of local 
neighborhoods that can be realized by a spatially-resolved 
model, but not by a well-mixed model. In a well-mixed 
population, cells at different locations, e.g. (a), (b), and (c) 
confront local neighborhoods with the same demographic 
compositions. In a less thoroughly mixed population, a cell 
might find itself in the midst of (d) a neighborhood similar to 
those expected for a well-mixed population, (e) a 
neighborhood with greater homogeneity than expected for a 
well-mixed population, e.g. the cell is surrounded by more 
cells of its own type than expected on average, or (f) a 
neighborhood with greater heterogeneity than expected for a 
well-mixed population, i.e. a neighborhood in which 
heterotypic interactions are more common than expected on 
average. Panels (e) and (f) illustrate two scenarios that can 
never happen in a well-mixed population and that require 
that the original payoff matrix, ८, in Eqn. 1.3 be replaced by 
a transformed matrix in order for Eqns. 1.1 and 1.2 to 
correctly describe the global dynamics of the spatially-
resolved network.  
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Figure 6. Heuristic for explaining terms in Ohtsuki-Nowak transform. 
 

The “transformed” matrix, ܱ ௞ܰሺ८ሻ, in Eqn. 2, is obtained 
using the Ohtsuki-Nowak transformation [8,16,17]. This 
transformation relies on assuming that statistical correlations 
between cells can be neglected for non-nearest neighbors.  
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(2) 
The exact form of Eqn. 2 varies with details of the particular 
birth-death update process under investigation, but the 
general form has three terms (original matrix accompanied 
by two correction terms, as heuristically anticipated from the 
scenarios in panels (e) and (f) in Fig. 6). The number of 
neighbors with which an individual immediately interacts is 
k. One way to remember that the dynamics (including steady 
state population compositions) depends on the neighborhood 
size is to remember that a cell type that is easily 
outcompeted in a well-mixed population might survive in a 
less thoroughly mixed population when protected by being 
locally surrounded by other cells that do not outcompete it. 

 The Ohtsuki-Nowak transform was the technique that 
enabled the analysis of edge effects and their consequences 
for biopsy analyses, as described in [8]. 

C. Individual-based models 
While the Ohtsuki-Nowak transform analytically 

describes global population dynamics for large random 
networks with local cell interactions, computational 
techniques are typically used to model detailed histories of 
individual cells. Example capabilities of individual-based 
models (IBMs, agent-based models, ABMs) are described 
elsewhere in this guide [18]. In IBMs, individual cells carry 
out scripts that prescribe phenotypes to be expressed (e.g. 
proliferation, movement, changes in cell type) according to 
the local environments in which individual cells are found.  

D.  Scales at which these methods are useful 
While examples in this summary relate to interactions 

between cells, the same mathematical techniques can be 
applied at larger scales to describe interactions between 
tissues and at smaller scales to describe interactions between 

pools of molecules in intracellular regulatory networks. 
Insights into network topology at subcellular scales might 
provide a head start for understanding topologies of cell-cell 
interactions that have been evolutionarily shaped.   

ONLINE RESOURCES 
(a) Kaznatcheev A. Theory, Evolution, and Games Group. Blog: 

<http://egtheory.wordpress.com/> 
(b) Kaznatcheev A, Scott J, Basanta D. Evolutionary Game Theory. An 

excellent Google community for questions and discussions. 
<http://plus.google.com/u/0/communities/114797456234998377606 > 

(c) Liao D. Tour: Game theory. Educational materials for tutorials in 
Interface Focus.  <http://quant.bio/tour.egt.php > 
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