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In a recent Letter to Nature, Gao, Barzel and Barabási1 de-
scribe an elegant procedure to reduce the dimensionality of
complex dynamical networks, which they claim reveals “uni-
versal patterns of network resilience”, offering “ways to pre-
vent the collapse of ecological, biological or economic sys-
tems, and guiding the design of technological systems re-
silient to both internal failures and environmental changes”.
However, Gao et al restrict their attention to systems for
which all interactions between nodes are mutualistic. Since
antagonism is ubiquitous in natural and social networks, we
clarify why this stringent hypothesis is necessary and what
happens when it is relaxed. By analyzing broad classes of
competitive and predator-prey networks we provide novel
insights into the underlying mechanisms at work in Gao et
al’s theory, and novel predictions for dynamical systems that
are not purely mutualistic.

Following ref. 1, we consider a network of N nodes whose
activities xi are governed by

dxi
dt

= F (xi) +
N∑
j=1

AijG(xi, xj) (1)

F (xi) describes self-dynamics of node i while G(xi, xj) repre-
sents the effect of node j on node i. A is a matrix of weighted
links, encoding network structure. At the core of Gao et al’s1

procedure is a mean-field approximation, replacing all interact-
ing partners of any focal node by replicates of a single part-
ner xeff = 1>Ax/1>A1, where x = (x1, ..., xN )> and 1 =
(1, ..., 1)>. In a second step the dynamics of xeff are reduced to

dxeff

dt
= F (xeff) + βeff G(xeff, xeff) (2)

where βeff = 1>A21/1>A1. In this approximation, the state of
the effective node determines the state of the entire system. In
the following, we assume the network to be large, of maximal
connectance and that self-regulation is homogeneous amongst
nodes. A priori, this is an ideal setting for a mean-field approx-
imation. We begin with linear interactions, corresponding to
F (xi) = −xi and G(xi, xj) = gxj . Since the seminal work of
May2, linear systems have served as a benchmark for the study
of ecological stability2, 3. In both mutualisitic (g = +1) and
competitive (g = −1) cases, Gao et al’s procedure is now exact
when all interaction rates Aij are equal. In compact form, the
activity of nodes follow dx/dt = M x where M = −I + gA.

The stability criterion is that the dominant eigenvalue λtrue of
the matrix M has negative real part. The effective node should
follow dxeff/dt = λeff xeff where λeff = −1 + gβeff, so that
the approximate stability criterion is that λeff is negative. We
draw interaction rates Aij > 0 as independent realizations of
the random variable |X| where X ∼ N (0, σ), taking σ as a
measure of mean interaction strength. In the first panel of Fig. 1,
we generated mutualistic networks for various values of σ, com-
paring true and predicted stability. We observe a perfect corre-
spondence between the two. This can be explained by the fact
that, in those large randomly assembled networks, the dominant
eigenvalue of A is well approximated by βeff while the associ-
ated eigenvector approaches 1, a mathematical expression of the
mean-field approximation3. When g is positive this implies that
λeff is a good approximation of the dominant eigenvalue of M .
The network is thus stable if and only if the approximate system
is stable, in agreement with the examples of ref. 1. Importantly,
xeff approaches the mean activity 1

N

∑N
i=1 xi −in an ecological

context, mean biomass; projection of x on the direction spanned
by 1, the slowest, least stable, direction of the dynamics. The
situation changes dramatically when considering competitive in-
teractions. Indeed we now have that λeff is a good approximation
of the smallest eigenvalue of M , which does not determine sta-
bility. On the second panel of Fig. 1, we generated competitive
communities along a gradient of interaction strength. A sharp
divergence between true and approximated network stability is
observed. In fact, for a large number N of nodes, the dominant
eigenvalue of M approaches3

λtrue ≈ −1 +
√
N + (N − 1)2/π σ

indicating a loss of stability as N and/or σ increase, whereas

λeff ≈ −1− (N − 1)
√
2/π σ

gives the opposite trend. Mean activity is now the fastest, most
stable, direction of the dynamics, while differences between in-
dividual activities can grow uncontrollably. Although the state
of the effective node should be approximated with reasonable
precision by Gao et al’s reduction, it is not sufficient to predict
the state of the entire network. The negative impact of one node
on the other has a positive impact on other competing nodes,
making unpredictable the net feedback experienced by a focal
node. The effect of neighboring nodes cannot be reduced to
an effective competitor. This last point is particularly obvious
for networks of predator and prey, whose interactions are both
positive and negative. If for any interacting pairs we decide at
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random who is prey and who is predator, as the number of nodes
N grows, λtrue follows a universal trend3:

λtrue ≈ −1 +
√
N(1− 2/π)σ,

whereas λeff is ill-defined as the denominator of βeff has now
zero expected value. In other words, the net balance between

positive and negative feedbacks experienced by a focal node
can switch unpredictably by the addition or removal of a single
species, preventing the mean-field approximation to hold. This
explains the dispersion of predicted stability in the last panel of
Fig. 1.
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Figure 1: Stability of linear systems. Along a gradient of mean interaction strength, we randomly generated 10000 fully connected networks
composed ofN = 10 dynamical nodes, representing three types of ecological communities near equilibrium. The region shaded in blue represent
the 10− 90 percentiles of realized stability −<(λtrue) (unstable if negative). In yellow is the equivalent range for predicted stability −λeff.

When interactions are non-linear, several dynamical states can
coexist, ranging from equilibriums to chaos, and stability is de-
fined relatively to alternate, undesirable states. For mutualistic
systems, Gao et al provide compelling examples indicating that
their theory reveals reliable stability patterns. The above analy-
sis of linear systems allows us to draw a qualitative understand-
ing of why this can be true: Suppose the interaction matrix A
has an eigenvalue βeff associated to 1. Any non-linear dynam-
ics of the form (1) will then preserve the direction spanned by
1, following a linear trajectory ϕ(t) = xeff(t)1 with xeff solu-
tion of the reduced system (2). In mutualistic systems, if the
reduced system converges to an equilibrium x̂eff, ϕ(t) describes
the trajectory along the direction of slowest approach to the full
steady-state x̂eff1/||1||. A change in stability of a steady state
will automatically be seen on the reduced system. In complex
mutualistic networks, 1 will typically be a good approximation
of the eigenvector associated to βeff, so that we can expect the
described behavior to hold, at least qualitatively. If interactions
are purely competitive all of the above remains valid, except that
the trajectory ϕ(t) will not be the one of slowest approach sug-
gesting that instabilities may go undetected. As an example, let
us revisit the case of competitive systems, of the form of general-
ized Lotka-Volterra communities, for which F (xi) = xi(1−xi)
and G(xi, xj) = gxixj , with g = −1. Once reduced by Gao et
al’s procedure, the effective node follows logistic growth

dxeff

dt
= xeff − (1 + βeff)x

2
eff

and approximates, as in the linear case, the system’s mean activ-

ity. Because βeff is positive, we see that the reduction predicts a
unique effective stable equilibrium x̂eff = 1/(1 + βeff). Validity
of Gao et al’s reduction in this setting would imply that such sys-
tems present, at most, various alternate stable states correspond-
ing to the same mean activity. In Fig. 2, with similar rules as in
the linear case, we generated a community composed ofN = 23
competing species. Along a gradient of interaction strength, al-
ternate stable states coexist, corresponding to different assem-
blages of persisting species. Remarkably, mean biomass xeff is
similar for different stable states and well predicted by Gao et
al’s approximation. This, however, also implies that the reduc-
tion is not informative in terms of persistence or abundances of
species, a limitation worth pointing out in view of application to
conservation issues. Furthermore, stable states can coexist with
limit cycles or chaos, which are undetected by the reduced sys-
tem. In Fig. 2, one equilibrium undergoes a Hopf bifurcation
to a limit cycle presenting large oscillations. At this point, the
possible transition from a remaining equilibrium to undesired
oscillations is not accounted for.

Let us now briefly comment the more general case of a mixture
of interactions types. Starting from a purely mutualistic context,
if antagonism is gradually allowed in the system, the eigenvec-
tor associated to the dominant eigenvalue of A will soon depart
from the homogeneous vector 1 so that ϕ(t) = xeff(t)1 will
not be a solution anymore (even if βeff remains a good approx-
imation of the dominant eigenvalue of the interaction matrix A,
even-though it would suffice to predict the qualitative state of a
linear system). Due to non-linearities, there will not be any lin-
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ear direction preserved by the dynamics along which it reduces
to the simplified system (2). All in all, this makes it difficult to
foresee the ability of Gao et al’s procedure to predict qualitative
stability patterns. In conclusion, it is unclear if a statistical the-
ory of complex networks can exist. Gao et al show that reliable
emerging stability properties can be expected when interactions

are purely mutualistic. We explained why these properties are
specific to mutualism and should not be expected to hold in net-
works for which antagonistic interactions cannot be neglected.
This limitation is important to keep in mind before applying this
method to real-world systems, in which antagonism is ubiqui-
tous and often a dominant form of interaction.
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Figure 2: Detail of bifurcation diagram of a competitive Lotka-Volterra system. We randomly generated a community composed ofN = 23
species. Along a gradient of interaction strength, alternate stable state coexist, corresponding to different assemblages of persisting species (first
panel, equilibrium 1 and 2). Associated effective variable xeff is similar for all and well predicted by the approximation of Gao et al. Equilibrium
2 undergoes a Hopf bifurcation to a limit cycle (first panel, shaded gray region) presenting large oscillations (right panel).
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