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1 Abstract

Statistical models in medical and population genetics typically assume that individuals
assort randomly in a population. While this simplifies model complexity, it contradicts an
increasing body of evidence of non-random mating in human populations. Specifically, it
has been shown that assortative mating is significantly affected by genomic ancestry. In this
work we examine the effects of ancestry-assortative mating on the linkage disequilibrium
between local ancestry tracks of individuals in an admixed population. To accomplish
this, we develop an extension to the Wright-Fisher model that allows for ancestry based
assortative mating. We show that ancestry-assortment perturbs the distribution of local
ancestry linkage disequilibrium (LAD) and the variance of ancestry in a population as a
function of the number of generations since admixture. This assortment effect can induce
errors in demographic inference of admixed populations when methods assume random
mating. We derive closed form formulae for LAD under an assortative-mating model with
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and without migration. We observe that LAD depends on the correlation of global ancestry
of couples in each generation, the migration rate of each of the ancestral populations, the
initial proportions of ancestral populations, and the number of generations since admixture.
We also present the first evidence of ancestry-assortment in African Americans and examine
LAD in simulated and real admixed population data of African Americans. We find that
demographic inference under the assumption of random mating significantly underestimates
the number of generations since admixture, and that accounting for assortative mating
using the patterns of LAD results in estimates that more closely agrees with the historical
narrative.

2 Introduction

One of the most common assumptions in human population genetics analyses is that of
Hardy-Weinberg Equilibrium (HWE). The HWE assumption in turn enforces a set of ad-
ditional conditions including the absence of selection, infinite population size, and impor-
tantly, random mating. We and others have shown that assortative mating is a common
phenomenon[1, 2, 3] and many phenotypes including height, education level, and person-
ality traits are correlated between spouses [4]. For Latinos and other admixed populations
the African, Native-American, and European proportions of individual’s genomes can be
correlated between spouses. We recently demonstrated that the genomic ancestry of Latino
couples is highly correlated [1], and refer to this as ancestry-assortative mating. Thus, the
assumption of random mating and therefore Hardy-Weinberg Equilibrium is not satisfied
in practice, and the implication of this observation for population and evolutionary genetic
studies remains unclear.

The assumption of random mating is used in many types of population and quantitative
genetics analyses. Particularly, random mating is assumed both in analysis of popula-
tion genetics data and when inferring population parameters such as recombination rates,
mutation rates, selection, heritability, and others. Moreover, methods for quality control
and data cleaning often make the random mating assumption. For example, methods for
haplotype phasing typically compute the likelihood of the genotype as the product of the
likelihoods of each of the haplotypes, and this derivation is based on the random mating
assumption[5]. Similarly, such likelihood derivations are also common in methods for the
inference of identity by descent and inference of ancestry from genomic data[6]. Thus far,
the sensitivity of these methods to the assumption of assortative mating has not been
evaluated. In principle, realistic violations of the random mating assumption may not be
detrimental to existing methods, however this needs to be taken to the test.

In this paper we explore the robustness of specific genetic features and their inference from
genetic data to assortative mating. Because assortative mating in Latinos has been shown
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to be affected by ancestral proportions, we focused our analysis on the behavior of ancestry
linkage disequilibrium under assortative mating. We propose a random generative model
for population dynamics under assortative mating which is due to population structure.
Our model follows the spirit of the Wright-Fisher model, and makes the assumption that
the correlation of ancestry proportions between spouses stays fixed across generations.
Particularly, when the correlation of ancestry proportions is zero, our model is equivalent
to the Wright-Fisher model.

We develop mathematical theory that describes the decay of local ancestry disequilibrium
(LAD) as a function of assortative mating strength, migration rate, recombination rate,
and the number of generations since admixture began. Thus, one can use these results
in order to infer the demographic history of admixed populations. Several methods for
demographic inference in admixed populations exist including ones that use patterns of
LD decay [7], local ancestry track length distribution [8], and the distribution of identity
by descent segments[9]. However, these methods assume random mating, and under assor-
tative mating LD decay follows a different pattern [10]. Using simulations we demonstrate
that our mathematical derivation matches empirical LAD decay. Furthermore, we develop
the theory with migration rates from the ancestral populations, and we demonstrate that
in the presence of assortative mating, one may erroneously conclude that there has been
active migration, and vice-versa.

We applied our analysis to a dataset of 1730 African Americans from the Study of African
Americans, Asthma, Genes and Environments (SAGE) study[11]. We first used ANCES-
TOR [12] to show that the correlation of African ancestry between the spouses in the last
generation is approximately 0.32. We then used our analysis to infer the number of gener-
ations and migration patterns in the African American population. Under the assumption
of no migrations and random mating, an analysis of LAD resulted in an estimated of the
number of generations since admixture of 3. Adding assortment and migrations we find
that the estimated number of generations since the admixture event is 15. Assuming a
generation time of 25 years this places the initial migrations in the mid 17th century which
is consistent with the history of African Americans[13].

3 Methods

The model We assume the following alternative to Wright-Fisher. Let N be the number
of individuals in each population (effective population size divided by 2). Each individ-
ual has two haplotypes, so the total number of haplotypes is 2N . Also, we assume the
population is a recently admixed population with two ancestral populations (referred to
as population 1 and population 2), and let θi denote the fraction of the genome with
population 1 ancestry.
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In the next generation, each individual picks two parents from the current generation, such
that the correlation between the ancestry of the two parents is a fixed value P . One way of
generating such mating in silica is the following. We randomly pick the set of mothers (with
or without replacements) from the original distribution. We then randomly choose the set
of fathers (with or without replacements). Now, for each of the parents we give a score
scorei = θi+εi, where θi is the global ancestry of the parent, and εi is drawn from a normal
distribution N(0, σ2). We then sort the mothers and the fathers based on their score and
we let the mother with i− th largest score marry the father with the i− th largest score.
We then compute the correlation between corr(θm, θf ), where θf , θm are the ancestries of
the mother and the father. We choose σ such that P = corr(θm, θf ). We note that our
analysis below does not rely on this specific procedure; particularly, the distribution of
parents for the new generation can be quite general, and our only assumption is that P is
constant across the generations. Note that this assumption may seem restrictive at first,
however the case of random mating is far more restrictive, since there one requires that
P = 0 in all generations.

Local Ancestry disequilibrium Denote by γt1 the probability of having an allele from
ancestry 1 at a given position at generation t. Furthermore, for a pair of positions, let γt11
denote the probability of having an allele from ancestry 1 at the two positions. We define
a new statistic, termed local-ancestry linkage disequilibrium, denoted by LAD. We define
LAD = γ11 − γ21 . We are interested in the expected value of LADt (LAD at generation
t) as a function of the recombination rate r, the number of generations t, and the original
local ancestry linkage disequilibrium LAD0.

For the following derivation, we will assume that the population size is infinite. We will later
show that empirically this assumption does not have a substantial effect for realistic values
of N . We will first assume that there is no migration and we will relax this assumption in
the next section.

Since there is no migration and the population size is infinite, the mean of θ is fixed across
the generations (remember that the marginal distribution of the mothers and the fathers
is the same and is simply a random draw from the current generation)[14]. We denote
µ = E[θ]. Let Vt = V ar(θt) be the variance of θ in generation t, and let ρt = PVt be the
covariance ρt = cov(θm, θf ). For t > 1 we have:
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Vt+1 = E[θ2t+1] − µ2

= E[(θtm + θtf )(θtm + θtf )/4] − µ2

=
1

4

(
2E[θ2t ] + 2E[θtmθ

t
f ]
)
− µ2

=
1

2

(
µ2 + Vt + ρt + µ2

)
− µ2

=
Vt(1 + P )

2

This demonstrates that the variance of genome-wide ancestry is larger when there is as-
sortative mating. Now, we know

ρt+1 = PVt+1 =
PVt(1 + P )

2
=

1 + P

2
ρt (1)

Note that for t = 0, ρ0 = V0 since there was no assortative mating prior to the admixture
event, and therefore for t = 1 the above calculation gives V1 = V0, and ρ1 = PV0 = Pρ0. In
order to simplify the notation, we change the indices, so that generation t = −1 corresponds
to the time of encounter of the two population and t = 0 is the first generation after
admixture. Therefore, we have that Equation 1 holds for every t ≥ 1.

We now find a recursion formula for LADt. Let r be the probability for an odd number of
recombinations between the two positions in a given meiosis. Hence,

LADt+1 = γt+1
11 − µ2

= (1 − r)γt11 + rE[θtmθ
t
f ] − µ2

= (1 − r)LADt + r(E[θtmθ
t
f ] − µ2)

= (1 − r)LADt + rρt

We are now ready to describe our main result:

Lemma 3.1

LADt = (1 − r)tLAD0 + rρ0
(1 + P )t − (1 − r)t2t

2t−1(P + 2r − 1)

Proof We show this is true by induction. It is easy to verify that since LAD1 = (1 −
r)LAD0 + rρ0, the base case t = 1 holds. Assume the lemma holds for t and we will prove
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it for t+ 1.

LADt+1 = (1 − r)LADt + rρt

= (1 − r)t+1LAD0 + (1 − r)rρ0
(1 + P )t − (1 − r)t2t

2t−1(P + 2r − 1)
+ rρt

= (1 − r)t+1LAD0 + rρ0

(
(1 − r)

(1 + P )t − (1 − r)t2t

2t−1(P + 2r − 1)
+

(1 + P )t

2t

)
= (1 − r)t+1LAD0 + rρ0

(1 + P )t+1 − 2t+1(1 − r)t+1

2t(P + 2r − 1)

LAD under migration. We now assume that in each generation a fraction m1 of the
population is replaced by individuals from the first population (θ = 1), and a fraction m0

of the population is replaced by individuals from the population θ = 0. We denote by
m = m1 +m0, and α = m1

m . Since there is migration, the mean global ancestry is changing
over time, and we let µt = E[θt] the average values of θ when an individual is randomly
sampled from the population. For simplicity of notation, we denote xt = µt − α, and we
note that xt is exponentially decreasing. Since µt+1 = αm + (1 − m)µt, we have that
xt+1 = (1 −m)xt and therefore xt = x0(1 −m)t.

We now show the following lemma:

Lemma 3.2 If there is a sequence y0, y1, . . . , satisfying the recursion equation yt+1 =
(1 −m)q1yt + a3x

2
t + a2q

t
2xt + a1xt + a0, then

yt = b4x
2
t + b3q

t
1xt + b2q

t
2xt + b1xt + b0

Proof To prove the base of the induction we need to satisfy y0 = b4x
2
0+(b1+b2+b3)x0+b0,

which is a simple linear equation. We will show that the induction step adds two more
linear equations. Assume the lemma holds for t, and consider yt+1:

yt+1 = (1 −m)q1yt + a3x
2
t + a2q

t
2xt + a1xt + a0

= (1 −m)q1(b4x
2
t + b3q

t
1xt + b2q

t
2xt + b1xt + b0) + a3x

2
t + a2q

t
2xt + a1xt + a0

Now, note that xt+1 = (1 −m)xt. Therefore:

yt+1 =

(
q1b4(1 −m) + a3

(1 −m)2

)
x2t+1 + b3q

t+1
1 xt+1 +

(
b2q1(1 −m) + a2

q2(1 −m)

)
qt+1
2 xt+1

+

(
q1(1 −m)b1 + a1

1 −m

)
xt+1 + ((1 −m)q1b0 + a0)
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We now set:

b0 =
a0

1 − (1 −m)q1

b1 =
a1

(1 −m)(1 − q1)

b2 =
a2

(1 −m)(q2 − q1)

b4 =
a3

(1 −m)(1 −m− q1)

b3 =
y0 − b4x

2
0 − (b1 + b2)x0 − b0

x0

Next, we observe:

Vt+1 = E[θ2t+1] − µ2t+1

= αm+ (1 −m)E[(θtm + θtf )(θtm + θtf )/4] − (xt+1 + α)2

= αm+
1 −m

4

(
2E[θ2t ] + 2E[θtmθ

t
f ]
)
− ((1 −m)xt + α)2

= αm+
1 −m

2

(
µ2t + Vt + ρt + µ2t

)
− ((1 −m)xt + α)2

= αm+ (1 −m)(xt + α)2 − ((1 −m)xt + α)2 + Vt
(1 −m)(1 + P )

2

= m(1 −m)x2t + αm(1 − α) + Vt
(1 −m)(1 + P )

2

By Lemma 3.2, we have Vt = b4x
2
t + b3xt

(1+P )t

2t + b0, for b4, b3, b0 specified in the lemma.
Note that based on the lemma’s proof, b1 = b2 = 0. Now,

LADt+1 = γt+1
11 − µ2t+1

= αm+ (1 −m)
(
(1 − r)γt11 + rE[θtmθ

t
f )]

)
− µ2t+1

= αm+ (1 −m)
(
(1 − r)γt11 + r(ρt + µ2t )

)
− µ2t+1

= (1 −m)(1 − r)LADt + (1 −m)(1 − r)µ2t + (1 −m)rµ2t − µ2t+1 + αm+

(1 −m)rρt

= (1 −m)(1 − r)LADt + (1 −m)µ2t − µ2t+1 + αm+ (1 −m)rρt
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Therefore, noting that µt+1 = (1 −m)xt + α, we have

LADt+1 = (1 −m)(1 − r)LADt + (1 −m)µ2t − µ2t+1 + αm+ (1 −m)rρt

= (1 −m)(1 − r)LADt + (1 −m)(xt + α)2 − (α+ xt(1 −m))2 + αm+ (1 −m)rρt

= (1 −m)(1 − r)LADt + x2tm(1 −m) +mα(1 − α) + (1 −m)rρt

Now, recall ρt = Pb4x
2
t +Pb3xt

(1+P )t

2t +Pb0. Therefore, we have the form LADt+1 = (1−
m)q1LADt+a3x

2
t +a2q

t
2xt+a1xt+a0 satisfying Lemma 3.2 with the following values:

q1 = 1 − r

q2 =
1 + P

2
a3 = (1 −m)(m+ rPb4)

a2 = (1 −m)rPb3

a1 = 0

a0 = αm(1 − α) + (1 −m)rPb0

Thus, for c0, c1, c2, c3, c4 taken from Lemma 3.2 we have

LADt = c4x
2
t + c3q

t
1xt + c2q

t
2xt + c1xt + c0.

Plugging in the values of q1, q2, and the fact that xt = x0(1 −m)t, we get

LADt = c4x
2
0(1 −m)2t + x0(1 −m)t(c3(1 − r)t +

c2(1 + P )t

2t
+ c1) + c0 (2)

4 Results

When applied to the genome, we can estimate the value of LAD for known values of r by
averaging the observed LAD across the genome. We can now fit the values of m, t, and P
based on the distribution of the LAD as a function of r in the current generation. It is
therefore important to understand the dependency of the distribution of LAD for varying
values of r as a function of t, P , and m. In what follows, we explore the behavior of LAD
under different settings.

We first consider the case where m1 = m2 = 0, i.e., there is no migration, and P = 0.6.
In Figure 1 we observe that there is a clear separation between the different curves for
the different numbers of generations since admixture, and it should therefore be easy to
estimate the time of admixture event under the assumption of no migration and P =
0.6.
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Next, we study the effect of P on the LAD distribution. In Figure 2 we plot the LAD
distribution under no migration, after 10 generations of admixture, with varying values of
P . Evidently, strong assortative mating with large values of P results in a substantially
different levels of LAD. However, we observe that low values of P are harder to distinguish,
and therefore we expect that random mating is a robust assumption for any statistic that
uses LAD or its derivatives, as long as assortative mating is weak (e.g., P < 0.5).

Since typical analysis of genetic data assumes random mating, we attempted at understand-
ing the potential risk in making the assumption in the presence of assortative mating. Thus,
we consider the case where there is assortative mating, and we try to estimate the time
of admixture under the assumption of random mating. For ancient admixture the differ-
ence between the estimates under assortative mating and random mating is not substantial
(about 10% - data not shown). For recent admixture (10-20 generations), we observe that
there is a considerable difference between the true LAD curve compared to the LAD curve
under random mating, and moreover, the true LAD curve is similar to LAD curves that
assume random mating but that are substantially more recent. Specifically, in Figure 3 the
admixture event occurred 10 generations ago under a strong assortative mating (P = 0.8),
however under random mating, the LAD curve that corresponds to t = 4 is the most sim-
ilar to the true LAD curve. In Figure 4 the admixture event occurred 15 generations ago
under a somewhat weaker assortative mating (P = 0.6), while the estimated number of
generations would be 11 under random mating.

Next, we explore the effect of migration on the LAD function. We consider both the case
where the two populations migrate at the same rate (m1 = m2) as shown in Figure 5,
as well as the case in which m1 = 0, as shown in Figure 6. Evidently, the theoretical
calculations capture the empirical well in the sense that they allow for a clear distinction
between different migration rates.

We note that migration and assortative mating can result in similar LAD decay. We
estimated the LAD curve using the formula of Lemma 3.1 under random mating with
migration, as well as under assortative mating with different values of migration. Since
the parameter space (m1,m2, P ) is large, there are triplets of values with very similar
LAD curves, thus in practice the model parameters will not necessarily be identifiable. In
Figure 7 we present an example where identifiability requires the comparison of LAD decay
over dozens of megabases.

Results on real data To examine the properties of our model in real data we used
genetic data from 1730 African-American individuals from the the Study of African Amer-
icans, Asthma, Genes and Environments (SAGE). The individuals in the SAGE data were
genotyped at 800,000 SNPs on the Affymetrix Axiom Genome-Wide LAT 1 Array, and
genotype calling and QC were performed as previously described [15].
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To compute LAD we first called local ancestry using the LAMP-LD software package[16]
and genome-wide ancestry was inferred from mean value of local ancestry for each indi-
vidual. We measured the LAD decay in 164 10Mb overlapping windows with a 1Mb
overlap. We calculated the mean LAD decay across all windows as well as the squared
distance of each window to the mean. Regions that are under selection or in which the
estimates of recombination rates are inaccurate will result in a different LAD decay. We
therefore performed additional QC by removing windows with a LAD decay greater than
two standard deviations from the mean. We repeated this process until convergence leaving
96 windows.

We measured the assortative mating over the last generation by applying the method
ANCESTOR [12] to the data. ANCESTOR takes as input local and global ancestry and
determines the ancestral proportions of the mother and the father of each individual. The
Pearson correlation coefficient between the parental ancestries was P = 0.32 estimated
across all individuals. This establishes that there was strong ancestry based assortment in
African Americans in the last generation. If this ancestry-based assortative mating exists
in previous generations our theory shows that LAD decay will be affected. Under the
assumption that this correlation was stable throughout history, one can use this estimate to
constrain the potential demographic histories of African Americans inferred via LAD.

We fitted the migration and assortative mating parameters using a grid search over the
entire range of parameters. The best fit resulted in an estimate of t = 13 generations, with
migration rates m1 = 0.01,m2 = 0.05, and assortative mating P = 0.46 (Figure 8a). Next,
we made the assumption of no migration by searching the grid but with the constraint m1 =
m2 = 0, but we allowed for assortative mating. In this case, the number of generations
was dramatically shortened to 8 generations, and the assortative mating value increased
dramatically to P = 0.6 (Figure 8b). Similarly, we search the grid with the constraint P = 0
in order to study the case of random mating with migration. In this case the number of
generations was 16, and the migration values slightly increased to m1 = 0.02,m2 = 0.05
(Figure 8c). Finally, under random mating and no migration the estimated number of
generation is t = 3, which is clearly a vast underestimate of the true number based on
the known history of African Americans (Figure 8d). Notably, there is no good fit under
random mating and no-migration, and the best fit is obtained in the presence of both
migration and assortative mating.

Clearly, the LAD decay is only one summary statistic that depends on the parameters
m1,m2, t, P , and other statistics may give somewhat different results. For example, it
may be possible to examine the distribution of IBD [9], local ancestry [8], and LD [7]
under an assortative mating model. Moreover, the LAD decay is not identifiable since
different sets of parameters often lead to similar LAD decay. Particularly, in the case of the
African Americans in SAGE, the best fit was followed by a few different sets of parameters.
Particularly, under the assumption that P = 0.32 is fixed across the generations, the best fit
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was with t = 15 generations, and the migration rates were m1 = 0.08,m2 = 0.01. Due the
computational complexity of the grid search used to estimate model parameters it was not
feasible to estimate confidence intervals. However, as was the case in simulations, migration
rates and generation times could be altered to accommodate removing assortative mating
form the model.

All genetic data are available via dbGAP with the accession number phs000355.v1.p1.

5 Discussion

We presented an adaption of the Wright-Fisher model, which incorporates ancestry-assortative
mating in admixed populations. We demonstrated that under this model the linkage dis-
equilibrium of local ancestry (LAD) between markers is a function of their recombination
rate, the ancestral population migration rates, and the strength of ancestry based assort-
ment. Assortative mating is likely impacting other estimates of population and medical
genetic parameters both within admixed and continental populations including identity
by descent distributions, estimates of heritability, joint site frequency spectra, runs of ho-
mozygosity, and the distribution of local ancestry track lengths.

While the focus of this work is the definition and presentation the ancestry-assortative
model and its properties, we also estimated the parameters of the model in a real African-
American data set. Our estimate of 15 generations since admixture in African Americans
is larger than previous estimates[8, 9] and it fits considerably better the known history of
African Americans[13]. This suggests that taking assortative mating into account may in
some cases be critical in order to obtain the correct demographic history or other population
parameters.

The approach we presented for estimating the number of generations since admixture
using LAD has its limitations. First, this approach involves a very inefficient grid search,
resulting in an inability to provide errors around estimates via bootstrap. Second, in some
cases both migration and assortative mating can give rise to similar LAD distributions,
and therefore in those cases one can mistakenly believe that the migration is higher and
assortative mating is lower or vice versa. The latter, however, raises an interesting question:
In previous attempts for learning demographic histories of humans and other species, is
it the case that the migration coefficients were inflated, or number of generations since
admixture deflated due to assortative mating?

Going forward it will be interesting to determine if assortative mating has biased other
recent estimates of demographic events such as the introgression of Neanderthals [17] or
the domestication of dogs and pigs[18, 19]. We will also explore extensions to multi-way
admixed populations and the use of MCMC to provide confidence intervals for parameter
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estimates. In addition to altering the distribution of LAD, we showed that assortative
mating increases the variance of global ancestry. Under certain polygenic models this will
induce a concomitant increase in phenotypic variance, which may have implications for
selection and evolution.

Our method makes several strong assumptions, which are likely incorrect, such as con-
stant ancestry-assortment strength and migration rates. However, these are a relaxation of
previous methods, since for example under the standard Wright-Fisher model, both ran-
dom mating and no migration are assumed, and thus both migration rates and ancestry-
assortative strengths are fixed across the generations in this case (fixed with value 0).
While assortative mating has been well studied, to the best our knowledge this is the first
attempt to include ancestry-assortment in the estimation of demographic histories. We
also reported, for the first time, the strength of ancestry-assortment in African Americans
in the previous generation. In future work we intend to examine the effect of ancestry
assortment on other genetic features as well as the resulting impact in population and
medical genetics.
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Figure 1: The distribution of LAD for different values of t with no migration (and P = 0.6).
The thick lines correspond to the expected LAD based on Lemma 3.1, and the thin lines
correspond to simulation runs of a single locus in the genome.
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Figure 2: The distribution of LAD for different values of P with no migration. The thick
lines correspond to the expected LAD based on Lemma 3.1, and the thin lines correspond
to simulation runs of a single locus in the genome.

17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2016. ; https://doi.org/10.1101/056168doi: bioRxiv preprint 

https://doi.org/10.1101/056168
http://creativecommons.org/licenses/by/4.0/


Figure 3: The distribution of LAD for different values of P with no migration. The thick
lines correspond to the expected LAD based on Lemma 3.1, and the thin lines correspond
to simulation runs of a single locus in the genome.
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Figure 4: The distribution of LAD for different values of P with no migration. The thick
lines correspond to the expected LAD based on Lemma 3.1, and the thin lines correspond
to simulation runs of a single locus in the genome.
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Figure 5: The distribution of LAD for different values of m1,m2, with equal migration
rates from both populations. The thick lines correspond to the expected LAD based on
Equation 2, and the thin lines correspond to simulation runs of a single locus in the genome.
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Figure 6: The distribution of LAD for different values of m1,m2, with no migration from
population 1. The thick lines correspond to the expected LAD based on Equation 2, and
the thin lines correspond to simulation runs of a single locus in the genome.
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Figure 7: The expected LAD decay under two conditions, one with assortative mating and
another with random mating. In the presence of migration the two curves almost overlap,
and distinguishing between the two cases will be challenging in practice, particularly if
LAD is measured only up to a few dozen centimorgans.
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Figure 8: Each of the plots shows the best fit of the parameters to the mean LAD in
the African American SAGE dataset: (a) The parameters searched over the entire grid,
resulting in the best fit with estimated number of generations 13, migration rates m1 =
0.01,m2 = 0.05, and correlation P = 0.46. (b) The best fit under the assumption of no
migration. The number of generations estimated to be 8, and P = 0.6. (c) The best
fit under the assumption of random mating with migration. The number of generations is
estimated as 16. (d) The best fit under the assumption of random mating and no migration
- the number of generations is estimated as 3.
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