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Abstract

We present a method for modeling multiple species distributions simultaneously using Dirich-1

let Process random effects to cluster species into guilds. Guilds are ecological groups of2

species that behave or react similarly to some environmental conditions. By modeling latent3

guild structure, we capture the cross-correlations in abundance or occurrence of species over4

surveys. In addition, ecological information about the community structure is obtained as5

a byproduct of the model. By clustering species into similar functional groups, prediction6

uncertainty of community structure at additional sites is reduced over treating each species7

separately. The method is illustrated with a small simulation demonstration, as well as an8

analysis of a mesopelagic fish survey from the eastern Bering Sea near Alaska. The simula-9

tion data analysis shows that guild membership can be extracted as the differences between10

groups become larger and if guild differences are small the model naturally collapses all the11

species into a small number of guilds which increases predictive efficiency by reducing the12

number of parameters to that which is supported by the data.13

Key words: Abundance, Dirichlet Process, Joint species distribution model, Multivariate,14

occurence15

1 Introduction16

In recent years there has been considerable development of methodology for modeling and17

predicting abundance and occurrence of species of interest. Much of this development uses18

a hierarchical framework for developing models to fit the complexities of the observed data19

or natural abundance processes (Cressie et al., 2009; Royle and Dorazio, 2008; Hobbs and20

Hooten, 2015). Some of these complexities may include: spatial and temporal dependence21

(Carroll et al., 2010; Latimer et al., 2009; Johnson et al., 2013b; Thorson et al., 2015; Ward22
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et al., 2010), nondetection of individuals at sampled sites (Dorazio and Connor, 2014; Royle,23

2004), and zero-inflation (Johnson and Fritz, 2014). Many of these species distribution24

models (SDMs) were used to make inference to a single species or one-at-a-time modeling if25

community inference was desired. However, by not recognizing the fact that species interact,26

use of single species models for making inference for community abundance and structure27

can produce misleading results (Clark et al., 2014). Hence, new joint species distribution28

models (JSDMs), which explicitly model species interactions (or, cross-correlation) have29

recently been developed (e.g., Dorazio and Connor, 2014; Latimer et al., 2009; Thorson30

et al., 2015). Herein, we propose a novel JSDM approach which models species interactions31

through membership in a latent ecological guild (Simberloff and Dayan, 1991) or functional32

group within the sampled range of habitats.33

Typically, description of an abundance model begins with a GLM structure for the abun-34

dance process using a discrete value distribution such as Poisson or negative-binomial. For35

example one might model the abundance as a Poisson observation with log-mean being a36

function of covariates that might include habitat variables or variables related to the sampling37

procedure which are thought to be related to the observed abundance. Alternatively, one38

might log transform the abundance and use Gaussian linear models (Johnson et al., 2013b;39

Johnson and Fritz, 2014; Ward et al., 2010), but the general mean structure is usually the40

same. Herein, we will focus on the GLM versions. The focus of the abundance modeling is41

related to either establishing an ecological relationship between (joint) abundance and the42

environmental covariates or predicting abundance at unsampled locations.43

To extend the single species GLM oriented model to account for interactions of multiple44

species and improve prediction and inference of community structure and joint abundance,45

there have been several approaches which differ in the details of interaction modeling, but46

all fit the GLM framework by adding random effects which are either directly correlated47
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between species (Clark et al., 2014; Dorazio and Connor, 2014; Latimer et al., 2009) or when48

marginalized from the (log-linear) model imply a cross-species correlation structure (Thorson49

et al., 2015). The direct approach of using a free parameter for every pair of species when50

modeling the species-level correlation has been successfully implemented (Clark et al., 2014;51

Latimer et al., 2009), however, in those studies there were a high number of sights sampled52

or a low number of species considered. In other studies, unstructured covariance did not53

produce reliable results (Dorazio and Connor, 2014). Thus, recent efforts to contribute novel54

methodology for JSDMs have focused on reducing the number of parameters used to model55

species interactions. Dorazio and Connor (2014) used a known species trait proximity matrix56

to model the species-level covariance matrix using a spatial correlation function. By using the57

known information on species similarity there are only two parameters necessary to model58

the cross-correlation. Another low complexity approach has been proposed by Thorson et al.59

(2015) using linear combinations of latent random effects. Specifically, the latent effects are60

spatial fields, but the same methodology could be applied using independent random effects.61

If the number of random effects is small relative to the number of species modeled, the62

number of parameters necessary for modeling species cross-correlation can be significantly63

reduced from the unstructured scenario.64

As a novel alternative, we propose an JSDM that uses latent ecological guilds to model65

interactions among species and obtain joint abundance inference. Herein, we also consider66

joint species occurrence as well, where occurrence is defined as the binary presence (i.e.,67

abundance > 0) or absence (abundance = 0) of a species. Dorazio and Connor (2014) used68

known guild membership of different species to model independence of some species in a69

cross-correlated JSDM. Simberloff and Dayan (1991) defines an ecological guild to be “a70

group of species that exploit the same class of environmental resources in a similar way.”71

With this definition in mind, we seek to build a model where species are cross-correlated in72
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abundance because there are unknown group effects for some set of covariates, i.e., if the73

group (guild) structure was known they could be represented by (group × covariate) inter-74

action terms in the abundance GLM models. To accomplish this task we format the model75

as a latent class or mixture model (see McLachlan and Peel, 2004). Mixture models or latent76

class models are often used to model dependance between variables in a nonparametric fash-77

ion because for a sufficiently large number of groups, marginalizing over the random latent78

classes can approximate any dependence structure to whatever degree desired (McLachlan79

and Peel, 2004; Vermunt et al., 2008). It has been shown that this holds even when the80

conditional models are independent given group membership (Dunson and Xing, 2009). In81

an ecological abundance context, finite mixture models have been used in the past to model82

spatial heterogeneity and correlation in a nonparametric fashion (Dorazio et al., 2008; John-83

son et al., 2013b). In this paper we take inspiration from nonparametric dependence methods84

used for spatial association and apply it to species interaction in abundance modeling.85

In the following section we describe the general infinite mixture framework using latent86

classes and describe the Dirichlet Process (DP) for modeling class membership and the87

number of classes. There are several choices of models for number and assignment of latent88

classes, but we utilize the DP due to its long history and good clustering properties (Casella89

et al., 2014). Parameter estimation in the DP-JSDM is challenging due to the latent class90

process. We provide a reversible-jump MCMC (RJMCMC; Green 2003) algorithm for making91

Bayesian inference. Finally, we apply the method to few simulated data sets, as well as, a92

real data set on mesopelagic fish communities in the eastern Bering Sea, Alaska.93

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2016. ; https://doi.org/10.1101/056150doi: bioRxiv preprint 

https://doi.org/10.1101/056150
http://creativecommons.org/licenses/by/4.0/


2 Methods94

2.1 General model framework95

We begin the description of the proposed methods with some notation. First we assume there96

are J surveys, for which abundance (or count index; hereafter we use the term “counts”) of97

I different species is measured. Let nij be the observed count for ith species in survey j. We98

also use the vector notation ni = (ni1, . . . , niJ)′ and n = (n′1, . . . ,n
′
I)
′ for the nij, as well as,99

other quantities described later. For occurrence modeling we denote occurrence as yij = 1 if100

nij > 0 otherwise yij = 0. In practice, nij need not necessarily be observed for occurrence101

modeling. The notation yi and y are similar to the abundance counterparts.102

For abundance modeling, there are several possible distributions that could be used to103

model the observed discrete counts, Poisson, negative binomial, zero-inflated Poisson, etc., so104

we will generically denote this observation model as [nij|zij,γ] where zij is a latent Gaussian105

variable controlling the level of expected abundance and γ is a set of, possibly nuisance,106

parameters. The notation “[A|B]” refers to the conditional distribution of A given B. For107

example, if a Poisson distribution is used108

[nij|zij,γ] = Poisson(nij|ezij), (1)109

and γ is not necessary. In the example analysis of mesopelagic fish surveys we utilize a110

zero-inflated Poisson (ZIP) model, so,111

[nij|zij,γ] = γij1[nij=0] + (1− γij)Poisson(nij|ezij), (2)112

the additional γij parameter is the mixing probability for the extra zeros. For occurrence113

modeling we use114

[yij|zij] = Bernoulli(Φ−1{zij}), (3)115
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where Φ(·) is the standard normal CDF, that is, a probit link function.116

To account for unknown interspecies correlations we take a clustering approach inspired117

by the analysis of Johnson et al. (2013b) for incorporating spatial structure when there118

are no reasonable distance metrics or neighborhood groupings are unknown. The model is119

constructed by envisioning an unknown partition, p, of the species into κp groups such that120

species within groups (clusters) behave similarly with respect to the abundance process. For121

a given p, we model (in vector form) the latent z process with the linear model122

[z|p, δp,β, σ] = N(Xβ + Kpδp,Σ), (4)123

where124

• X is a design matrix of covariates for which there are no group-level effects,125

• β is a vector of regression coefficients,126

• Kp = Cp ⊗H, where Cp is an I × κp binary matrix indicating which species belong127

to each group in p and H is a J × q matrix of q habitat covariates recorded at the jth128

survey,129

• δp = (δ′1, . . . , δ
′
κp)′ is a vector of normally distributed random effects, where, [δk|Ω] =130

N (0,Ω), for k = 1, . . . , κp.131

• Σ is a diagonal matrix with entries σ2
ij (for occurance modeling σij = 1).132

To reduce the parameter complexity of the proposed model we suggest the following for133

general practice:134

(i) for abundance models, set σ = diag(Σ1/2) = exp{Lθ}, where L is a matrix of design135

covariates and136

(ii) set Ω = ω2(H′H)−1, where ω = exp(ξ).137
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With respect to (i), there are some useful special cases, namely, L = 1 gives σij = σ and138

L = II ⊗ 1J gives σij = σi. However, the overdispersion parameters could also be modeled139

based on covariates associated with sampling methods, etc. Suggestion (ii) was formulated140

from the covariances of the g-prior (Tiao and Zellner, 1964). The g-prior, N(0, ω2(H′H)−1),141

is an often used prior for regression coefficient parameters. It has the nice benefit that, with142

a single parameter, it automatically controls the scale of variance and covariance for each143

coefficient based on the scale of the covariates and their cross-correlation. The exponential144

reparameterization is used for ease of inference, that is ξ can be unconstrained.145

The previous description assumed that the correct partitioning of the species is known,146

however, for most real data sets, the correct partition is unknown. Thus, we must also pro-147

vide a probability model over partitions, [p|α], such that marginalization over the unknown148

partitions creates random coefficient vectors that are nonparametric in their distribution.149

A commonly used distribution over partitions is the Chinese Restaurant Process (CRP) a150

finite number of individuals to an unknown number of groups is described as follows, for a151

given parameter α > 0,152

1. A customer enters the restaurant and sits at one of an infinite number of tables.153

2. The next customer enters and chooses to sit at the occupied table with probability154

1/(1 + α) or a new table with probability α/(1 + α).155

3. In general,the i+ 1 customer sits at an occupied table with probability proportional to156

the number of customers already seated or chooses an unoccupied table with probability157

proportional to α.158

Under the CRP model individuals are exchangeable, i.e., individuals join clusters based only159

on how many other individuals are in the cluster, not who else is in the cluster. This fact160

forms the basis for Bayesian inference for the CRP model via MCMC (Neal, 2000). The161
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density function for the CRP cluster model is given by,162

[p|α] = CRP(α) ∝ Γ(α)

Γ(α + I)
ακp

κp∏
k=1

(gpk − 1)!, (5)163

where gpk is the size of the kth cluster (group) in p. Note, that the distribution of p is only164

a function of the number and sizes of the groups. Realizations of p with the same number165

of groups and groups sizes have the same probability regardless of which individuals fall in166

which cluster.167

The Dirichlet process is connected to the CRP process because a DP process is con-168

structed using the same procedure to seat the guests in the CRP model. Specifically, in169

terms of (4), let δ̄i be the coefficient associated with the ith species, that is δ̄i =
∑κp

k=1Cikδk,170

where Cik is the (i, k) entry of the Cp matrix. Now, if δ̄i follows a DP then, conditionally,171

[δ̄i|δ̄1, . . . , δ̄i−1, α,Ω] =
α

α + i− 1
N (0,Ω) +

ui∑
k=1

nk
α + i− 1

δk, (6)172

where ui is the number of unique values, δk, of δ̄i′ i
′ = 1, . . . , i − 1, and nk is the number173

of species 1 through i− 1 belonging to group k. In other words, a new table is represented174

by a new value of δk. Thus, the CRP partitioning combined with the δ realizations for each175

group implies that [δ̄i|α,Ω] = DP(α,Ω).176

Like the spatial covariance model use by Dorazio and Connor (2014), the DP-JSDM177

also marginally possesses generally positive cross-covariance structure. This makes intuitive178

sense as one is clustering similar species together or, if species are dissimilar, allowing them179

to be independent. The covariance structure of the DP-JSDM can be derived by forming an180

intercept random effect, η = Kpδp, such that z = Xβ + η + ε, where [ε] = N(0,Σ). Then,181

conditioning on the cluster assignment, the covariance matrix of the random effect η is,182

Var(η|p) = CpC
′
p ⊗HΩH′, (7)183
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and the marginal variance is given by the mixture,184

Var(η) =

{∑
p

CpC
′
p[p|α]

}
⊗HΩH′ = Ψ⊗HΩH′, (8)185

where Ψ is a matrix with (i, i′) entries equal to the probabilities that species i shares a guild186

with species i′. We term the Ψ matrix to be the species proximity matrix due to the fact187

that is forms a distance, of sorts, in the guild space of the species. Although, the covariance188

is never negative between any two species, it can be zero, thus those species that occupy189

different guilds will have uncorrelated η random effects, i.e., if ψii′ ≈ 0, then Cov(ηij, ηi′j)190

≈ 0.191

It should be noted, however, that although the covariance of the η random effect is192

generally, positive, that does not mean that there are only ‘positive’ (or zero) relationships193

between species. The clustering is based on the relationship each species has with the chosen194

covariates. For example, one species may react positively along a covariate gradient (δi > 0)195

and another reacts negatively along that same gradient (δi < 0), therefore if a new site has196

a high level of this covariate, the first species will be predicted to be relatively abundant,197

while the other species prediction will be lower.198

2.2 Bayesian inference199

Because of the hierarchical and variable dimensional nature of the parameter space of the200

DP-JSDM model we employ a Bayesian approach via MCMC (Markov Chain Monte Carlo)201

for model fitting and inference. The posterior distribution of interest is given by202

[z, p, δp,β,ω,σ|n] ∝ [n|z] [z|β, δp,σ]

× [δp|ω, p] [p|α] [ω] [σ] [β] [α],

(9)203

where [ω], [σ], [β], and [α] are the prior distributions for the parameters.204
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There are several derived parameters which may be of interest for making desired eco-205

logical inference. First, are predictions of community abundance rates at new locations or206

times. Second, one may be interested in the overall effect of the environmental covariates for207

a particular species represented by δ̄i. Finally, the matrix CpC
′
p is an I × I indicator that a208

species is in the same guild (associated with) another species. The posterior mean of CpC
′
p209

provides estimated guild proximity matrix, Ψ. Finally, the number of guilds, κp (number of210

columns in Cp) may be of interest.211

The most direct way to make inferences on the proposed hierarchical clustering model is212

through a reversible-jump Markov chain Monte Carlo (RJMCMC) algorithm (Green, 2003)213

to sample the posterior distribution of the parameters and clustering assignment. Here, we214

provide an overview of the RJMCMC, additional details of the sampler are given in Appendix215

A.216

In our description, we will assume the following prior distributions for the parameters:217

[β] = N (µβ,Σβ), [δp|ω, p] = N (0, Iκp ⊗ ω2Q),218

[ω] = HT (φω, dω), [σ] = HT (φσ, dσ)219

[p|α] = CRP(α), and [α] = G(a, b),220

where Iκp is an identity matrix of size κp, Q is a known positive-definite matrix, HT (φ, d)221

represents a scaled half-t distribution with scale parameter φ and d degrees of freedom, and222

G represents a gamma distribution with parameters a and b. For most of these parameters,223

the priors can be adjusted to whatever distribution the user would like, the trade-off being a224

Metropolis-Hastings (MH) update instead of a Gibbs step (e.g., for β) or no difference at all225

if the parameter has to be updated with an MH step to begin with (ω, σ, and α). However,226

the normal [δp|ω, p] prior is necessary to the proposed RJMCMC algorithm. Although, the227

known Q is not necessary. This is not as critical as it sounds as the marginal distribution is228
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still a nonparametric DP process we just require that the base distribution be a multivariate229

normal.230

The majority of the proposed RJMCMC algorithm is a standard Metropolis-within-Gibbs231

(hybrid) sampler for a GLM-like model (e.g., zero-inflated models might also be considered232

for the abundance distributions). Conditioned on a realization of p, all the other parameters233

can be updated with a traditional MH step or a Gibbs step. Hence, we do not focus on their234

updates here (see Appendix A). However, to update p, the dimension of the δp vector will235

potentially change, necessitating the trans-dimensional aspect of the RJMCMC. Naively, the236

trans-dimensional moves require a joint (p, δp) proposal which can be rejected often if one of237

those quantities is a bad fit for the current state of the remaining parameters even though the238

other is acceptable. Second, proposing new p such that the MCMC chain will mix well over239

the space of partitions is itself challenging. Because we are assuming that [z|β, δp,σ] and240

[δp|ω, p] are multivariate normal, the first problem can be handled with the partial-analytic241

RJMCMC method proposed by Godsill (2001) and utilized by Johnson and Hoeting (2011)242

and Johnson et al. (2013b) in similar trans-dimensional MCMC applications. The partial-243

analytic method allows proposing new model (p in this case) without jointly proposing the244

associated model specific parameters (δp) because they can be analytically marginalized.245

This is a special case of a collapsed Gibbs sampler (Van Dyk and Park, 2008).246

To produce efficient moves through cluster (guild) space we use the the “individual links”247

definition of the the CRP process proposed by Blei and Frazier (2011) and subsequently used248

by Johnson et al. (2013b) for clustering spatial abundance trends. The links version of the249

CRP process is constructed as follows:250

1. A customer enters the restaurant and sits at one of an infinite number of tables.251

2. The next customer enters and chooses to sit with the first customer with probability252

1/(1 + α) or a new table with probability α/(1 + α).253
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3. In general, upon entering the restaurant, the i + 1 customer sits with a previous cus-254

tomer (not a table) with probability proportional to 1 or the new customer sit by255

himself (self-links) with probability proportional to α.256

4. Groups are constructed by collecting all cliques of the mathematical graph formed by257

the links between customers.258

Blei and Frazier (2011) show that this definition of the CRP process is equivalent to the259

traditional definition presented previously. However, MCMC sampling is now based on260

sampling independent links between individuals. In terms of the multiple species model, let261

`i ∈ {1, . . . , i} be the link for the ith species. The full conditional distribution of `i is,262

[`i|·] ∝ [z|β, δp,σ] [δp|ω, p] [`i|α], (10)263

where p is the partition constructed from all `i and ,264

[`i|α] =
α1{`i=i} + 1{`i<i}

1 + α
, (11)265

and 1{·} is an indicator function for the condition in the brackets. It would be tempting to266

sample from this discrete distribution in Gibbs fashion, however, note that it depends on δp267

which may be of different dimension under a different value of `i. We can collapse over δp268

and use the marginal distribution269

[`i|z,β,σ, ω, α] =

∫
[z|β, δp,σ] [δp|ω, p] [`i|α] dδp

= [z|β,σ, ω, p] [`i|α]

∝ N (z|Xβ,Kp(Iκp ⊗ ω2Q)K′p + Σ) [`i|α],

(12)270

which does not depend on δp. This approach was used by Johnson and Hoeting (2011) and271

Johnson et al. (2013b), however, we found that for a large number of species and samples,272

the covariance matrix Kp(Iκp ⊗ω2Q)K′p + Σ may be quite large and the inversion necessary273
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to evaluate the [`i|z,β,σ, ω, α] for each species and potential link would make the chain274

prohibitively slow in practice. So, we sought an alternative formulation of the marginal275

distribution that did not require inversion of such a large covariance matrix. Using Laplace’s276

method (see Kass and Raftery 1995, Section 4.1) we can write277

[z|β,σ, ω, p] =

∫
[z|β, δp,σ] [δp|ω, p] dδp

= (2π)κp/2|V̂p|−1/2 · N (δ̂p|0, Iκp ⊗ ω2Q) · N (z|Xβ + Kpδ̂p,Σ),

(13)278

where V̂p = K′pΣKp + (Iκp ⊗ ω−2Q−1) and δ̂p = V−1p (K′pΣ
−1(z − Xβ)), which are re-279

spectively the inverse covariance and mean for the Gaussian full conditional distribution280

[δp|z,β,σ, ω, p]. This is the same distribution used to update δp with a Gibbs step following281

an update of p. Normally, Laplace’s method produces an approximation to the integral, but282

in this case the approximation is exact because the log integrand is quadratic in δp (Goutis283

and Casella, 1999). By writing the integral in this way we need only invert Σ, which is diag-284

onal, and Q because (Iκp ⊗ ω2Q)−1 = Iκp ⊗ ω−2Q−1. If we use Q = (H′H)−1 as previously285

suggested, then the inverse is trivial. Because, [`i|z,β,σ, ω, α] is relatively cheap to evalu-286

ate for each `i = 1, . . . , i we can use a Gibbs step and draw from the discrete distribution287

[`i|z,β,σ, ω, α] for each i = 1, . . . , I, with [z|β,σ, ω, p] evaluated using (13) instead of (12).288

3 A Simulation Proof-of-Concept289

To examine the ability of the CRP cluster model to make inference to species interaction, as290

well as, to make joint community abundance predictions, we tested the model and RJMCMC291

sampler with a small group of simulated data sets. In analyzing the simulated data our292

objective was to assess whether the DP-JDSM model would, in practice, produce generally293

correct estimates of the guild structure. Second, would the DP-JSDM exhibit the expected294

behavior that as ω becomes small, the number of guilds (groups) estimated will go to one as295
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the functional differences between the guilds (with respect to the variables in H) becomes296

insignificant.297

3.1 Simulation and Analysis298

Data were simulated for I = 20 species, J = 35 samples, and κp = 5 groups. Six data sets299

were simulated corresponding to ω equal to 0.25, 0.5, 0.75, 1, 1.5, and 2. While the true300

number of groups is always technically equal to five, the practical differences between the301

groups tends to zero as ω becomes smaller. The group sizes were gpk = 7, 5, 4, 3, and 1.302

Three environmental variables composing the guild design matrix H were generated from a303

standard normal distribution. In addition, a single survey effort variable, x was generated to304

adjust overall abundance measurement. The global design matrix was set to X = [1,x,Hx],305

where Hx = [H′| . . . |H′]′, that is, H matrix is concatenated I times over species. Thus,306

δp denotes guild differences from the overall global effect of the environmental variables,307

H. In order to maintain identifiability, we imposed the constraint that
∑κp

k=1 δk = 0. The308

global coefficient was set to β = (2, 1, 0,−1, 0.5)′ and each δk; k = 1, . . . , 5, was drawn309

from N(0, ω2H′H). In these simulations all σij = 0, therefore, z ≡ Xβ + Kpδp. However,310

a common σ was estimated in each analysis using a Poisson observation model, that is,311

[nij|zij] = Poisson(ezij).312

The prior distributions used were the same as specified in Section 2.2, specifically,313

• [β]: µβ = (µ̂0, 0, 0, 0)′ and µ̂0 is the log of the mean observed count and Σβ =314

100(X′X)−1.315

• [ω]: φω = 1 and dω = 1 which implies a half-Cauchy prior distribution.316

• [σ]: φσ = 1 and dσ →∞ which implies a half-normal prior distribution.317

• [α]: a = 0.258 and b = 0.038.318
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The prior distribution parameters for the gamma distribution [α] were chosen based upon the319

method of Dorazio (2009) with one alteration. Dorazio (2009) used the method to choose a320

and b such that the prior distribution over the number of groups was approximately uniform,321

that is, [κp] ≈ 1/I, κp = 1, . . . , I. However, we agree with the philosophy of Casella et al.322

(2014) that a priori we should prefer fewer groups, therefore, using the same optimization323

approach as Dorazio (2009), we chose a and b such that, approximately, [κp] ∝ 1/κp. So, all324

else being equal, a smaller number of groups is a priori preferred.325

For each of the six simulated datasets, we sampled the posterior distribution (9) using326

the RJMCMC algorithm detailed in Appendix A. Each sample consisted of 50,000 iterations327

following a burnin of 10,000 iterations. We created the multAbund2 package for the R sta-328

tistical environment (R Development Core Team, 2015) which contains the code to run the329

RJMCMC algorithm described in Appendix A.330

3.2 Simulation results331

As expected, when ω became small the DP-JSDM model was not able to distinguish guild332

differences between the species and essentially estimated one single group (Figure 1 ω =333

0.25). As ω increased and guild differences became apparent the model was able to separate334

the species into their respective guilds reasonably well (Figure 1). In addition, as ω became335

large the precision with which the number of guilds was estimated increased as well (Figure336

2). There may be some bias as a few of the simulation runs produced κ̂p = 6 (Figure 2;337

ω = 1 and 2), however, a full simulation experiment would be necessary to assess that fact.338

2Available from github at: https://github.com/dsjohnson/multAbund. The package can be installed
from within an R session using the devtools package, but users need to be able to compile source code on
their platform as the multAbund package uses C++ code in its routines.
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4 Example: Mesopelagic fish abundance339

4.1 Data340

In our next demonstration of the DP-JSDM we analyze community structure and abundance341

of fishes that migrate diurnally between three mesopelagic depths in the eastern Bering Sea342

near Alaska. The tendency for most mesopelagic species to vertically migrate makes them an343

important trophic link between the deep scattering layer and upper surface waters (Sinclair344

et al., 2015) yet, fundamental aspects of multi-species distributions and relative abundances345

have not been previously described.346

The field effort identified three primary sample stations over highly productive areas of347

the eastern Bering Sea pelagic (Figure 3). In the summers of 1999 and 2000 a total of 29348

daytime and 16 nighttime trawls were conducted at three depths (250, 500, and 1000 m)349

during a narrow sampling period. Four of these trawls were not analyzed due to technical350

difficulties in the field and we discarded them, resulting in J = 41 samples. Trawls were run351

at-depth for 15–90 minutes resulting in collections of over 50,000 individuals representing 55352

species of fish and squid. Essentially, each individual trawl sample represents a community353

as influenced by depth and time of day. Here we will demonstrate the DP-JSDM using354

I = 20 of the relatively most common fish species (as opposed to squids, etc.).355

The variables we put in the H design matrix reflect the belief that the species segre-356

gate into guilds based on diurnal vertical migration characteristics. So, the guild covariates357

recorded for each trawl are daylight cycle (day or night) and depth category (250m, 500m,358

or 1000m). Here we used the full interaction model to define the H design matrix (i.e., ‘∼359

cycle*depth’ in R language model syntax). Because the duration of the trawl varied from360

survey to survey, the duration was included in the X matrix to model the overall abundance361

of fish caught in the trawl.362
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4.2 Model and analysis363

Initial attempts at fitting a DP-JSDM proceeded in the same manner as the analysis of the364

simulation data in the previous section. Namely, we used the same Poisson model for the365

observed abundance counts. However, after initial fittings it became evident that the trawl366

data set possessed a significant level of zero-inflation relative to the Poisson distribution.367

This is likely due to the spatial patchiness of pelagic fish occurrence distributions (Benoit-368

Bird and Au, 2003). In addition, there may also be detection issues in the survey such that369

a zero count in the trawl does not necessarily mean absence of the species. However, unlike370

Dorazio and Connor (2014) we do not have replicated surveys in which to separate detection371

and absence. Therefore, we utilized a zero-inflated Poisson (ZIP) model in place of a Poisson372

GLM. The ZIP model used for this analysis is373

[nij|zij, γi] = γi1[nij=0] + (1− γi)Poisson(nij|ezij), (14)374

where 1[nij=0] is an indicator of a zero count and γi is a species-specific zero-inflation mixture375

[logit γi] = T (φγ, dγ), (15)376

with scale parameter φγ = 1.5 and degrees of freedom dγ = 6. This prior results in the377

translated prior for γi that is approximately uniform in (0,1). For the remaining parameters378

we used the same prior specification as the simulated data analysis of Section 3.1.379

To assess if there is any improvement gained by using the DP-JSDM we also fitted the380

‘independent species’ JSDM, that is κp = I, to the data. The JSDM we fitted was did not381

truly treat each species independently because there are shared terms in the X design matrix382

(trawl duration) but it allows us to assess improvement in classifying animals into functional383

guilds relative to cycle and depth over treating them separately. To ascertain the magnitude384

of improvement we would have liked to be able to use the ‘leave one out’ Bayesian predictive385
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information criterion (BPIC) given by386

−2 BPIC = −2
∑
i,j

E{log[nij|n−(i,j), z−(ij),γ,β, δp, p,σ, ω, α]}

= −2
∑
i,j

E{log[nij|n−(i,j), z−(ij),γ]}
(16)387

where n−(i,j) is a vector of all observed data except nij and log[nij|n−(i,j),γ,β, δp, p,σ, ω, α]388

is the log posterior predictive density for the (i, j)th observation. However, it would be com-389

putationally infeasible to rerun the RJMCMC for every left out (i, j) entry. So, we used the390

‘Widely Applicable Information Criterion’ (WAIC; Watanabe (2013)) as an approximation391

(Watanabe, 2010; Link and Sauer, 2016) to −2 BPIC, where392

WAIC = −2
∑
i,j

E{log[nij|n, z,γ]}

+ 2
∑
i,j

V ar{log[nij|n, z,γ]}
(17)393

The WAIC requires only one run of the RJMCMC with the full data set. There are also394

other selection methods applicable, see Hooten and Hobbs (2015) for others.395

The model was fitted using the R package multAbund. The RJMCMC algorithm was run396

for 100,000 iterations following a burnin of 10,000 iterations. The package contains code397

to fit the Poisson abundance data model as well as the ZIP and Bernoulli probit model for398

occurrence. In addition to the joint analysis of abundance, we also analyzed the trawl survey399

data as an occurrence data set where yij = 1 if nij > 0, else yij = 0.400

4.3 Results401

After fitting the ZIP version of the DP-JSDM and the independent species JSDM there was402

a substantial improvement in WAIC under the DP-JSDM. WAIC for the DP-JSM model403

was 3052.071 and WAIC = 3078.992 for the independence model. The posterior mode of the404

number of guilds was κ̂p = 8 with 95% of the posterior probability mass falling on κp = 8405
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or 9 guilds. Figure 4 illustrates the estimated posterior matrix, Ψ̂ = E[CpC
′
p] which defines406

the probability that any two species share the same vertical migration guild. Using 1 − Ψ̂407

as a measure of distance between species, we plotted the species according to the associated408

dendogram (Figure 5), which gives a better visualization of the groupings. The predicted409

abundance for each species was calculated as n̂∗ = E[n∗|n] where n∗ = (n∗1, . . . , n
∗
I)
′ is410

an observation under the observed environmental conditions (Figure 6). Results for the γ411

parameters are presented in Table B.1 of Appendix B along with estimates of the δ̄i values412

(Figure B.1). Appendix C provides similar figures and results for the DP-JSDM model using413

binary occurrence data instead of the observed abundance.414

The model profiled a wide range in behavior among species from the two dominant415

fish families in the Bering Sea, Myctophidae and Bathylagidae. All but one of the 8 guilds416

described by the model (Figures 5 and C.2) include a single species from one or both of these417

families, implying that they partition the water column based on a characteristic response418

to physical factors and foraging requirements.419

The accuracy and predictive capability of the model was confirmed by the correct clus-420

ter assignment of individual species with known relative abundance and depth distribution421

profiles in the Bering Sea (i.e., bathylagids, Leuroglossus schmidti and Lipolagus ochotensis).422

Then by virtue of guild membership, the model described distribution patterns in species for423

which there is little reported data (i.e., myctophids, Stenobrachias leucopsarus and Diaphus424

theta).425

For instance, L. schmidti and S. leucopsarus formed the tightest cluster in both abundance426

and occurrence dendograms (Figures 5 and C.2). Each is the most abundant species within427

their respective families in the Bering Sea (Brodeur et al., 1999; Sinclair et al., 1999) and428

both were highly represented throughout the water column day and night in this study.429

Guild identity with L. schmidti suggests that S. leucopsarus shares a similar life history and430
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foraging strategy wherein juveniles and adults have indistinct vertical migration and are431

stratified in the water column according to age (size) with adults remaining below 240 m432

(Beamish et al., 1999; Mecklenburg et al., 2002).433

The bathylagid L. ochotensis and myctophid D. theta also form a guild in abundance434

(Figure 5) along with Stenobrachias nannochir in occurrence guilds (Figure C.2). Lipolagus435

ochotensis and S. nannochir are among the most abundant mesopelagic species in the Bering436

Sea Sinclair et al. (1999); Mecklenburg et al. (2002). Both are size-stratified by depth with437

adults residing in the deepest layers and especially present between 500-1000 m (Mecklenburg438

et al., 2002). As a strong vertical migrator, L. ochotensis is also abundant between 200-500439

m Sinclair et al. (1999); Mecklenburg et al. (2002). Little is known about D. theta from440

directed catch in the Bering Sea, however guild identity with S. nannochir and especially441

with L. ochotensis suggests they share similar patterns of behavior. The model implication442

that D. theta is an age-stratified strong vertical migrator available at upper mesopelagic443

depths (Figure 6, B.1, and C.3) is supported by observations that it is a primary prey item444

of Dall’s porpoise (Phocoenoides dalli) in the top 250 m of water column (Crawford, 1981).445

The best example of the degree of fine detail captured by the model was demonstrated by446

Bathylagus pacificus, a common and abundant species of Bathylagidae that formed its own447

cluster (Figure 5). Like other members of its family B. pacificus demonstrates a bimodal448

pattern in body size at depth (Peden et al., 1985; Mecklenburg et al., 2002). In our study,449

juvenile fish were concentrated at mid-layer levels during the day (500 meters) rising to 250450

meters at night, while adults concentrate at deeper daytime layers (1000 m) rising to 500451

m at night (Sinclair and Stabeno, 2002). This vertical migratory movement is apparent in452

the log abundance plots (Figure 6; and δ̄i values in Figure B.1) that together with known453

age distribution suggest B. pacificus may form its own guild based on abundances at depth454

driven by varying foraging requirements of juvenile and adults.455
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5 Discussion456

We presented a new methodology for modeling joint species distributions based on Dirichlet457

process random effects to model species associations through a latent guild structure. Instead458

of trying to directly parameterize cross-correlation in a species-specific random effect, we used459

latent membership in an ecological guild. Species belonging to the same guild followed the460

same response to environmental conditions through random coefficients effects in a GLM-like461

setting. Unlike simple cross-correlated species random intercepts, the DP-JSDM provides462

some valuable information on which species belong to guilds together and for the species463

within a guild, how they respond to the selected environmental conditions together.464

A fundamental aspect of mesopelagic ecology is diel vertical migration. The DP-JSDM465

successfully identified community structure among 20 species of fish from the eastern Bering466

Sea within this framework. The selected model parameters of depth and light describe real-467

time clusters of species that move together similarly through the water column on a 24 hour468

cycle, presumably in relation to foraging. Based on studies conducted in the North Pacific469

Ocean, the diets of many of these same species collected from different depths match vertical470

distribution patterns of the variety of copepods and euphausiids that they consume (Beamish471

et al., 1999).472

Although the DP-JSDM model was initially desired to model species association, it has473

the added benefit that it automatically adjusts to the necessary complexity because the474

number of guilds is also simultaneously being estimated as well. In the simulation experiment475

it was demonstrated that if there is apparently little difference between the species in their476

response to the recorded environmental conditions the DP-JSDM will collapse to one guild,477

that is, no statistical difference between the species. This reduction in model complexity478

was noted by Johnson et al. (2013b) in reference to spatially clustering abundance trends.479

In our description of the model and our examples, we have provided a relatively straight-480
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forward demonstration of the model and associated RJMCMC algorithm. However, there481

are several extensions that would be useful in other ecological settings. Here we did not482

have repeated observations at each site, so, we could not add an identifiable detection model483

to the observation process, although, we illustrated that covariates (i.e., trawl duration)484

could be added as a quasi-detection model as Ver Hoef and Frost (2003) used. However, if485

multiple observations are available for each site, then a detection process could be added to486

the observation model. Dorazio and Connor (2014) made use of an N -mixture model and487

the DP-JSDM could use that as well. Instead of the ZIP model, one could add a another488

observation model,489

[ñijk, nij|...] = Binomial(ñijk|nij, γijk)Poisson(nij|zij), (18)490

as the observation portion of the model, where ñij is the observed abundance of species i at491

site j during survey k and γijk is the probability of each of the nij individuals being observed.492

If one marginalizes over the true abundances, the Poisson observation model results,493

[ñijk|γijk, zij] = Poisson(ñijk| log γijk + zij), (19)494

where E[nijk] = exp{log γijk + zij}. The same approach could also be used for occurrence495

modeling, in which case, it becomes occupancy modeling, that is, for the observed presence496

ỹijk, we use the hierarchical observation model,497

[ỹijk, yij|...] = Bernoulli(ỹijk|yijγijk)Bernoulli(yij|zij), (20)498

where the probability that ỹijk = 1 is yijγijk. The main point being that the process model499

does not change in either of these two settings, so, the DP-JSDM can easily be adapted to500

these situations.501

There is also an alteration that can be made when many sites are visited and spatial502

correlation between sights might also be a consideration. We are not calling this an extension,503
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because spatial correlation can be added without making additions to the basic structure504

presented. All that needs to be changed to add random spatial effects is to use the basis505

function approach of Ver Hoef and Jansen (2014), Johnson et al. (2013a), or Hefley et al.506

(2016). In under a spatial basis function model, the random spatial field is modeled as η =507

Hδ where the columns of the matrix H contain the spatial basis functions evaluated at each of508

the modeled sites (rows). Each basis column represents a different frequency. In the notation509

just presented it should be fairly obvious how the DP-JSDM can be changed to contain spatial510

correlation, one simply needs to use a basis function matrix for the environmental design511

matrix. In that case, it might be appropriate to use [δ|ω] = N (0, ω2I) for the DP baseline512

distribution to match prior specifications that are usually used in spatial analysis. And, of513

course, one could combine the spatial model with the previously mentioned detection model514

extensions to form mutivariate spatial models for occupancy and abundance modeling.515
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Figure 1: Estimated probabilities of joint guild membership between each species.
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Figure 2: Estimated number of guilds, κp, for simulated Poisson data sets with ω ranging

from 0.25 to 2.
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Figure 3: Locations of the mesopelagic trawl surveys. There were J = 41 separate trawl

surveys used the analysis of Section 4, however, some surveys were attempted geographically

near other surveys, so, they are somewhat obscured in the figure.
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Figure 4: Estimated probability of joint guild membership for each of the fish species in the

trawl survey with respect to abundance
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Figure 5: Clustering of trawl survey fish species based on the estimated probability of joint

guild membership. The matrix 1 − Ψ̂ was used as a distance matrix for forming the den-

dogram. The colored labels reflect guild groupings based on the posterior mode number of

guilds, κ̂p = 8
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Figure 6: Species-specific predictions of log-abundance for each level of cycle (day or night),

and depth (250, 500, or 1000 m).
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Appendix A: RJMCMC details639

A.1 Prior distributions640

Here we describe the details for performing the necessary parameter updates in the RJMCMC641

algorithm. To facilitate the description the reader should recall we use the following prior642

distributions in full vector form (where appropriate):643

• [logit γi] = T (φγ, dγ) for i = 1, . . . , I644

• [β] = N (µβ,Σβ),645

• [δp|ω] = N (0, Iκp ⊗ ω2(H′H)−1),646

• [ω] = HT (φω, dω)647

• [σ] = HT (φσ, dσ)648

• [p|α] = CRP(α)649

• [α] = G(a, b),650

where T denotes a t distribution, N is a (multivariate) normal distribution, HT is a half-t651

distribution, CRP is the Chinese restaurant process, and G is a gamma distribution. Now, we652

can describe the Markov Chain Monte Carlo (MCMC) sampler. The sampler is constructed653

from repeated draws from the full conditional posterior distributions. We use the notation654

[x|·] to represent the conditional distribution of the variable ‘x’ given all of the other model655

components.656

A.2 Updating z657

We will first describe the updating of z for the abundance models. Unfortunately, for the658

abundance models used in this paper (e.g., [nij|zij,γ] = ZIP or Poisson), the full conditional659
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distribution does not exist in a nice closed form and we suspect this is the case for every660

abundance model one may want to use. The full conditional distribution required for the661

update is,662

[z|·] ∝ [n|z,γ] · N (z|Xβ + Kpδp,Σ), (A.1)663

for which a Metropolis-Hastings (MH) step is used with a random walk proposal distribution664

[z∗|z] = N(z,Rz), where Rz is a diagonal matrix that is tuned for optimal sampling. In665

the R package multAbund we use the adaptive random walk proposal described by Shaby666

and Wells (2011) that continually adjusts proposal distribution throughout the MCMC run.667

Once the new z∗ is drawn, each z∗ij is accepted with probability668

max

{
1,

[z∗ij|·]
[zij|·]

}
. (A.2)669

Note, that even though z∗ is proposed as a vector, the independence of each element implies670

that each z∗ij can be accepted or rejected independently.671

If one is analyzing occurrence data with a probit link as described in the main text of672

the paper, then the full conditional distribution,673

[z|·] ∝ [y|z] · N (z|Xβ + Kpδp,Σ), (A.3)674

is available in closed form. For each (i, j), the necessary full conditional distribution is675

[zij|·] = N bij
aij

(Xβ + Kpδp,Σ), (A.4)676

where N bij
aij is a truncated normal distribution with lower bound677

aij =

 −∞ for yij = 0

0 for yij = 1

(A.5)678

and upper bound679

bij =

 0 for yij = 0

∞ for yij = 1

(A.6)680
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(Albert and Chib, 1993). If another link function is used, then the same procedure as the681

abundance model updates is used with a MH acceptance step.682

A.3 Udating γ683

Here, the only model used where γ was present is the ZIP model used in the analysis of the684

fish survey data. Therefore, we only describe updating of this parameter with respect to the685

ZIP model with species-specific ZIP parameters, γi. The full conditional distribution of logit686

γi is687

[logit γi|·] = [ni|zi, γi] · T (logit γi|, φγ, dγ). (A.7)688

As with the z updates, the adaptive random walk MH update N ({logit γi, Rγ) was used689

were Rγ is continually adapted through the RJMCMC.690

A.4 Updating β and δp691

All of the coefficient vectors in the model have a normal prior distribution, thus the full692

conditional distributions [β|·] and [δp|·] are normal distributions where each is given in693

Table A.1.

Table A.1: Means and variances for sampling of β and δp. Each parameter

has a full conditional distribution of the form N (V−1m,V−1).

Distribution V m

[β|·] X′Σ−1X + Σ−1β X′Σ−1(z−Kδp) + Σ−1β µβ

[δp|·] K′pΣ
−1Kp + (Iκp ⊗Ω)−1 K′pΣ

−1(z−Xβ)

694
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A.5 Updating ω and σ695

Using an HT family of priors is not directly conjugate, therefore, a MH step is used here as696

well. Recall that here we are using Ω = ω2(H′H)−1 and Σ = σ2I, where ω = exp(ξ) and697

σ = exp(θ). These choices could be easily modified if desired. For ω, the full conditional698

distribution is given by699

[ω|·] ∝ N (δp|0, Iκp ⊗Ω) · HT (ω|φω, dω). (A.8)700

when converting to the log parameterization, we obtain the full conditional for ξ,701

[ξ|·] ∝ N (δp|0, Iκp ⊗ e2ξ(H′H)−1) · HT (eξ|φω, dω) · ξ (A.9)702

703

As in the z updates, we use a normal random-walk proposal [ξ∗|·] = N (ξ, Rξ), where Rξ704

is adaptively tuned throughout the MCMC run in the way as the z updates. With regards705

to σ, the θ parameter is updated in an identical fashion with the full conditional distribution706

given by707

[θ|·] ∝ N (z|Xβ + Kpδp, e
θI) · HT (eθ|φσ, dσ) · θ (A.10)708

and adaptive random walk proposal distribution N (θ∗|θ, Rθ).709

A.6 Updating p and α710

The update of p was described in the main portion of the paper, therefore we omit it here711

and refer the reader to Section 2.2 for details.712

The CRP parameter α is updated through an MH step with the previously described713

adaptive random walk proposal on logα. The full conditional distribution is given by714

[α|·] ∝ CRP(p|α) · G(α|a, b). (A.11)715

40

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2016. ; https://doi.org/10.1101/056150doi: bioRxiv preprint 

https://doi.org/10.1101/056150
http://creativecommons.org/licenses/by/4.0/


However, as with all of the positive valued parameters, we choose to reparameterize to the log716

scale to make use of the adaptive random walk proposal distribution. So, the full conditional717

distribution for logα is718

[logα|·] ∝ CRP(p|α) · G(α|a, b) · logα. (A.12)719

The same adaptive procedure was used with an MH acceptance step to sample the full720

conditional distribution.721
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Appendix B: Additional results for fish survey abun-722

dance model723

Table A.2: Results for species-specific Zero-inflated Poisson (ZIP) mixture parameters, γi.

The ‘Estimate’ column is the posterior mode estimate and the ‘CI’ columns are the upper and

lower 0.95 highest probability density interval values. The mixture probabilities represent

the probability that a given species is unavailable for surveying in a particular survey.

Estimate Lower CI Upper CI

Albatrossia pectoralis 0.20 0.03 0.44

Avocettina infans 0.52 0.27 0.74

Bathylagus pacificus 0.04 0.00 0.20

Chauliodus macouni 0.03 0.00 0.17

Coryphaenoides cinereus 0.14 0.00 0.46

Diaphus theta 0.18 0.04 0.33

Lampanyctus jordani 0.08 0.00 0.24

Leuroglossus schmidti 0.01 0.00 0.07

Lipolagus ochotensis 0.13 0.02 0.28

Lycodapus fierasfer 0.43 0.20 0.69

Lycodapus poecilus 0.58 0.35 0.79

Macropinna microstoma 0.07 0.00 0.36

Melamphaes lugubris 0.18 0.00 0.40

Nannobrachium regale 0.54 0.28 0.75

Poromitra crassiceps 0.03 0.00 0.28

Pseudobathylagus milleri 0.28 0.00 0.56

Sigmops gracilis 0.37 0.03 0.66

Stenobrachius leucopsarus 0.01 0.00 0.07

Stenobrachius nannochir 0.04 0.00 0.15

Tactostoma macropus 0.32 0.00 0.57
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Figure B.1: Species-specific δ estimates, δ̄i, for each level of cycle (day or night), and depth

(250, 500, or 1000 m).
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Appendix C: Mesopeleagic fish survey occurrence mod-724

eling725
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Figure C.1: Estimated probability of joint guild membership for each of the fish species in

the trawl survey.
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Figure C.2: Clustering of trawl survey fish species based on the estimated probability of

joint guild membership.
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Figure C.3: Species-specific predictions of occurrence for each level of cycle (day or night),

and depth (250m, 500m, or 1000m).
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