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SUMMARY:  
The Cancer Genome Atlas revealed the genomic landscapes of common human cancers. In parallel, 
immunotherapy with checkpoint blockers is transforming the treatment of advanced cancers. As only a 
minority of the patients is responsive to checkpoint blockers, the identification of predictive markers 
and the mechanisms of resistance is a subject of intense research. To facilitate understanding of the 
tumor-immune cell interactions, we characterized the intratumoral immune landscapes and the cancer 
antigenomes from 20 solid cancers, and created The Cancer Immunome Atlas (http://tcia.at). Cellular 
characterization of the immune infiltrates revealed a role of cancer-germline antigens in spontaneous 
immunity and showed that tumor genotypes determine immunophenotypes and tumor escape 
mechanisms. Using machine learning we identified determinants of tumor immunogenicity and 
developed a scoring scheme for the quantification termed immunophenoscore. The 
immunophenoscore was superior predictor of response to anti-CTLA-4 and anti-PD-1 antibodies in 
two independent validation cohorts. Our findings and the developed resource may help informing 
cancer immunotherapy and facilitate the development of precision immune-oncology.  
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Highlights and eTOC Blurb: 

• Web-accessible resource provides high-resolution data of the tumor-immune interface in 20 
solid cancers from >8000 samples 

• Includes charted antigenomes and cellular compositions of the immune infiltrates 
• Cancer genotypes determine tumor immmunophenotypes and tumor escape mechanisms 
• Immunophenoscore is predictor of response to checkpoint blockade in melanoma 

 

Analyses of publicly available cancer genomics data with respect to immunologically relevant 
parameters can provide important insights but are challenging. Charoentong and colleagues analyzed 
data for 20 solid cancers and developed TCIA, a web accessible resource that allows researcher to 
mine the data for immunological insights. 
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INTRODUCTION  

In the past decade, driven by technological advances and novel mechanistic insights we are witnessing 
two major advances in cancer research and treatment. First, the emergence of next-generation 
sequencing (NGS) technologies and comprehensive and coordinated efforts (e.g. The Cancer Genome 
Atlas (TCGA)) enabled the characterization of multi-dimensional maps of genomic changes in 
common cancers. And second, basic research in cancer immunology paved the way for the 
development and approval of checkpoint blockers. These drugs which augment T cell activity by 
blocking cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1), or 
PD-1 ligand (PD-L1), show remarkable clinical effects. Analysis of long-term data of patients who 
received anti-CTLA-4 antibodies in unresectable or metastatic melanoma shows a plateau in the 
survival curve after 3 years (Schadendorf et al., 2015), suggesting curative potential. Over and above, 
efficacy of anti-PD-1 antibodies has been shown not only in melanoma, but also in nine different 
tumor types (Wolchok, 2015). There is currently a rapid pace of development of checkpoint blockers 
evident from more than 150 clinical trials with monotherapies or combination therapies (Wolchok, 
2015). However, there is disparity in response rates across and within tumor types, suggesting the 
existence of intrinsic immune resistance, as well as evidence for acquired immune resistance (Pitt et 
al., 2016).  

With the development of the immunotherapies with checkpoint blockers as well as other 
immunotherapeutic strategies including therapeutic vaccines and engineered T cells (Schumacher and 
Schreiber, 2015), the tumor-immune cell interaction came into focus. The investigation of tumor-
immune cell interaction poses considerable challenges, due to the evolving nature of this two 
ecosystems: the development of cancer, which can be seen as evolutionary process, and the immune 
system, with a number of innate and adaptive immune cell subpopulations, some of which show 
phenotypic plasticity and possess memory. Using genomic data and bioinformatics tools it is now 
possible to computationally dissect tumor-immune cell interactions (Hackl et al., 2016). These 
immunogenomic analyses can provide information on the two crucial characteristics of the tumor 
microenvironment: 1) composition and functional orientation of the infiltrated immune cells, and 2) 
expression of the cancer antigenome, i.e. the repertoire of tumor antigens including two classes of 
antigens: neoantigens which arise from somatic mutations, and cancer-germline antigens (CGA).  

Previous studies have used genomic data from the TCGA to characterize neoantigens and their 
association with survival (Brown et al., 2014) or with cytolytic activity estimated using the expression 
of two genes (Rooney et al., 2015). However, these studies did not characterize the cellular 
composition of the intratumoral immune infiltrates. More recently, gene signature were used to 
analyze infiltration of B cells, T cells, and macrophages and the prognostic relevance of these 
subpopulations (Iglesia et al., 2016). Similarly, RNA expression data corrected for tumor purity was 
used to estimate infiltration of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages and 
dendritic cells. (Li et al., 2016). However, while such analyses of few major cell types are helpful for 
identifying clinical associations, higher resolution of the TIL landscape is required in order to dissect 
tumor-immune cell interactions, and identify prognostic and predictive markers. We have previously 
shown that the tumor infiltrates are composed of at least 28 different types (Bindea et al., 2013), some 
of which are generally associated with favorable prognosis, whereas others like regulatory T cells 
(Tregs) are immunosuppressive (deLeeuw et al., 2012). Over and above, we described the importance 
of memory and cytotoxic cells in controlling the growth and recurrence of tumors in colorectal cancer 
(CRC) (Galon et al., 2006) and showed that a prognostic marker termed immunoscore based on the 
quantification of these two subpopulations more accurately predicts survival than the standard TNM 
staging (Mlecnik et al., 2011). Thus, it is of utmost importance to provide a comprehensive view of the 
intratumoral immune landscape including memory cells, cytotoxic cells (CD8 + T cells, natural killer 
(NK) cells, and NK T (NKT) cells), as well as immunosuppressive cells (Tregs and myeloid-derived 
suppressor cells (MDSCs)).  

We have recently developed an analytical strategy to characterize the cellular composition of the 
immune infiltrates and examined colorectal cancer (CRC) datasets from the TCGA (Angelova et al., 
2015). Our approach is based on the use of metagenes, i.e. non-overlapping sets of genes that are 
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representative for specific immune cell subpopulations and are neither expressed in CRC cell lines nor 
in normal tissue. The expression of these sets of metagenes is then used to analyze statistical 
enrichment using genes set enrichment analysis (GSEA). The advantage of the metagene approach is 
the robustness of the method due to two characteristics: 1) the use a set of genes instead of single 
genes that represent one immune subpopulation. The use of single genes as markers for immune 
subpopulations can be misleading since many genes are expressed in different cell types; and 2) the 
assessment of relative expression changes of a set of genes in relation to the expression of all other 
genes in a sample. Thus, the calculations are less sensitive to noise resulting from sample impurity or 
sample preparation compared to the deconvolution methods. 

Here, we further developed our metagene approach by defining a set of pan-cancer metagenes for 28 
immune cell subpopulations and scaled up the analyses to solid cancers. We carried out 
immunogenomic characterization of the TCGA data for 20 solid cancers with >8000 tumor samples, 
and provide for the first time comprehensive view of the cellular composition of the intratumoral 
immune infiltrates. Additionally, we derived also cancer antigens as well as genetic characteristics 
(tumor heterogeneity and clonality) for individual samples in order to enable integrative analyses of 
both, immune features as well as genetic features of the tumors. We then developed a web-accessible 
database TCIA (The Cancer Immunome Atlas) with the results of our analyses (http://tcia.at). To 
demonstrate the utility of the resource we carried out integrative analyses and revealed cellular 
profiles that were predictors of survival for distinct cancers and genotype-immunophenotype 
relationships. We further demonstrate the value of the TCIA by using machine learning approach to 
identify determinants of immunogenicity and propose a novel scoring scheme for solid cancers: the 
immunophenoscore. Validation with two cohorts treated with anti-CTLA-4 and anti-PD-1 antibodies 
showed that the immunophenoscore is a superior predictor of response to checkpoint blockers in 
patients with melanoma. 
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RESULTS  

High-resolution genomic analyses of the tumor-immune interface 

An overview of the strategy for the immunogenomic analyses and the used methods is shown in 
Figure 1a (for details see Computational Methods and Supplementary Table S1). We mined the TCGA 
data to extract the following information: 1) TILs, which were estimated from gene expression data 
using two approaches: GSEA and deconvolution, 2) cancer antigenomes comprising neoantigens and 
CGAs, 3) tumor heterogeneity, and 4) immunophenotypes, which were defined using TILs and 
predetermined sets of genes (MHC molecules, immunomostimulators, and immunoinhibitors). 

To estimate TILs we first built a compendium of genes (1625) related to specific immune cells using 
gene expression profiles from sorted immune cell subpopulations from 37 studies comprising 366 
microarrays (Figure 1b). A subset of these genes, which are representative for specific immune cell 
subpopulations and are neither expressed in cancer cell lines nor in normal tissue were then selected 
based on correlation analysis (782 in total). We then used gene set enrichment analysis (GSEA) 
(Subramanian et al., 2005) with this gene set to decompose cellular profiles from RNA sequencing 
data from bulk tissue for individual samples. Additionally, we used an independent method to identify 
fractions of immune subpopulations based on a deconvolution approach (CIBERSORT (Newman et 
al., 2015)). At the time of analysis, CIBERSORT was only optimized for microarray data, since the 
immune signature matrix was built from a microarray compendium. Therefore, we implemented a 
strategy to modify RNA-sequencing data from TCGA to be used as input for CIBERSORT and built a 
model to transform RNA-sequencing data to microarray data considering the TCGA samples for 
which microarray and RNA-sequencing data were available (n=550, see Computational methods). 
Despite the high correlation between microarray- and RNA-seq-based estimates for these samples (see 
Computational methods), a lower performance for samples where signature genes have a wider range 
of expression than the model cannot be excluded. Moreover, several important subpopulations were 
missing in the deconvolution method including activated and memory CD8+ T cell, and MDSCs. 
Therefore, we present here only the results from the GSEA method, which depicts a more 
comprehensive picture of the tumor-suppressive or tumor-promoting roles of TILs. However, we 
make both GSEA and deconvolution data available on the TCIA website because they are 
complementary (e.g. polarized macrophages are estimated only by the deconvolution method). 

It has been previously shown that the tumor purity can be used in selecting genes informative for 
deconvolving TILs (Li et al., 2016). We therefore corrected the mutational load for tumor purity and 
analyzed associations of individual TIL subpopulations estimated using the GSEA and tumor purity 
(Supplementary Figure S1). As can be seen, there is a law to weak correlation suggesting that the 
GSEA method is robust to varying degrees of tumor purity.  

To chart the antigenome for each sample we used RNA-sequencing data to derive expression levels of 
CGAs. For the identification of neoantigens we assembled an analytical pipeline as previously 
described (Angelova et al., 2015). Briefly, for each subject 4-digit HLA class I alleles were predicted 
from RNA-sequencing data. Peptides of 8-11 amino acids in length, covering the mutated region of 
the protein were then generated. The predicted HLA alleles and the mutated expressed peptides for 
each samples were used as input for the algorithm NetMHCpan (Nielsen et al., 2007) to estimate their 
binding affinities and predict neoantigens.  

Tumor mutational heterogeneity adds another layer of complexity (Gerlinger et al., 2012): within a 
tumor, clones may be present which do not elicit T-cell responses against a given neoantigen and these 
cells may have selective advantage and outgrow other clones. We therefore estimated also tumor 
heterogeneity using exome sequencing data and SNP arrays data to calculate cancer cell fractions 
(CCF). Finally, driver genes were assigned from a recently published study (Rubio-Perez et al., 2015) 
whereas clonal and subclonal origins of the neoantigens were estimated as previously described 
(Landau et al., 2013).  

Using this strategy and the analytical pipelines we developed, we analyzed TCGA data for 8243 
samples and 20 solid tumors. Hereafter colon (COAD) and rectal (READ) cancers are considered as 
single entity (CRC). Additionally, available exome-seq and RNA-sequencing data from recent clinical 
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studies using antibodies against CTLA-4 (Van Allen et al., 2015) and PD-1 (Hugo et al., 2016) were 
analyzed using the same procedures. In total, 1 PBytes of analyzed primary and processes data 
genomic data resulted in 50 Gbytes of structured immunogenomic data. 

We then developed a web-accessible relational database TCIA (http://tcia.at) and deposited the results 
of the analyses including immune infiltrates calculated with both, GSEA and the deconvolution 
method, expression of predefined immune subsets, CGAs, HLA alleles, neoantigens, tumor 
heterogeneity, and clinical data. The database allows queries for the above features for user-defined 
cancers and subgroups of patients, as well as free download of the data for further analyses. Due to 
privacy concerns, access to HLA allele data is provided only to researchers who have access to the 
primary sequence data from the TCGA. 

Cellular characterization of immune infiltrates reveals prognostic cell types in distinct cancers 

Using our GSEA strategy we estimated 28 subpopulations of TILs including major types related to 
adaptive immunity: activated T cells, central memory (Tcm), effector memory (Tem) CD4+ and CD8+ 
T cells, gamma delta T cells (Tγδ), T helper 1 (Th1), Th2, Th17, regulatory T cells (Treg), follicular 
helper T cells (Tfh), activated, immature, and memory B cells, as well as cell types related to innate 
immunity: macrophages, monocytes, mast cells, eosinophils, neutrophils, activated, plasmocytoid and 
immature dendritic cells (DCs), NK, natural killer T cells (NKT), and MDSCs.  

The results of the cellular characterization of the immune infiltrates using GSEA showed 
heterogeneity across cancers and within individual cancer entities and associations of specific TIL 
subpopulations with survival (Figure 2a). The cellular profiles associated with survival differed 
between cancers. In general, the infiltration of many TIL subpopulations related to adaptive immunity 
was associated with good prognosis including activated CD8+ T cells, Tem and Tcm CD8+ cells, and 
Tem CD4+ cells, whereas MDSCs and Tregs were associated with bad prognosis. The most common 
cell type significantly associated with good prognosis was Tem CD8+ (15 out of 19 cancers) followed 
by activated CD8+ cells (10 out of 19 cancers) and Tem CD4+ (9 out of 19 cancers). These results 
were consistent with a number of previous studies we and others have published (Fridman et al., 
2012). Cell types significantly associated with bad prognosis were MDSCs (13 out of 19 cancers) and 
Tregs (10 out of 19 cancers). The cellular profiles and the clinical information for specific cancers can 
be viewed at the web site and downloaded for further analyses. 

 

Mutational load and tissue context determine cellular composition of immune infiltrates 

The vision of precision oncology implies patient specific genomic profiling and testing of targeted 
therapeutics on the subset of patients carrying the relevant genetic lesions, rather than on patients 
selected based on histologic tumor subtypes (Garraway and Lander, 2013). We asked what is 
consequence of this genome-centric view on the immune landscapes in solid cancers and analyzed the 
impact of the mutational load. The tumors were classified into three groups based on the mutational 
load: tumors with high mutational load (upper quartile), intermediate mutational load (two 
intermediate quartiles), and low mutational load (lower quartile) (Figure 2a). Tumors with high 
mutational load were enriched with activated T cells and Tem cells and were depleted with 
immunosuppressive Tregs and MDSCs, whereas tumors with low mutational load showed opposite 
enrichments and depletions (Figure 2b; see also Figure S2 corrections for tumor purity). However, 
within each mutational load group, the composition of the TILs was divergent for specific cancers as 
shown in Figure 2c for selected cell types. The tissue context was also observable using 
correspondence analysis for all immune subpopulations and all cancers (Supplementary Figure S2). 
Similar trends were observed also within tumor types (Supplementary Figure S3). Additionally, the 
ratio of effector cells to suppressive cells was also variable. This might explain why some patients 
with high mutational load are not responsive to therapy with checkpoint blockers and also why some 
patients with low mutational load are responders.  

We then analyzed individual cancer entities and the TILs using dimensional reduction technique and 
frequently observed separation of the subpopulation related to immune suppression (MDSCs, Tregs) 
from the subpopulations related to the effector function (activated T cells, Tcm, Tem CD4+ and CD8+ 
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cells). An example of this is shown in Figure 2d for lung adenoma (LUAD) for all cell types in the 
LUAD cohort as well as for individual tumors for selected subpopulations. Other examples include 
ovarian cancer (OV), lung squamous cell carcinoma (LUSC), pancreatic cancer (PAAD), and 
melanoma (PAAD) (Supplementary Figure S4). 

The progression of the tumor across cancers was also characterized by distinct immune cell patterns. 
For example, Tem CD8+ cells were enriched in stage I and stage II tumors and depleted in stage III 
and stage IV tumors (Figure 2e). In contrast, Tregs and MDSCs were depleted in early stage tumors 
and enriched in late stage tumors. In general, the enrichment of the TIL subpopulations related to 
adaptive immunity was decreasing from stage I to stage IV whereas enrichment of TILs related to 
innate immunity was increasing from stage I to stage IV. This was also evident at the level of 
individual markers (data not shown). Hence, the cellular composition of the immune infiltrates across 
solid cancers during progression is shifting towards immunosupressive phenotype.  

In summary, these analyses showed that both, the genomic profiles and the specific tissue context 
contribute to the cellular composition of the immune infiltrates. Furthermore, the results support the 
notion of the evolving nature of the immune landscape during tumor progression. 

 

CGAs are associated with infiltration of CD4+ and CD8+ T cells 

Tumor antigens that have the potential to elicit immune responses that are strictly tumor specific are 
CGAs and neoantigens (Coulie et al., 2014). CGAs are proteins that are normally expressed by 
germline cells, but have aberrant expression in tumor cells, whereas neoantigens result from a 
mutation or rearrangement of a gene-coding sequence. For virus-associated tumors, epitopes derived 
from viral open reading frames also contribute to the pool of neoantigens (Schumacher and Schreiber, 
2015). We therefore characterized these two antigens classes in 20 solid cancers.  

The expression of all CGAs (Supplementary Table S2) in all cancers can be retrieved from the 
website. Since many of these CGAs have low tumoral specificity, we selected 60 CGAs that were 
previously reported to be transcriptionally silent in normal, non-germline tissues (Rooney et al., 2015) 
and analyzed the expression and the putative antigens that might be targeted by T cells. In a previous 
study there was no clear positive association between cytolytic activity and the number of expressed 
CGAs (Rooney et al., 2015). Here we identified a number of CGAs that were significantly correlated 
with activated, Tem, and/or Tcm CD8+/CD4+ cells for each solid cancer (Figure 3a). The number of 
CGAs significantly associated with T cells ranged between 3 in stomach adenocarcinoma (STAD) and 
47 in liver hepatocellular carcinoma (LIHC) (Supplementary Figure S5). The most commons CGA 
was CAGE1, which was associated with 16 out of the 19 cancers (Figure 3a). 

As these CGAs are candidates for vaccination we also predicted the peptides from these CGAs that 
bind to HLA molecules, leading to 5775 unique peptides (Supplementary File). We then estimated the 
antigen load by calculating a CGA expression score (Computational methods). Interestingly, there was 
positive correlation of the CGA score with mutational load across cancers (r=0.4, p<2.2e-16) (Figure 
3b). 

These results suggest a tissue-dependent role of CGAs in spontaneous immunity and reinvigorate the 
use of CGA-based therapeutic vaccines, perhaps in combination with epigenetic drugs to increase the 
expression of selected CGAs.  

Neoantigen landscape is diverse and sparse 

As neoantigens are attractive candidates for developing therapeutic cancer vaccines, we analyzed the 
neoantigens landscape in order to identify potential candidates for off-the-shelf vaccination. The 
neoantigen landscape in solid tumors was composed of 933,954 expressed neoantigens (911,548 
unique) originating from 893,960 somatic point mutations. As expected, the number of neoantigens 
correlated with the mutational load (Figure 3c). The median neoantigen frequency, i.e. the number of 
neoantigens per mutation varied across cancers and ranged from 0.93 (skin cutaneous melanoma 
(SKCM) to 1.43 (kidney renal cell carcinoma (KIRC)) (Figure 3d). It should be noted that these 
differences across cancers might be attributed to the differences in mutational processes, which are 
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more likely to lead to nonsynonymous mutations (e.g. C>A transversions compared to C>T 
transversions (Lawrence et al., 2013)). The associations of the neoantigen load as well as of the CGA 
load and selected genes and immune cell subpopulations were highly variable between different 
cancer entities (Supplementary Figure S6), suggesting that the immune response is likely governed by 
combined effects of both antigen classes. 

Somewhat unexpectedly, there was only a slight increase of the neoantigen load from stage I to stage 
IV across all cancers (all adjusted pairwise p-values<0.032; two-sided Dunn’s post hoc tests on ranked 
sums; Figure 3e). Furthermore, as the cellular composition of the immune infiltrates during 
progression is shifting towards immunosuppressive phenotype this raises an issue of whether 
immunotherapies that depend on the adaptive immune response can be effective in later stage. 

The fraction of neoantigens derived from driver genes for all solid tumors was 7.6% (ranging between 
7.0% for LUSC and 10.6% for glioblastoma (GBM)) (Figure 3f). Hence, the bulk of neoantigens had 
its origin in passenger genes. On average, 56% of the neoantigens were of clonal origin with varying 
proportions of clonal to subclonal fractions across cancers (Figure 3f). The fractions of neoantigens 
with clonal origin ranged from 31% (KICH) to 71% (LUAD) (Supplementary Table S3). 

The neoantigens were infrequently shared between patients (Figure 3g; see also Supplementary Figure 
S7 for HLA-stratified shared neoantigens). From the total of 911,548 unique neoantigens only 24 were 
shared in at least 5% of patients in one or more cancer types. These shared neoantigens represent 
identical peptides originating from one or more genes. As expected, the most frequent neoantigens 
were induced by mutations in driver genes like BRAF, RAS, and PIK3CA. Among these, only two 
peptides were shared in more than 15% of patients in one cancer type: KIGDFGLATEK was shared in 
THCA and SKCM, and KLVVVGADGV was shared in PAAD. The neoantigen KIGDFGLATEK 
originates from BRAFV600E mutation, which is present in a large fraction of THCA (Cancer Genome 
Atlas Research, 2014) and SKCM (Cancer Genome Atlas, 2015) tumors. The neoantigen 
KLVVVGADGV originates from the p.G12D mutation of KRAS, which is shared across a large 
fraction of PAAD patients (Witkiewicz et al., 2015).  

Thus, the antigenome landscape was diverse between and within cancers, and with respect to the 
neoantigens highly sparse. Furthermore, the results suggest that T cell responses are not only directed 
against neoantigens, but also against CGAs 

 

Genotypes of the tumors determine immunophenotypes and tumor escape mechanisms 

The immunogenomic analyses of the CRC data in our previous study revealed that the 
immunophenotypes in the hypermutated compared to the non-hypermutated tumors were 
characterized by increased enrichment of effector T cells (Angelova et al., 2015), likely to be a 
consequence of the higher antigen burden. We asked the question how are the immunophenotypes 
related to other genomic features describing the complexity of the tumor genome, like tumor 
heterogeneity (high vs. low) and antigenicity (high vs. low).  

Tumors that were more heterogeneous were enriched with activated T cells and Tem cells, and 
depleted of immunosuppressive cells, despite slightly lower mutational load (Figure 4a and 4b). 
Tumors with higher neoantigen frequencies showed similar cellular patterns of immune infiltrates 
(Figure 4c and 4d). We then asked if there is a genotype-immunophenotype relationship also for gene-
specific view of the genomic landscape. We selected two cancers with the lowest and highest 
mutational load, i.e. THCA and SKCM, and analyzed the immunophenotypes for their distinct 
genotypes: BRAF and RAS subtypes for THCA (Cancer Genome Atlas Research, 2014), and BRAF, 
RAS, NF1, and triple negative wild-type for SKCM (Cancer Genome Atlas, 2015). Additionally, we 
examined the expression of three classes of molecules that are involved in tumor escape mechanisms: 
MHC molecules (class I, class II and non-classical) which may be downregulated to avoid recognition 
by T cells, immunostimulators (e.g. OX40), which may be down-regulated to avoid immune 
destruction, and immunoinhibitory genes (e.g. CTLA-4) which may be up-regulated to enable tumor 
escape.  
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The different THCA genotypes were associated with specific immunophenotypes (Figure 4e) and 
showed distinct cellular patterns of immune infiltrates (Figure 4f) in spite of comparable neoantigen 
burden (p>0.05, two-sided Wilcoxon rank sum test). Analysis of the differentially expressed genes 
with respect to the immune-related Gene Ontology (GO) terms highlighted the pathways, which might 
explain the different effects on the immune system including chemotaxis, T cell differentiation, T cell 
proliferation, T cell activation, or B cell receptor signaling pathway (Figure 4g). The expression levels 
of MHC molecules, immunostimulatory and immunoinhibitory molecules were also associated with 
the genotypes (Figure 4h). These results suggest that BRAF mutated THCA tumors employ different 
tumor escape mechanisms compared to RAS mutated tumors in THCA: BRAF tumors were infiltrated 
with immunosuppressive cells, whereas RAS tumors downregulated MHC molecules as well as 
immunomudulatory molecules. 

Similarly, the SKCM genotypes were also associated with distinct immunophenotypes (Figure 4i), 
with BRAF tumors enriched with effector T cells, whereas other genotypes were enriched with 
immunosuppressive cells. It is noteworthy that for the SKCM cohort the neoantigen burden differed 
(all adjusted pairwise p-values ≤ 0.002; two-sided Dunn’s post hoc tests on ranked sums; Figure 4j), 
and therefore the relative contribution of the mutational load can have an additional impact. The four 
SKCM genotypes were also associated with varying expression levels of MHC and 
immunomodulatory molecules (Figure 4k). Analysis of the differentially expressed genes with respect 
to the immune-related GO terms is shown in the Supplementary Material (Supplementary Figure S8). 

The results of this study suggest that the genotypes of the tumor determine the immunophenotypes and 
the tumor escape mechanisms. This was evident at the high-level view of the genomic landscape (e.g. 
mutational load, tumor heterogenity) as well as at the gene-specific view (e.g. BRAF or RAS mutated 
tumors). 

 

Machine learning identifies major determinants of tumor immunogenicity in solid cancers 

The results of this work showed not only highly heterogeneous TILs but also varying ratios of 
different T cell subsets including suppressive ones. These observations raise the question of the 
underlying molecular mechanisms that explain the differences in immunogenicity of the tumors. The 
question can be reduced to the notion of sources of immunogenic differences, which can be divided 
into two categories: tumor intrinsic factors and tumor extrinsic factors. Tumor intrinsic factors include 
the mutational load, the neoantigen load, the neoantigen frequency, the expression of 
immunoinhibitors and immunostimulators (e.g. PD-L1 (Coulie et al., 2014)), and HLA class I 
molecule alterations (Garrido et al., 2010). Tumor extrinsic factors include chemokines which regulate 
T cell trafficking (Gajewski et al., 2006), infiltration of effector TILs and immunosuppressive TILs, 
and soluble immunomodulatory factors (cytokines) (Gajewski et al., 2006).  

In a previous study an association of the cytolytic activity and the neoantigen load was reported 
(Rooney et al., 2015). Here, we asked the question what are the determinants of the tumor 
immunogenicity and considered all tumor intrinsic and tumor extrinsic factors mentioned above. The 
number of single parameters that determine the immunogenicity of the tumors and the various 
combinations thereof render it difficult to identify a set of representative parameters even with large 
cohorts like the TCGA ones. We therefore employed machine learning techniques and exploited the 
large-scale genomics data. We reasoned that the immunogenicity of the tumor can be represented by 
the cytolytic activity (estimated using the expression of granzyme A (GZMA) and perforin (PRF1) 
according to (Rooney et al., 2015)), as this is the ultimate effector mechanism in the cancer immunity 
cycle (Chen and Mellman, 2013). For each cancer type we used a random forest classification 
approach, which is based on a multitude of decision trees, including 127 parameters (Supplementary 
Table S4) to separate tumors with high cytolytic activity from tumors with low cytolytic activity. For 
individual cancer types the most predictive features were identified using the mean decrease of 
accuracy over all cross validated predictions (Figure 5a). For each of the studied cancers the analysis 
revealed only immune-related factors which we classified into four categories: 1) infiltration of 
activated CD8+/CD4+ T cells and Tem CD8+/CD4+ cells, 2) infiltration of immunosuppressive cells 
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(Tregs and MDSCs), 3) expression of MHC class I, class II, and non-classical molecules, and 4) 
expression of certain co-inhibitory and co-stimulatory molecules (Figure 5a).  

To visualize the information about the immunophenotypes of the tumors based on the identified major 
determinants we constructed an immunophenogram that includes these four categories (Figure 5b). 
We then calculated an aggregated score – immunophenoscore – based on the expression of the 
representative genes or gene sets comprising four categories: MHC molecules, immunomodulators, 
effector cells (activated CD8+ T cells and CD4+ T cells, Tem CD8+ and Tem CD4+ cells), and 
suppressor cells (Tregs and MDSC) (see Computational Methods). Multivariate analysis showed that 
the immunophenoscore was associated with survival in 12 solid cancers, of which four were 
significant: KIRC, SKCM, BRCA, and bladder cancer (BLCA) (Figure 5c).  

The immunophenogram enables the visualization of the immunophenotypes of the tumor also at the 
levels of individual tumors as seen for CRC (Figure 4d) and BRCA (Figure 4e). As can be seen, 
subgroups of tumors like microsatellite-instable (MSI) and triple-negative breast cancer (TNBC) are 
grouped with respect to distinct TILs like Tem CD8+ cells and Tregs, respectively. We also 
implemented an interactive version of the tool (see http://tcia.at), which enables visualization and 
scoring of tumor samples using expression data for the markers we identified using the random forest 
approach. 

Hence, using a data-driven approach, a large number of tumors (>8000), and genomic, transcriptomic, 
and immunological features, we were able to identify the major determinants of tumor 
immunogenicity. Based on these results we propose a visualization method –the immunophenogram, 
and a scoring scheme –the immunophenoscore, for solid tumors.  

 

Immunophenoscore predicts response to immunotherapy with CTLA-4 and PD-1 blockers 

As only a minority of the patients is responsive to checkpoint blockers, the identification of predictive 
markers and the mechanisms of resistance to immunotherapy is a subject of intense research. Although 
several markers have been proposed including TILs, PD-1 or PD-L1 expression, mutational load 
(Rizvi et al., 2015) or clonal neoantigens (McGranahan et al., 2016), none have yet been fully 
validated (Spencer et al., 2016). 

We reasoned that the determinants of immunogenicity identified using the random forest approach 
might have also a predictive value and analyzed two genomic and transcriptomic data sets from 
patients with melanoma treated with anti-CTLA-4 (Van Allen et al., 2015) and anti-PD-1 antibodies 
(Hugo et al., 2016). Using RNA-sequencing data and GSEA we reconstructed the TIL landscape and 
scored the patients using the immunophenoscore. The immunophenograms of the individual patients 
treated with anti-CTLA-4 antibodies are shown in Figure 6a. Tumors of the responders were enriched 
with cytotoxic cells (CD8+ T cells, Tγδ, NK cells) and depleted of MDSCs and Tregs (Figure 6b). 
More importantly, the immunophenogram and the score derived from the analyses enabled 
stratification of patients to responders and non-responders (Figure 6c) with a superior predictive power 
compared to the expression of checkpoint molecules as can be seen in the receiver operating 
characteristics (ROC) curve (Figure 6d).  

Similar observation was made also for the patients treated with anti-PD-1 antibody. Visualization of 
the determinants of the immunogenicity with the immunophenogram for responders and 
nonresponders showed distinct expression patterns in the two groups (Figure 6e). Again, tumors of the 
responders were enriched with cytotoxic cells (CD8+ T cells, Tγδ, NK cells) and depleted of MDSCs 
and Tregs, as evident in the volcano plot (Figure 6f). Finally, the immunophenoscore (Figure 6g), and 
the ROC curve (Figure 6h) showed the predictive value also for patients treated with anti-PD-1 
antibodies.  

Hence, the immunophenoscore developed from a panel of immune-related genes belonging to the four 
classes: effector cells, immunosuppressive cells, MHC molecules, and selected immunomodulators 
has predictive value in melanoma patients treated with the CTLA-4 and PD-1 blockers. 
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DISCUSSION  

We used an analytical strategy and for the first time provide comprehensive view of 28 TIL 
subpopulations including effector and memory T cells, and immunosuppressive cells (Tregs, MDSCs). 
We also developed an interactive big data resource that includes cellular compositions of TILs, 
neoantigens, CGAs, and tumor heterogeneity, and enables other researchers to generate testable 
hypotheses. Our approach to deeply mine cancer genomic datasets revealed a number of novel 
associations suggesting important biological conclusions with implications for cancer immunotherapy. 
Moreover, using machine learning approach we identified major determinants of tumor 
immunogenicity and propose an immunophenoscore, which is not only prognostic like the 
immunoscore for CRC (Mlecnik et al., 2011), but has also superior predictive power for identifying 
responders for treatment with CTLA-4 and PD-1 antibodies.  

First, our intriguing observation of the association of the genotypes and the immunophenotypes and 
the distinct tumor escape mechanisms determined by the genotypes implicates that the interaction with 
the immune system is predetermined by the genetic basis of the tumors. This genotype-
immunophenotype relationship was evident at the high-level view of the genomic landscape, i.e.  
heterogeneous vs. homogenous, and antigenic vs. less antigenic tumors. Strikingly, this association 
was observed also at the gene-specific view, i.e. at the level of mutational origin of the tumors like 
BRAF or RAS, as well as for tumors at both ends of the mutational load: THCA and SKCM. This 
raises the question of the underlying molecular mechanisms. Currently we can only speculate on the 
possible mechanisms, which can include modifications of different signaling pathways due to 
mutational changes. For example, evidence from clinical and experimental studies has demonstrated 
that signaling by BRAF and RAS oncogenes can present similarities but also differential effects 
(Oikonomou et al., 2014). The analysis of the genes differentially expressed between the two 
genotypes in THCA indicates several processes that might be involved in the sculpting of the immune 
landscape (Figure 4g). 

Second, charting of the antigenome showed that both, the CGAs and the neoantigens are associated 
with effector and memory T cells, suggesting that T cell responses are directed against both antigen 
classes. Moreover, the antigen load of the CGAs and neoantigens was highly variable across and 
within cancers. While neoantigens are thought to be of particular relevance to tumor control (as these 
antigens are not affected by central T cell tolerance) (Schumacher and Schreiber, 2015), the 
contribution of the CGAs is still unclear. In a previous study the role of the CGAs in anti-tumor 
immunity was not uncovered (Rooney et al., 2015), likely due to the methods used (e.g. expression 
signatures of only two genes). In contrast, our comprehensive and high-resolution approach provides 
evidence for T cell reactivity also against CGAs. The quality of the T cell responses directed against 
neoantigens and CGAs has not been compared so far and future experimental studies are needed to 
identify the contribution of each class of antigens. We envision that in case of malignancies with a low 
mutational load that are less likely to produce immunogenic neoantigens, CGAs might be 
therapeutically exploited by combining DNA hypomethylation agents to induce expression of CGAs 
and checkpoint blockers to target tumor cells. This type of combination strategy was recently 
evaluated in a mouse model (Covre et al., 2015).  

Beyond these biological insights, the results from this study have also important implications for 
cancer immunotherapy with checkpoint blockers as monotherapy, as combination therapy with 
targeted agents, and for therapeutic vaccination. Most importantly, we propose an immunophenoscore, 
i.e. a panel of immune genes for classification of patients likely to respond to therapy with antibodies 
targeting CTLA-4 and PD-1 with superior performance. The immunophenoscore we developed was 
derived in an unbiased manner using the TCGA data and machine learning, but it reflects current 
understanding of the categories of genes that determine immunogenicity of the tumors: effector cells, 
immunosuppressive cells, MHC molecules, and immunomodulators. The immunophenoscore is 
similar to the conceptual immunogram that was recently proposed to represent the status of the 
immune system (Blank et al., 2016). Another advantage of the immunophenoscore is that it represents 
a standardized value since z-scores are used and is therefore more robust compared to the use of 
expression values. However, since as of today only limited data is available, additional studies are 
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required to validate the immunophenoscore. Notably, the method can be further improved by 
optimizing the immunophenoscore for specific cancers. Finally, for routine applications other 
techniques for gene expression profiling like microarrays and qPCR can be used instead of RNA 
sequencing. 

As only a minority of the patients is responsive to checkpoint blockers, there are major efforts to 
develop therapeutic strategies to overcome resistance by using combination of checkpoint blockers 
and targeted agents. Hence, precision immune-oncology, i.e. the amalgamation of immunotherapy and 
precision oncology appears as a promising approach to treat patients. Supported by insights from 
genomic profiling studies and the availability of a large number of drugs and molecular targets, the 
precision oncology hypothesis was postulated, i.e. that cancer treatment decisions could be guided by 
molecular profiling irrespective of the tissue of origin. Since the efficacy of checkpoint blockers was 
shown in several cancers, one could adopt this tissue-agnostic approach also for precision immune-
oncology. However, the results of our analyses show that the tissue context is an important 
determinant of the cellular composition of the immune infiltrates, and hence, determines the antitumor 
response. Consequently, stratification of patients in a precision immune-oncology framework requires 
genomics-based information and characterization of the immune infiltrates. 

With respect to neoantigen-based therapeutic vaccination, the sparsity of the neoantigen space 
advocates against the development of off-the-shelf vaccines. A notable exception represents vaccine 
for THCA, SKCM or PAAD, which could target 20% of the patients. Thus, personalized cancer 
vaccination strategy is required in which whole-exome NGS is performed to identify somatic 
mutations, followed by bioinformatics analyses to identify neoantigens, and synthesis of peptide- or 
DNA/RNA-based vaccines. Viability of such personalized cancer vaccination strategy was recently 
demonstrated in clinical studies in melanoma patients (Robbins et al., 2013; van Rooij et al., 2013).  

Finally, with the large number of ongoing studies with checkpoint blockers either as monotherapy or 
combination therapy, we expect that the immunogenomic data amount will continuously increase. 
Thus, we strongly believe that the TCIA in its current form and future incorporation of additional 
datasets represents an important contribution to the field and will enhance the identification of novel 
mechanistic insights of the complex tumor-immune cell interactions.  
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COMPUTATIONAL METHODS  

Identification of immune-related genes 

For the identification of immune-related genes we used Affymetrix HG-U133A microarray data from 
a number of different studies (Supplementary Table S5) according to our recently developed approach 
for TILs in CRC (Angelova et al., 2015), and included expression profiles from normal tissues 
(Petryszak et al., 2016) and from relevant cancer cell lines (Barretina et al., 2012). The so defined 
immune-related gene expression signatures comprised 1625 genes. For the identification of subsets of 
genes representative for specific immune cell types, we selected genes with an average correlation r ≥ 
0.4 (p < 0.01) between all specific immune genes in the same cell type. This threshold was chosen to 
satisfy two goals: selection of genes with relatively high correlation such that their correlation could 
not be considered a chance event; and selection of a reasonable number of genes (at least 10 genes per 
subpopulations). Furthermore, using a set of genes instead of individual markers for specific TILs 
ensures robust estimation and is less susceptible to noise arising from the expression of the genes in 
tumor or stromal cells. The 782 immune genes 782 are listed in the Supplementary Table S6. 

Genomic and clinical data 

Genomic and clinical data for 20 solid tumors from The Cancer Genome Atlas (TCGA) were 
downloaded via the TCGA data portal or queried via Broad GDAC firehose/firebrowse and include 
clinical information (n=9151), SNP arrays (n=3377), microarrays (n=550), and RNA-sequencing 
expression profiles (n=8243), as well as curated MAF files of somatic mutations (Kandoth et al., 
2013) (Supplementary Table S1). All curated MAF files were re-annotated with Oncotator (Ramos et 
al., 2015) in order to have a common annotation resource and file format. Notably, as we used the 
latest available information, our results differ slightly from previously published ones (Alexandrov et 
al., 2013) (e.g. due to different numbers of samples we observed different mutational loads for LUAD 
(n=542 vs. 381) and LUSC (n=178 vs. 176)). Mutational load was also corrected for tumor purity 
(Supplementary Figure S9). FASTQ files of RNA-sequencing reads (n=8,398) were downloaded from 
CGHub (https://cghub.ucsc.edu) and analyses were done on the fly. RNA-sequencing expression 
levels, available as Transcripts-Per-Millions (TPM) were transformed to log2(TPM+1). For RNA-
sequencing expression data, we considered data from primary solid tumor and normal solid tissue for 
all cancer types. In case of subjects with multiple RNA-sequencing samples available, the sample with 
the highest sequencing depth was considered for GSEA and deconvolution. 

Identification of TILs subpopulations 

We used single sample gene set enrichment analysis (ssGSEA) (Barbie et al., 2009) to identify 
immune cell types that are over-represented in the tumor microenvironment. The expression levels of 
each gene were z-score normalized across all patients. For each patient (or group of patients) genes 
were then ranked in descending order according to their z-scores (mean of z-scores). The association 
was represented by a normalized enrichment score (NES). An immune cell type was considered 
enriched in a patient or group of patients when FDR (q-value) ≤ 10%. Clustering and visualization was 
done with the software Genesis (Sturn et al., 2002). Enriched immune cell types (NES>0) are 
illustrated as bubble plots (similar to (Spinelli et al., 2015)) where the size represents percentage of 
patients with enriched cell type and color is encoded by hazard ratio from overall survival analysis. 
The similarity of the enrichment of immune infiltrates (averaged NES) were calculated using 
multidimensional scaling (MDS). The distribution of selected cell types for individual patients were 
analyzed with t-distributed stochastic neighbor embedding (t-SNE) (van der Maaten and Hinton, 2008) 
using the Matlab toolbox t-SNE.  

Additionally, a deconvolution approach was applied using the tool CIBERSORT (Newman et al., 
2015) using a custom model to modify RNA-sequencing data from TCGA to be used as input of the 
deconvolution algorithm. To build the model, we considered only tumor samples for which both 
Affymetrix microarrays and Illumina RNA-sequencing data were available (131 samples for LUSC, 
266 for OV and 153 for GBM). We summarized RNA-seq expression as log2(TPM+1) and removed 
genes with null expression in more than 50% of samples. We modeled the RNA-sequencing-to-
microarrays mapping with a gene-specific, cubic smoothing spline with four degrees of freedom and 
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used the model to transform RNA-sequencing data into microarrays-like data. Transformed data were 
then processed with the R-based version of CIBERSORT, with default parameter settings. The 
performance of the model was tested on these three cancer types with leave-one-out cross-validation, 
confirming a high agreement between the cell fractions estimated from the modified RNA-sequencing 
data and those computed from the corresponding microarray data (0.88 Pearson’s correlation, data not 
shown). 

Cancer-germline antigens 

The list of cancer germline antigens (CGA) was extracted from the Cancer-Testis database (Almeida 
et al., 2009) (Supplementary Table S2). The heatmap of CGA expression per cancer type was 
computed on the median log2(TPM+1) values per cancer type considering only expressed CGAs 
(median TPM per cancer type higher than 2). The list of tumor-specific CGAs was adopted from 
Rooney et al. (Rooney et al., 2015). We computed the CGA Expression Score for each cancer patient, 
defined as the area under the curve of the fraction of CGA exceeding increasingly higher expression 
thresholds (computed only on tumor-specific CGAs). 

CGA protein sequences were retrieved from Uniprot (http://www.uniprot.org/). All possible 9nt-long 
peptides spanning CGA proteins were subjected to NetMHCpan 3.0 (Nielsen and Andreatta, 2016) to 
predict their binding affinity to each of the HLAs estimated for TCGA patients. Only peptides with a 
predicted binding affinity lower than 500 nM was considered (Supplementary File.) 

Characterization of neoantigens 

HLA alleles were called from RNA-sequencing FASTQ files using Optitype (Szolek et al., 2014), 
selected for its high performance and for its applicability to RNA-sequencing data. For each subject, 
the HLA alleles estimated from the sample with the highest coverage over the HLA locus were 
considered. To estimate the mutated proteins, we focused on non-synonymous missense mutations, 
and selected mutations associated to Uniprot protein identifiers. The protein sequence retrieved from 
Uniprot was changed according to the non-synonymous, missense mutations reported in the MAF file, 
and truncated in case of stop codons. We removed candidate proteins affected by annotation 
inconsistencies between protein identifiers and predicted effect. Peptides of 8-11 amino acids in 
length, covering the mutated region of the protein, were analyzed with NetMHCpan (Nielsen et al., 
2007) (Version 2.8) to estimate their binding affinity to the HLA alleles. Self-antigens mapping to 
human Uniprot proteins were identified with BLAST and filtered out. Amongst the candidate 
antigenic peptides, we selected strong binders with binding affinity < 500 nM as in (Rooney et al., 
2015), and considered peptides arising from expressed genes. We identified expressed genes as those 
having median TPM greater than 2 in a given cancer type, as previously shown (Wagner et al., 2013). 
By plotting the distribution of TPM expression of all genes in TCGA tumor samples, we verified that 
this threshold provides a good separation between two population of genes: one genes with null or low 
expression, possibly corrupted by technical noise, and one mid-to- high expression genes (see 
Supplementary Figure S10). 

Estimation of tumor heterogeneity and clonality of mutations 

The ABSOLUTE algorithm (Carter et al., 2012) was used to integrate the copy number data together 
with the somatic mutations in order to estimate the purity and ploidy, and measure the fraction of 
cancer cells per mutation (CCF). The SNP data were downloaded from the TCGA portal and analyzed 
with HAPSEG (Carter et al., 2011). The tumor heterogeneity was estimated as the area under the 
curve (AUC) of the cumulative density function from all cancer cell fractions per tumor. Tumors were 
considered homogenous within the lower quartile of the AUC distribution whereas all other tumors 
were considered heterogeneous. A mutation was classified as clonal if the CCF was > 0.95 with 
probability > 0.5, and subclonal otherwise (Landau et al., 2013). Since at the time of our data freeze, 
only hg18 was available for OV and the SNP array data for STAD were not processed, these cancers 
were excluded from the analysis of the clonal/subclonal origin of neoantigens. 
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Identification of determinants of tumor immunogenicity, immunophenogram, and 
immunophenosocore 

For each patient the cytolytic activity was calculated as the mean of the GZMA and PRF1 expression 
levels (log2 (TPM+1)) as previously defined (Rooney et al., 2015). For each cancer type, patients were 
divided into two groups based on median cytolytic activity. A random forest classifier (Breiman, 
2001) separating the group of patients with TILs exhibiting higher cytolytic activity from the group of 
patients with TILs exhibiting lower cytolytic activity was trained using the R package randomForest 
with 10,000 trees and included mutational load per megabase, number of neoantigens, fraction of 
neoantigens per mutations, expression of MHC related molecules, expression of immunomodulatory 
factors, and mean expression of the respective immune genes for each of the 28 immune celltypes as 
independent variables. Analysis of the association between TILs and MHC molecules showed varying 
associations (Supplementary Figure S11). The mean decrease of accuracy over all out-of-bag cross 
validated predictions was used to rank predictors. 

The immunophenogram was constructed similar to the recently proposed metabologram (Hakimi et 
al., 2016). From the results of the random forest approach a list of consensus determinants (Figure 5a) 
that includes 20 single factors (MHC molecules, immunoinhibitors, and immunostimulators) and six 
cell types (activated CD4+ T cells, activated CD8+ T cells, effector memory CD4+ T cells, and effector 
memory CD8+ T cells, Tregs, and MDSCs) were selected for further analyses. For each determinant a 
sample-wise z-score from gene expression data was calculated. For the 6 cell types an average z-score 
from the corresponding metagenes was calculated. The determinants were then divided into four 
categories: effector cells (activated CD4+ T cells, activated CD8+ T cells, effector memory CD4+ T 
cells, and effector memory CD8+ T cells), suppressive cells (Tregs, MDSCs), MHC related molecules, 
and checkpoints/immunomodulators, and color-coded in the outer part of the wheel (red: positive z-
score, blue: negative z-score). The z-scores of the determinants included in the particular category 
were positively weighted with the weight one (each MHC molecule, ICOS, CD27, activated CD4+ T 
cells, activated CD8+ T cells, effector memory CD4+ T cells, and effector memory CD8+ T cells) and 
negatively weighted with the weight one (PD-1, CTLA4, LAG3. TIGIT, TIM3, PD-L1, PD-L2, Tregs, 
MDSCs). The weighted averaged z-score score was then calculated by averaging the z-scores within 
the respective category leading to four values, which were subsequently gray scaled. The 
immunophenscore (IPS) was calculated on an arbitrary 0-10 scale based on the sum of the weighted 
averaged z-score of the four categories, whereby the sum of the z-scores≥3 were designated as IPS10 
and the sum of the z-scores≤0 are designated as IPS0.  

To determine the predictive power patients were stratified into responders and non-responders and a 
ROC validation including the IPS, cytolytic activity, CTLA-4 expression, PD1 expression, PD-L1 
expression as independent variable was performed. As predictive value the area under the curve 
(AUC) from the ROC analyses was used (R package ROCR). For each of the analyzed patients the 
corresponding immunophenogram is provided in the TCIA. A tool for construction of the 
immunophenogram on other expression data was implemented in the TCIA and a respective R-code is 
available at github (https://github.com/MayerC-imed/Immunophenogram). 

Statistical analyses 

Sample sizes from available TCGA data were considered adequate as sufficient power using 
equivalent tests was observed in a previous study (Angelova et al., 2015). To test for differential 
expression across two groups (tumor and normal) we used the R package DESeq2 on raw count data. 
The p-values were adjusted for multiple testing based on the false discovery rate (FDR) according to 
the Benjamini-Hochberg approach. For comparison of two patient groups two-sided Student’s t-test 
was used where stated, otherwise the non-parametric two-sided Wilcoxon-rank sum test was used. For 
comparisons among multiple patient groups one-way analysis of variance (ANOVA) and Tukey’s 
HSD post-hoc tests were used where stated, otherwise the none parametric Kruskal-Wallis test 
followed by two-sided Dunn’s pairwise post hoc tests on rank sums with Benjamini-Hochberg 
adjustment of p-values using the R package PMCMR were used. Normality of the distributions was 
tested with Shapiro-Wilk test and for normal distributed data the variance within each group of data 
was estimated and tested for equality between groups by a two-sided F-test. Distributions of data are 
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shown either as individual data points, as box-and-whisker plots, or as violin plots. Association of 
CGAs with CD8+ or CD4+ T-cells was done using Spearman rank correlation and p-values were 
adjusted according to Benjamini-Hochberg method. 

Overall survival analyses were performed using the R package survival and the patients were 
dichotomized based on median expression (NES) or divided in two or more groups by specified 
parameters. Kaplan Meier estimator of survival was used to construct the survival curves. Logrank 
tests (corresponding to a two-sided z-test) were used to compare overall survival between patients in 
different groups and hazard ratio (HR) (95% confidence interval) was provided for comparison of two 
groups. P-values were adjusted for multiple testing based on the false discovery rate (FDR) according 
to the Benjamini-Hochberg method. Patients for each cancer were divided in two groups based on 
median immunophenoscore and univariate cox regression analysis were performed and illustrated as 
forest plot showing log2(HR) and 95% confidence interval. Proportional hazard assumptions were 
tested. Analysis and visualization of Gene Ontology terms associated to differentially expressed genes 
was performed with ClueGO (Bindea et al., 2009). 

TCIA database 

The web application TCIA is based on the MEAN Stack, which refers to MongoDB, ExpressJS, 
AngularJS and NodeJS and is completely written in JavaScript. As scaffolding tool we used the 
AngularJS Full-Stack Generator. AngularJS in combination with Bootstrap as front-end framework 
uses on the server side asynchronous data access through a RESTful Node API, built with ExpressJS. 
The data is stored in MongoDB, which is an open-source NoSQL database that provides a dynamic 
schema design. The Highcharts library is used for charting and visualization of the data. TCIA is 
supported by JavaScript capable browsers i.e. Google Chrome, Mozilla Firefox, Safari, Microsoft 
Internet Explorer, Microsoft Edge. 

 

SUPPLEMENTAL INFORMATION 

Supplemental information includes eleven figures, six tables, and one file, and can be found online at 
https://icbi.i-med.ac.at/TCIA/SupplementalMaterial. 

 

AUTHOR CONTRIBUTIONS 

Z.T conceived the project. P.C. developed the GSEA method and analyzed the data. F.F. and M.A. 
analyzed the neoantigens and CGAs. M.A. and M.E. estimated tumor heterogeneity and clonality of 
mutations. D.R. organized and managed the data transfer and storage. C.M. and D.R. developed the 
database. P.C. and H.H. developed the random forest approach and the immunophenogram, and 
analyzed the data. H.H. and Z.T interpreted the results. Z.T. wrote the manuscript. 

 

ACKNOWLEDGMENTS 

The results shown here are in part based upon data generated by the TCGA Research Network: 
http://cancergenome.nih.gov. This work was supported by the Austrian Science Fund (DK Molecular 
Cell Biology and Oncology), the Tiroler Standortagentur (Bioinformatics Tyrol), the European 
Commission (Horizon2020 project APERIM: Advanced bioinformatics tools for personalised cancer 
immunotherapy), and the Austrian National Bank (Jubiläumsfondsprojekt Nr. 16534). 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2016. ; https://doi.org/10.1101/056101doi: bioRxiv preprint 

https://doi.org/10.1101/056101
http://creativecommons.org/licenses/by/4.0/


 17 

  
REFERENCES 

 

Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Aparicio, S.A., Behjati, S., Biankin, A.V., Bignell, 
G.R., Bolli, N., Borg, A., Borresen-Dale, A.L., et al. (2013). Signatures of mutational processes in 
human cancer. Nature 500, 415-421. 

Almeida, L.G., Sakabe, N.J., deOliveira, A.R., Silva, M.C., Mundstein, A.S., Cohen, T., Chen, Y.T., 
Chua, R., Gurung, S., Gnjatic, S., et al. (2009). CTdatabase: a knowledge-base of high-throughput and 
curated data on cancer-testis antigens. Nucleic acids research 37, D816-819. 

Angelova, M., Charoentong, P., Hackl, H., Fischer, M.L., Snajder, R., Krogsdam, A.M., Waldner, 
M.J., Bindea, G., Mlecnik, B., Galon, J., and Trajanoski, Z. (2015). Characterization of the 
immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms 
and novel targets for immunotherapy. Genome biology 16, 64. 

Barbie, D.A., Tamayo, P., Boehm, J.S., Kim, S.Y., Moody, S.E., Dunn, I.F., Schinzel, A.C., Sandy, P., 
Meylan, E., Scholl, C., et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-
driven cancers require TBK1. Nature 462, 108-112. 

Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S., Wilson, C.J., 
Lehar, J., Kryukov, G.V., Sonkin, D., et al. (2012). The Cancer Cell Line Encyclopedia enables 
predictive modelling of anticancer drug sensitivity. Nature 483, 603-607. 

Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.H., 
Pages, F., Trajanoski, Z., and Galon, J. (2009). ClueGO: a Cytoscape plug-in to decipher functionally 
grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091-1093. 

Bindea, G., Mlecnik, B., Tosolini, M., Kirilovsky, A., Waldner, M., Obenauf, A.C., Angell, H., 
Fredriksen, T., Lafontaine, L., Berger, A., et al. (2013). Spatiotemporal dynamics of intratumoral 
immune cells reveal the immune landscape in human cancer. Immunity 39, 782-795. 

Blank, C.U., Haanen, J.B., Ribas, A., and Schumacher, T.N. (2016). CANCER IMMUNOLOGY. The 
"cancer immunogram". Science 352, 658-660. 

Breiman, L. (2001). Random forests. Mach Learn 45, 5-32. 

Brown, S.D., Warren, R.L., Gibb, E.A., Martin, S.D., Spinelli, J.J., Nelson, B.H., and Holt, R.A. 
(2014). Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient 
survival. Genome research 24, 743-750. 

Cancer Genome Atlas, N. (2015). Genomic Classification of Cutaneous Melanoma. Cell 161, 1681-
1696. 

Cancer Genome Atlas Research, N. (2014). Integrated genomic characterization of papillary thyroid 
carcinoma. Cell 159, 676-690. 

Carter, S.L., Cibulskis, K., Helman, E., McKenna, A., Shen, H., Zack, T., Laird, P.W., Onofrio, R.C., 
Winckler, W., Weir, B.A., et al. (2012). Absolute quantification of somatic DNA alterations in human 
cancer. Nature biotechnology 30, 413-421. 

Carter, S.L., Meyerson, M., and Getz, G. (2011). Accurate estimation of homologue-specific DNA 
concentration-ratios in cancer samples allows long-range haplotyping. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2016. ; https://doi.org/10.1101/056101doi: bioRxiv preprint 

https://doi.org/10.1101/056101
http://creativecommons.org/licenses/by/4.0/


 18 

Chen, D.S., and Mellman, I. (2013). Oncology meets immunology: the cancer-immunity cycle. 
Immunity 39, 1-10. 

Coulie, P.G., Van den Eynde, B.J., van der Bruggen, P., and Boon, T. (2014). Tumour antigens 
recognized by T lymphocytes: at the core of cancer immunotherapy. Nature reviews. Cancer 14, 135-
146. 

Covre, A., Coral, S., Nicolay, H., Parisi, G., Fazio, C., Colizzi, F., Fratta, E., Di Giacomo, A.M., 
Sigalotti, L., Natali, P.G., and Maio, M. (2015). Antitumor activity of epigenetic immunomodulation 
combined with CTLA-4 blockade in syngeneic mouse models. Oncoimmunology 4, e1019978. 

deLeeuw, R.J., Kost, S.E., Kakal, J.A., and Nelson, B.H. (2012). The prognostic value of FoxP3+ 
tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clinical cancer research : 
an official journal of the American Association for Cancer Research 18, 3022-3029. 

Fridman, W.H., Pages, F., Sautes-Fridman, C., and Galon, J. (2012). The immune contexture in human 
tumours: impact on clinical outcome. Nature reviews. Cancer 12, 298-306. 

Gajewski, T.F., Meng, Y., Blank, C., Brown, I., Kacha, A., Kline, J., and Harlin, H. (2006). Immune 
resistance orchestrated by the tumor microenvironment. Immunological reviews 213, 131-145. 

Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pages, C., Tosolini, M., 
Camus, M., Berger, A., Wind, P., et al. (2006). Type, density, and location of immune cells within 
human colorectal tumors predict clinical outcome. Science 313, 1960-1964. 

Garraway, L.A., and Lander, E.S. (2013). Lessons from the cancer genome. Cell 153, 17-37. 

Garrido, F., Cabrera, T., and Aptsiauri, N. (2010). "Hard" and "soft" lesions underlying the HLA class 
I alterations in cancer cells: implications for immunotherapy. International journal of cancer. Journal 
international du cancer 127, 249-256. 

Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., 
Matthews, N., Stewart, A., Tarpey, P., et al. (2012). Intratumor heterogeneity and branched evolution 
revealed by multiregion sequencing. The New England journal of medicine 366, 883-892. 

Hackl, H., Charoentong, P., Finotello, F., and Trajanoski, Z. (2016). Computational genomics tools for 
dissecting tumour-immune cell interactions. Nature reviews. Genetics 17, 441-458. 

Hakimi, A.A., Reznik, E., Lee, C.H., Creighton, C.J., Brannon, A.R., Luna, A., Aksoy, B.A., Liu, 
E.M., Shen, R., Lee, W., et al. (2016). An Integrated Metabolic Atlas of Clear Cell Renal Cell 
Carcinoma. Cancer cell 29, 104-116. 

Hugo, W., Zaretsky, J.M., Sun, L., Song, C., Moreno, B.H., Hu-Lieskovan, S., Berent-Maoz, B., Pang, 
J., Chmielowski, B., Cherry, G., et al. (2016). Genomic and Transcriptomic Features of Response to 
Anti-PD-1 Therapy in Metastatic Melanoma. Cell 165, 35-44. 

Iglesia, M.D., Parker, J.S., Hoadley, K.A., Serody, J.S., Perou, C.M., and Vincent, B.G. (2016). 
Genomic Analysis of Immune Cell Infiltrates Across 11 Tumor Types. Journal of the National Cancer 
Institute 108. 

Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, 
J.F., Wyczalkowski, M.A., et al. (2013). Mutational landscape and significance across 12 major 
cancer types. Nature 502, 333-339. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2016. ; https://doi.org/10.1101/056101doi: bioRxiv preprint 

https://doi.org/10.1101/056101
http://creativecommons.org/licenses/by/4.0/


 19 

Landau, D.A., Carter, S.L., Stojanov, P., McKenna, A., Stevenson, K., Lawrence, M.S., Sougnez, C., 
Stewart, C., Sivachenko, A., Wang, L., et al. (2013). Evolution and impact of subclonal mutations in 
chronic lymphocytic leukemia. Cell 152, 714-726. 

Lawrence, M.S., Stojanov, P., Polak, P., Kryukov, G.V., Cibulskis, K., Sivachenko, A., Carter, S.L., 
Stewart, C., Mermel, C.H., Roberts, S.A., et al. (2013). Mutational heterogeneity in cancer and the 
search for new cancer-associated genes. Nature 499, 214-218. 

Li, B., Severson, E., Pignon, J.C., Zhao, H., Li, T., Novak, J., Jiang, P., Shen, H., Aster, J.C., Rodig, 
S., et al. (2016). Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. 
Genome biology 17, 174. 

McGranahan, N., Furness, A.J., Rosenthal, R., Ramskov, S., Lyngaa, R., Saini, S.K., Jamal-Hanjani, 
M., Wilson, G.A., Birkbak, N.J., Hiley, C.T., et al. (2016). Clonal neoantigens elicit T cell 
immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463-1469. 

Mlecnik, B., Tosolini, M., Kirilovsky, A., Berger, A., Bindea, G., Meatchi, T., Bruneval, P., 
Trajanoski, Z., Fridman, W.H., Pages, F., and Galon, J. (2011). Histopathologic-based prognostic 
factors of colorectal cancers are associated with the state of the local immune reaction. Journal of 
clinical oncology : official journal of the American Society of Clinical Oncology 29, 610-618. 

Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., Hoang, C.D., Diehn, M., and 
Alizadeh, A.A. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nature 
methods 12, 453-457. 

Nielsen, M., and Andreatta, M. (2016). NetMHCpan-3.0; improved prediction of binding to MHC 
class I molecules integrating information from multiple receptor and peptide length datasets. Genome 
medicine 8, 33. 

Nielsen, M., Lundegaard, C., Blicher, T., Lamberth, K., Harndahl, M., Justesen, S., Roder, G., Peters, 
B., Sette, A., Lund, O., and Buus, S. (2007). NetMHCpan, a method for quantitative predictions of 
peptide binding to any HLA-A and -B locus protein of known sequence. PloS one 2, e796. 

Oikonomou, E., Koustas, E., Goulielmaki, M., and Pintzas, A. (2014). BRAF vs RAS oncogenes: are 
mutations of the same pathway equal? Differential signalling and therapeutic implications. Oncotarget 
5, 11752-11777. 

Petryszak, R., Keays, M., Tang, Y.A., Fonseca, N.A., Barrera, E., Burdett, T., Fullgrabe, A., Fuentes, 
A.M., Jupp, S., Koskinen, S., et al. (2016). Expression Atlas update--an integrated database of gene 
and protein expression in humans, animals and plants. Nucleic acids research 44, D746-752. 

Pitt, J.M., Vetizou, M., Daillere, R., Roberti, M.P., Yamazaki, T., Routy, B., Lepage, P., Boneca, I.G., 
Chamaillard, M., Kroemer, G., and Zitvogel, L. (2016). Resistance Mechanisms to Immune-
Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors. Immunity 44, 1255-1269. 

Ramos, A.H., Lichtenstein, L., Gupta, M., Lawrence, M.S., Pugh, T.J., Saksena, G., Meyerson, M., 
and Getz, G. (2015). Oncotator: cancer variant annotation tool. Hum Mutat 36, E2423-2429. 

Rizvi, N.A., Hellmann, M.D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J.J., Lee, W., Yuan, J., 
Wong, P., Ho, T.S., et al. (2015). Cancer immunology. Mutational landscape determines sensitivity to 
PD-1 blockade in non-small cell lung cancer. Science 348, 124-128. 

Robbins, P.F., Lu, Y.C., El-Gamil, M., Li, Y.F., Gross, C., Gartner, J., Lin, J.C., Teer, J.K., Cliften, P., 
Tycksen, E., et al. (2013). Mining exomic sequencing data to identify mutated antigens recognized by 
adoptively transferred tumor-reactive T cells. Nature medicine 19, 747-752. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2016. ; https://doi.org/10.1101/056101doi: bioRxiv preprint 

https://doi.org/10.1101/056101
http://creativecommons.org/licenses/by/4.0/


 20 

Rooney, M.S., Shukla, S.A., Wu, C.J., Getz, G., and Hacohen, N. (2015). Molecular and genetic 
properties of tumors associated with local immune cytolytic activity. Cell 160, 48-61. 

Rubio-Perez, C., Tamborero, D., Schroeder, M.P., Antolin, A.A., Deu-Pons, J., Perez-Llamas, C., 
Mestres, J., Gonzalez-Perez, A., and Lopez-Bigas, N. (2015). In silico prescription of anticancer drugs 
to cohorts of 28 tumor types reveals targeting opportunities. Cancer cell 27, 382-396. 

Schadendorf, D., Hodi, F.S., Robert, C., Weber, J.S., Margolin, K., Hamid, O., Patt, D., Chen, T.T., 
Berman, D.M., and Wolchok, J.D. (2015). Pooled Analysis of Long-Term Survival Data From Phase 
II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. Journal of clinical 
oncology : official journal of the American Society of Clinical Oncology 33, 1889-1894. 

Schumacher, T.N., and Schreiber, R.D. (2015). Neoantigens in cancer immunotherapy. Science 348, 
69-74. 

Spencer, K.R., Wang, J., Silk, A.W., Ganesan, S., Kaufman, H.L., and Mehnert, J.M. (2016). 
Biomarkers for Immunotherapy: Current Developments and Challenges. Am Soc Clin Oncol Educ 
Book 35, e493-503. 

Spinelli, L., Carpentier, S., Montanana Sanchis, F., Dalod, M., and Vu Manh, T.P. (2015). 
BubbleGUM: automatic extraction of phenotype molecular signatures and comprehensive 
visualization of multiple Gene Set Enrichment Analyses. BMC genomics 16, 814. 

Sturn, A., Quackenbush, J., and Trajanoski, Z. (2002). Genesis: cluster analysis of microarray data. 
Bioinformatics 18, 207-208. 

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, 
A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and Mesirov, J.P. (2005). Gene set enrichment analysis: 
a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the 
National Academy of Sciences of the United States of America 102, 15545-15550. 

Szolek, A., Schubert, B., Mohr, C., Sturm, M., Feldhahn, M., and Kohlbacher, O. (2014). OptiType: 
precision HLA typing from next-generation sequencing data. Bioinformatics 30, 3310-3316. 

Van Allen, E.M., Miao, D., Schilling, B., Shukla, S.A., Blank, C., Zimmer, L., Sucker, A., Hillen, U., 
Foppen, M.H., Goldinger, S.M., et al. (2015). Genomic correlates of response to CTLA-4 blockade in 
metastatic melanoma. Science 350, 207-211. 

van der Maaten, L., and Hinton, G. (2008). Visualizing Data using t-SNE. J Mach Learn Res 9, 2579-
2605. 

van Rooij, N., van Buuren, M.M., Philips, D., Velds, A., Toebes, M., Heemskerk, B., van Dijk, L.J., 
Behjati, S., Hilkmann, H., El Atmioui, D., et al. (2013). Tumor exome analysis reveals neoantigen-
specific T-cell reactivity in an ipilimumab-responsive melanoma. Journal of clinical oncology : 
official journal of the American Society of Clinical Oncology 31, e439-442. 

Wagner, G.P., Kin, K., and Lynch, V.J. (2013). A model based criterion for gene expression calls 
using RNA-seq data. Theory Biosci 132, 159-164. 

Witkiewicz, A.K., McMillan, E.A., Balaji, U., Baek, G., Lin, W.C., Mansour, J., Mollaee, M., 
Wagner, K.U., Koduru, P., Yopp, A., et al. (2015). Whole-exome sequencing of pancreatic cancer 
defines genetic diversity and therapeutic targets. Nat Commun 6, 6744. 

Wolchok, J.D. (2015). PD-1 Blockers. Cell 162, 937. 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 1, 2016. ; https://doi.org/10.1101/056101doi: bioRxiv preprint 

https://doi.org/10.1101/056101
http://creativecommons.org/licenses/by/4.0/


 21 

FIGURE LEGENDS:  

 

Figure 1 Strategy for pan-cancer immunogenomic analyses. (a) The scheme shows the 
immunogenomic analyses and the types of data used for the analyses. The results are 
deposited in a web-accessible database The Cancer Immunome Atlas (TCIA) 
(http://tcia.at). (b) Immune-related signatures are derived from expression profiles of 
purified immune cells, normal cells, and cancer cell lines, and used for the gene set 
enrichment analysis (GSEA) of the TCGA RNA-sequencing data. 

Figure 2 Cellular characterization of immune infiltrates in solid cancers. (a) Immune 
subpopulations across 19 solid cancers. Cancers are sorted according to the mutational 
load and the immune cell subpopulations alphabetically for adaptive and innate immunity. 
Lower panel shows results from ssGSEA as bubble plot, where the size of the circles gives 
the percentage of patients with NES>0 and q-value (FDR)<0.1 and the color indicate the 
good (blue; HR<1) or bad (red; HR>1) outcome (overall survival). The border indicate 
adjusted log-rank p-value<0.05. (b) Volcano plots for the enrichment (blue) and depletion 
(yellow) of immune cell types across cancers for tumors with high, intermediate, and low 
mutational load calculated based on the NES score from the GSEA. (c) Fraction of 
samples in which selected immune subpopulations were enriched in all cancers with high, 
intermediate, and low mutational load. (d) Visualization of the immune infiltrates 
(averaged normalized enrichment score (NES)) in lung adenocarcinoma (LUAD) for all 
patients using two dimensional coordinates from multidimensional scaling (MDS) (left 
panel) and for individual patients and selected cell types based on two dimensional 
coordinates from t-distributed stochastic neighbor embedding (t-SNE) (right panel). (e) 
Volcano plots for the enrichment (blue) and depletion (yellow) of immune cell types 
across cancers for tumor stage I to IV calculated based on the NES score from the GSEA. 

Figure 3 Antigenomes in solid cancers. (a) Cancer-germline antigens (CGA) that are associated 
with CD8+ and/or CD4+ T cells. Blue squares show significant association with the 
corresponding cancer type (Spearman rank correlation>0.3; adjusted p-value<0.1). CGAs 
are sorted according to the number of cancers with significant associations. (b) CGA 
expression score across cancers. Cancers are sorted according to the mutational load (c) 
Neoantigen load across cancers. (d) Neoantigen frequencies for solid cancers. (e) 
Neoantigen load for different tumor stages (Kruskal Wallis test followed by two-sided 
Dunn’s pairwise post hoc tests on rank sums with Benjamini-Hochberg adjustment of p-
values). (f) Fractions of neoantigens and their origin. (g) Shared neoantigens in solid 
tumors. Shown are only neoantigen shared in at least 5% of the tumors. 

Figure 4 Genotypes and immunophenotypes in solid cancers. (a) Mutational load and tumor 
heterogeneity (two-sided Wilcoxon rank sum test) (b) Immune infiltrates in tumors. Shown 
is a volcano plot for tumors with high and low heterogeneity calculated based on the NES 
score from the GSEA. (c) Mutational load and neontigen frequency (two-sided Wilcoxon 
rank sum test). (d) Immune infiltrates in tumors. Shown is a volcano plot for tumors with 
high and low antigenicity calculated based on the NES score from the GSEA. (e) 
Hierarchical clustering of immune cell composition for BRAF and RAS mutated THCA 
tumors. (f) Volcano plot for BRAF and RAS mutated TCHA tumors calculated based on 
the NES score from the GSEA. (g) Gene ontology (GO) analysis of the differentially 
expressed genes for BRAF and RAS mutated TCHA tumors using ClueGO (Bindea et al., 
2009). (h) Expression of MHC and immunomodulatory molecules in BRAF and RAS 
mutated TCHA tumors. Expression values were compared to normal tissue (log2-fold 
changes are color coded according to the legend). (i) Volcano plots for SKCM genotypes 
calculated based on the NES score from the GSEA. (j) Mutational load for SKCM 
genotypes (Kruskal Wallis test followed by two-sided Dunn’s pairwise post hoc tests on 
rank sums with Benjamini-Hochberg adjustment of p-values). (k) Expression of MHC and 
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immunomodulatory molecules for SKCM genotypes. Expression values are represented by 
z-score calculated across all SKCM tumors and color coded according to the legend 

Figure 5 Determinants of immunogenicity in solid cancers. (a) Major parameters determining 
immunogenicity in solid cancers revealed using random forest approach. (b) 
Immunophenogram for the visualization of the parameters determining immunogenicity. 
(c) Results of multivariate survival analyses using the immunophenoscore for all solid 
cancers. Forest plots showing log2 hazard ratio (95% confidence interval), * indicates 
adjusted p<0.05 (d) Visualization based on two dimensional coordinates from 
multidimensional scaling (MDS) of expression profiles from the genes and the gene sets as 
used in the immunophenogramm in colorectal cancer (CRC). Mean expression (z-score) of 
immune genes of Tem CD8+ T cells as well as MSI and MSS samples for CRC are 
indicated by colors according to the legend and the mean expression (z-scores). (e) 
Visualization based on two dimensional coordinates from MDS in breast cancer (BRCA). 
Tregs and triple negative breast cancer (TNBC) samples for BRCA are indicated by colors 
according to the legend. Representative immunophenograms for selected patients are 
shown. 

Figure 6 Immunophenoscores (IPS) and response to checkpoint blockade. (a) IPS and response to 
blockade with anti-CTLA-4 antibody (Data from van Allen et al.(Van Allen et al., 2015)). 
Shown are immunophenograms for individual patients. HLAs were highly upregulated 
compared to the mean expression within the tumor (z>0; indicated red within the upper left 
quadrant termed MHC), whereas many checkpoints were downregulated compared to the 
mean expression with that tumor (z<0; indicated blue in the lower left quadrant termed CP) 
in many patients of this study. (b) Volcano plot for the enrichment and depletion of 
immune subsets in the tumor calculated based on the NES score from the GSEA. (c) IPSs 
for the cohort. (d) Receiver operating characteristics for IPS, and for the cytolitic activity 
(mean expression of GZMA and PRF1 as suggested by (Rooney et al., 2015)), mutational 
load, and for the expression of PD-1, PD-L1, and CTLA4. AUCs with 95% bootstrap 
confidence interval are provided. (e) IPS and response to blockade with anti-PD-1 
antibody (Data from Hugo et al. (Hugo et al., 2016)). Shown are immunophenograms for 
individual patients. (f) Volcano plot for the enrichment and depletion of immune subsets in 
the tumor calculated based on the NES score from the GSEA. (g) IPSs for the cohort. (h) 
Receiver operating characteristics for IPS, and for the cytolitic activity (mean expression 
of GZMA and PRF1 as suggested by (Rooney et al., 2015)), mutational load, and for the 
expression of PD-1, PD-L1, and CTLA4. AUCs with 95% bootstrap confidence interval 
are provided. 
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