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Abstract 9 
Balance between excitatory and inhibitory inputs is a key feature of cortical dynamics. Such balance 10 
is arguably preserved in dendritic branches, yet its underlying mechanism and functional roles are 11 
still unknown. Here, by considering computational models of heterosynaptic spike-timing-dependent 12 
plasticity (STDP), we show that the detailed excitatory/inhibitory balance on dendritic branch is 13 
robustly achieved through heterosynaptic interaction between excitatory and inhibitory synapses. 14 
The acquired dendritic balance enables neuron to perform change detection, due to functional 15 
specialization at each branch. Furthermore, heterosynaptic STDP explains how maturation of 16 
inhibitory neurons modulates selectivity of excitatory neurons in critical period plasticity of binocular 17 
matching. Our results propose heterosynaptic STDP as a critical factor in synaptic organization and 18 
resultant dendritic computation.  19 
 20 
Introduction 21 
Activity dependent synaptic plasticity is essential for learning. Especially, spike time difference 22 
between presynaptic and postsynaptic neurons is a crucial factor for synaptic learning (Bi and Poo, 23 
1998)(Caporale and Dan, 2008). Recent experimental results further revealed that the relative spike 24 
timings among neighboring synapses on a dendritic branch have significant influence on changes in 25 
synaptic efficiency of these synapses (Tsukada et al., 2005)(Hayama et al., 2013)(Paille et al., 26 
2013)(Oh et al., 2015)(Bazelot et al., 2015). Especially, the timing of GABAergic input exerts a great 27 
impact on synaptic plasticity at nearby glutamatergic synapses. Similar phenomenon were also 28 
observed in biophysical simulations (Cutsuridis, 2011)(Bar-Ilan et al., 2013). This heterosynaptic 29 
form of spike-timing-dependent plasticity (h-STDP) is potentially important for synaptic organization 30 
on dendritic tree, and resultant dendritic computation (Mel and Schiller, 2004)(Branco et al., 2010). 31 
However, the functional role of h-STDP remains elusive, partly due to lack of simple analytical model.  32 

In the understanding of homosynaptic STDP, simple mathematical formulation of plasticity 33 
has been playing important roles (Gerstner et al., 1996)(Song et al., 2000)(Vogels et al., 2011). 34 
Motivated by these studies, we constructed a mathematical model of h-STDP based on 35 
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calcium-based synaptic plasticity models (Shouval et al., 2002)(Graupner and Brunel, 2012), and 36 
then considered potential functional merits of the plasticity. The model reproduces the several effects 37 
of h­STDP observed in the hippocampal CA1 area and the striatum of rodents (Hayama et al., 38 
2013)(Paille et al., 2013), and provides analytical insights for the underlying mechanism. The model 39 
further indicates that h­STDP causes the detailed balance between excitatory and inhibitory inputs 40 
on a dendritic branch owing to the correlated inhibitory inputs that shunt long-term depression (LTD) 41 
at neighboring excitatory synapses. This result suggests that not only the number and the total 42 
current of excitatory/inhibitory synapses are balanced at a branch (Liu, 2004)(Wilson et al., 2007), 43 
but temporal input structure is also balanced as observed in the soma (Dorrn et al., 2010)(Froemke, 44 
2015). Moreover, by considering detailed single neuron models, we show that such detailed balance 45 
is beneficial for detecting changes in input activity. The model also reconciles with critical period 46 
plasticity of binocular matching observed in V1 of mice (Wang et al., 2010)(Wang et al., 2013), and 47 
provides a candidate explanation on how GABA-maturation modulates the selectivity of excitatory 48 
neurons during development. 49 
 50 
 51 
Results 52 
Calcium-based synaptic plasticity model with current-based heterosynaptic interaction explains 53 
h-STDP. 54 
We constructed a model of a dendritic spine as shown in Fig. 1A (see Model A1 in Methods for 55 
details). In the model, the membrane potential of the spine u(t) is modulated by influx/outflux from 56 
AMPA/NMDA receptors (xA and gN(u)xN in Fig. 1A), back-propagation (xBP), and heterosynaptic 57 
currents from nearby excitatory/inhibitory synapses (xE and xI). Calcium concentration in the spine 58 
c(t) is controlled through NMDA receptors and voltage-dependent calcium channels (VDCC) (Higley 59 
and Sabatini, 2012). Because, both NMDA and VDCC are voltage-dependent (Lüscher and Malenka, 60 
2012), the calcium level in the spine is indirectly controlled by pre, post, and heterosynaptic activities 61 
(Fig. 1B top and middle panels). For synaptic plasticity, we used calcium-based plasticity model, in 62 
which LTP/LTD are initiated if the Ca2+ level is above LTP/LTD thresholds (orange and cyan lines in 63 
Fig. 1B middle). This plasticity model is known to well capture homosynaptic STDP (Shouval et al., 64 
2002)(Graupner and Brunel, 2012). We introduced an intermediate variable y(t) to capture 65 
non-graded nature of synaptic weight change (Petersen et al., 1998). Thus, changes in Ca2+ level are 66 
first embodied in the intermediate y(t) (Fig. 1B bottom), and then reflected to the synaptic weight w(t) 67 
upon accumulation. The intermediate variable y(t) is expected to correspond with concentration of 68 
plasticity related enzymes such as CaMKII or PP1 (Graupner and Brunel, 2007). 69 

We first consider the effect of inhibitory input to synaptic plasticity at nearby excitatory 70 
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spines. A recent experimental result revealed that, in medium spiny neuron, a synaptic connection 71 
from a cortical excitatory neuron typically shows anti-Hebbian type STDP under pairwise stimulation 72 
protocol, but if GABA-A receptor is blocked, STDP time window flips to Hebbian (Paille et al., 2013) 73 
(points in Fig. 2A). The proposed model can explain this phenomenon in the following way. Let us 74 
first consider the case when the presynaptic excitatory input arrives before the postsynaptic spike. If 75 
the GABAergic input is blocked, presynaptic and postsynaptic spikes jointly cause a large membrane 76 
depolarization at the excitatory spine. Subsequently, the calcium concentration rises up above the 77 
LTP threshold (red line in Fig 2B upper-right), hence inducing LTP after repetitive stimulation (red line 78 
in Fig 2B lower-right). In contrast, if the GABAergic input arrives coincidentally with the presynaptic 79 
input, depolarization at the excitatory spine is attenuated by negative current influx though the 80 
inhibitory synapse. As a result, calcium concentration cannot go up beyond the LTP threshold 81 
although it is still high enough to eventually cause LTD (black lines in Fig 2B right). Similarly when 82 
the postsynaptic spike arrives to the spine before the presynaptic spike does, without any GABAergic 83 
input, the presynaptic spike causes slow decay in the level of calcium concentration that may induce 84 
LTD (red lines in Fig 2B left). On the contrary, if the GABAergic input is provided simultaneously with 85 
the presynaptic input, slow decay in the calcium concentration is blocked because the inhibitory input 86 
causes hyperpolarization of the membrane potential at the excitatory spine. As a result, LTP is more 87 
likely achieved (black lines in Fig. 2B left). Therefore, when a GABAergic input arrives in coincidence 88 
with a presynaptic excitatory input, the STDP time window changes its sign in both pre-post and 89 
post-pre regimes (lines in Fig. 2A).  90 
 GABAergic effect on excitatory synaptic plasticity is also observed in CA1 (Hayama et al., 91 
2013). In this case, post-pre stimulation does not induce LTD unless GABA uncaging is conducted 92 
near the excitatory spine right before the postsynaptic spike arrives at the spine, whereas LTP is 93 
induced by pre-post stimulation regardless of GABA uncaging (blue and cyan points in Fig. 2C). The 94 
proposed model can also replicate these results. In pre-post stimulation, due to positive feedback 95 
through NMDA receptor, the membrane potential of the spine shows strong depolarization even if 96 
inhibitory current is delivered through GABA uncaging (blue lines in Fig. 2D upper-right). Thus, LTP 97 
is caused after repetitive stimulation (blue lines in Fig. 2D lower-right). By contrast, in post-pre 98 
protocol, LTP/LTD effects tend to cancel each other in the absence of GABAergic input, whereas 99 
LTD becomes dominant under the influence of GABAergic input (blue lines in Fig. 2D left).  100 

In addition to inhibitory-to-excitatory effect, excitatory-to-excitatory (E-to-E) effect is also 101 
observed in case of CA1 (Hayama et al., 2013). If GABA uncaging is performed right before 102 
postsynaptic firing, LTD is also observed in neighboring excitatory spines (green point in Fig. 2C 103 
right). This E-to-E heterosynaptic effect is not observed in the absence of GABAergic input (compare 104 
green points in Fig 2C left). Correspondingly, in the model, excitatory current influx from a nearby 105 
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synapse causes mild potentiation of calcium concentration in cooperation with inhibitory current 106 
influx, hence eventually induces LTD (green lines in Fig 2D left). Note that for this E-to-E effect, 107 
interaction at latter stage of synaptic plasticity may also play a dominant role (Hayama et al., 2013). 108 
 109 
Phase transitions underlying h-STDP 110 
In the previous section, we introduced a complicated model to establish its relevance to the 111 
corresponding biological processes and get insight into the underlying mechanism. However, not all 112 
components of the model are necessary to reproduce the observed properties of h-STDP. Here, we 113 
provide a simple analytically tractable model to investigate the generality of the proposed 114 
mechanism. 115 
 To this end, we simplify the model to the one in which calcium level at a spine is directly 116 
modulated by pre-, post-, and heterosynaptic activities as given below, 117 

dCi t( )
dt

= −
Ci t( )
τC

+CpreX i t( ) +Cpost 1+ gC Ci t − Δt( )( )⎡⎣ ⎤⎦Xpost t( )

−CI X j
I t − dI( )

j∈Ωi
I

∑ +CE X j
E t − dE( )

j∈Ωi
E

∑ .
  (1)

 118 

Here, Ci(t) represents Ca2+ concentration at spine i, Xi and Xpost represent presynaptic and 119 
postsynaptic spikes respectively, dI and dE are heterosynaptic delays, and Ωi

I and Ωi
E are the sets of 120 

neighboring inhibitory and excitatory synapses, respectively (see Model B in Methods for the details 121 
of the model). Despite simplicity, the model can qualitatively reproduce heterosynaptic effects 122 
observed in striatal and CA1 neurons, though the quantitative coincidence is degraded (Fig. 3A and 123 
B respectively). Importantly, the reduced model provides further analytical insights into the 124 
phenomena.  125 

Let us first consider how the inhibitory effect parameter CI controls I-to-E heterosynaptic 126 
effect observed in the CA1 experiment. If we characterize the shape of STDP time windows by the 127 
total number of its local minimum/maximum, the parameter space can be divided into several 128 
different phases (Fig. 3C). If LTP threshold θp satisfies Cpre < θp < Cpost, Hebbian type STDP time 129 
window appears when the strength of heterosynaptic inhibitory effect CI satisfies 130 

Cpost −θp( )eδI τC <CI <CpreeδI τC  (upper orange-colored region in Fig. 3C; see Methods for the 131 

details of analysis). Here we defined δI as the spike timing difference between inhibitory spike and 132 
presynaptic (postsynaptic) spikes in pre-post (post-pre) stimulation protocols. If CI is larger than 133 
Cpreexp(δI/τC), a strong inhibitory effect causes LTD even in the pre-post regime (green-colored 134 
region in Fig. 3C), whereas LTD in the post-pre regime is suppressed when CI is smaller than 135 
(Cpre-θp)exp(δI/τC) (gray-colored region in Fig. 3C). Thus, heterosynaptic LTD observed in Fig.2C can 136 
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be understood as the phase shift from the gray-colored region to the orange-colored region in Fig 3C, 137 
due to change in the inhibitory effect CI. This analysis further confirms that, for induction of 138 
heterosynaptic LTD, the heterosynaptic spike timing difference δI should be smaller than the 139 

timescale of Ca2+ dynamics τC (Hayama et al., 2013). This is because δI < τC log
CI

Cpost −θp( )   is 140 

necessary for a significant heterosynaptic LTD, and typically CI is smaller than Cpost and θp. In 141 
addition, heterosynaptic suppression of pre-post LTP (green-colored region) is very unlikely to 142 
happen because CI > Cpreexp(δI/τC) is necessary. This condition is difficult to satisfy even if δI=0, 143 
because the heterosynaptic effect on Ca2+ dynamics in the spine is expected to be smaller than the 144 
homosynaptic effect (i.e. CI < Cpre).  145 
 The model also provides an analytical insight to E-to-E interaction. In E-to-E interaction, 146 
neighboring synapses receive small heterosynaptic calcium transient CE instead of presynaptic input 147 
Cpre. Thus, we can characterize the shapes of STDP time windows by the heterosynaptic excitatory 148 
effect parameter CE, and postsynaptic effect parameters Cpost (Fig. 3D). When the postsynaptic effect 149 

parameter Cpost satisfies θp <Cpost < θp +CIe−δI τC , and the heterosynaptic effect parameter CE 150 

fulfills CIe
−δI τC <CE < θp , STDP time window shows Hebbian-type timing dependency 151 

(upper-middle orange-colored region in Fig. 3D). On the other hand, if CE is smaller than CIe
−δI τC  152 

while satisfying θp +CIe−δI τC −Cpost <CE , then the STDP curve becomes LTD dominant (upper-left 153 

green-colored region in Fig. 3D). Excitatory heterosynaptic effect CE is expectedly smaller than the 154 
inhibitory effect CI, because the inhibitory potential is typically more localized (Gidon and Segev, 155 
2012). Thus, CE <CIe

−δI τC  is likely the case, suggesting robust heterosynaptic LTD at neighboring 156 
synapses as observed in experiments (Hayama et al., 2013)(Oh et al., 2015). These analytical 157 
results revealed that the heterosynaptic effects are always observable if the parameters of calcium 158 
dynamics fall into a certain region in the parameter space, suggesting the robustness of h-STDP in 159 
our framework.  160 
 161 
h-STDP induces detailed dendritic E/I balance at dendritic hotspots 162 
Results so far suggest that the proposed model gives a good approximation of h-STDP. We next 163 
study how this h-STDP rule shapes synaptic organization on the dendrite of a simulated neuron to 164 
investigate its possible functions. To this end, we first consider a model of a dendritic hotspot (Jia et 165 
al., 2010) that receives 10 excitatory inputs and one inhibitory input (Fig. 4A). Excitatory inputs are 166 
organized into 5 pairs, and each pair of excitatory synapses receives correlated inputs (Fig. 4B; see 167 
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Model A2 in Methods for details). In addition, the inhibitory input is correlated with one excitatory pair 168 
(in Fig. 4A, blue ones). Here, we assumed that postsynaptic activity follows a Poisson process, 169 
because the influence of a single hotspot to the soma is usually negligible. In addition, we neglected 170 
the effect of morphology and hypothesized that heterosynaptic interaction occurs instantaneously 171 
within the hotspot. In this configuration, surprisingly, excitatory synapses correlated with the 172 
inhibitory input are potentiated while other synapses experience minor depression (Fig. 4C). This 173 
potentiation is only observable when inhibitory activity is tightly correlated with excitatory activities, 174 
and becomes larger when inhibitory spike precedes excitatory spikes compared to the opposite case 175 
(Fig. 4D). In addition, heterosynaptic inhibitory effect γI needs to be relatively small in order to have 176 
correlated potentiation (red area in Fig. 4E). Otherwise, inhibitory input causes strong 177 
hyperpolarization at nearby synapses, resulting in depression at correlated excitatory synapses 178 
rather than potentiation (blue area in Fig. 4E). These results indicate that h-STDP induces 179 
dendrite-specific detailed E/I balance by potentiating excitatory synapses correlated with inhibitory 180 
synapses.  181 

To reveal the underlying mechanism of this E/I balance generation, from the simulation 182 
data, we calculated the probability of calcium level being above the LTD/LTP thresholds after a 183 
presynaptic spike. The probability of LTD occurrence shows similar trajectories after a presynaptic 184 
spike, regardless of whether presynaptic activity is correlated with inhibitory input or not (dotted lines 185 
in Fig. 4F). On the other hand, the maximum probability of LTD occurrence is significantly lower for 186 
spines correlated with inhibitory inputs (solid lines in Fig. 4F), although the probability goes up after 187 
the presynaptic spike in both cases. This asymmetry between LTP and LTD can be understood in the 188 
following way; LTD is mainly caused when the presynaptic neuron fires and the postsynaptic neuron 189 
remains silent both in the experiment (Malenka and Bear, 2004) and in the model (gray line in Fig. 190 
4G). However, if inhibitory input arrives at a nearby dendrite in coincidence, calcium boost caused by 191 
excitatory presynaptic input is attenuated by heterosynaptic inhibitory effect (black line in Fig. 4G). As 192 
a result, LTD is shunted by correlated inhibitory inputs. On the other hand, LTP is mainly caused by 193 
coincidence between pre and postsynaptic spikes, which induces a large increase in calcium level 194 
that overwhelms the attenuation by the heterosynaptic inhibitory effect. Thus, inhibitory activity at a 195 
nearby site does not prevent LTP at correlated excitatory synapses (Fig. 4H). Therefore, correlated 196 
spines experiences less depression, hence tend to be potentiated as a net sum.  197 
 To check the generality of the observed dendritic E/I balance, we extended the model to a 198 
two-layered single cell (Poirazi et al., 2003) by modeling each branch with one dendritic hotspot (Fig. 199 
5A; see Model A3 in Methods for details), and investigated the dendritic organization by h-STDP. 200 
Even in this case, when the postsynaptic neuron receives input from various neurons with different 201 
selectivity, each dendritic hotspot shapes its excitatory synaptic organization based on the selectivity 202 
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of its inhibitory input (Fig. 5B). These result further imply that correlation-based clustering of 203 
excitatory synapses observed in previous experiments (Kleindienst et al., 2011)(Takahashi et al., 204 
2012) are possibly caused by common inhibitory inputs instead of direct interaction among excitatory 205 
spines.  206 
 207 
Detailed dendritic E/I balance enables robust change detection 208 
In the previous section, we demonstrated that h-STDP induces the detailed E/I balance on dendritic 209 
branches. We next investigate the possible function of such synaptic organization in information 210 
processing. To this end, we constructed detailed single neuron models using NEURON 211 
simulator(Hines and Carnevale, 1997). Based on a previously developed model of spiny neuron in 212 
neocortical layer 4 (Mainen and Sejnowski, 1996), we built a model by distributing 200 inhibitory and 213 
1000 excitatory synaptic inputs on the dendritic tree (Fig. 6A). As in the previous section, presynaptic 214 
neurons are selective for one of five stimuli shown by colors. In addition, inhibitory presynaptic 215 
neurons show a 5 milliseconds delay in response to the stimuli compared to the excitatory 216 
counterpart (Froemke, 2015). The detailed E/I balance was achieved by setting the stimulus 217 
selectivity of excitatory synapses such that the excitatory selectivity coincides with the selectivity of 218 
the nearest inhibitory input (left two panels in Fig. 6A; see Model C in Methods for details). Note that 219 
this synaptic distribution is expected to be self-organized through h-STDP (Fig. 4,5), although here 220 
we manually set the input distribution. We additionally constructed a model with random synaptic 221 
distribution (Fig. 6A middle-right), and a model with excitatory clustering without the dendritic E/I 222 
balance (Fig. 6A right), for comparing response properties with the dendritic E/I balance model.  223 

When five stimuli are presented in a random sequential order, the neuron with the dendritic 224 
E/I balance tends to show bursting activity immediately after a stimulus is changed to the next, and 225 
stays almost silent during the rest of time (Fig 6B top). By contrast, the other two models show rather 226 
persistent spiking activity for the same input activity (Fig. 6B middle and bottom). If we compare the 227 
ratio of spikes that detect the changes (i.e. the ratio of output spike count in the gray areas of Fig. 6B 228 
to the number of total spikes), the dendritic E/I balance model robustly outperforms the other two (Fig. 229 
6C). Moreover, the advantage remains significant even if the performance is compared at a fixed 230 
output-firing rate (Fig. 6D), suggesting that change detection is not a mere result of sparse 231 
postsynaptic activity, but a result of the dendritic E/I balance. Indeed, in the model, the membrane 232 
potential at a distal dendritic branch, which is indicated by arrows in Figure 6A, stays hyperpolarized 233 
except for the changing points (cyan line in Fig.6E top). On the contrary, in the other two models, 234 
both values show large changes depending on stimulus type, due to lack of the detailed E/I balance 235 
(green and magenta lines in Fig. 6E top). A similar tendency is also observed for the intracellular 236 
calcium concentration (Fig. 6E bottom). 237 
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In previous models on the somatic E/I balance, for sparse information processing, it was 238 
crucial that excitatory inputs arrives the neuron in the absence of strong inhibitory inputs (Kremkow 239 
et al., 2010)(Vogels et al., 2011). In contrast, in our model, inhibitory inputs from the previous stimuli 240 
remain active at the changing points due to the delay, so that the total input firing rates stay the same 241 
during stimulation, yet change detection is still achievable. This is because, in our model, each 242 
dendritic component is often specialized for detecting the onset of one or two input sources. For 243 
instance, in the dendritic component depicted in Figure 6E, orange and dark-red (1st and 3rd) stimuli 244 
are well detected. As a result, somatic potential can represent general change information through 245 
dendritic computation. These results indicate that the dendritic E/I balance is highly beneficial for 246 
change detection. 247 
 248 
h-STDP explains critical period plasticity of binocular matching 249 
Results so far indicate that h-STDP induces GABA-driven synaptic reorganization that enriches 250 
dendritic computation. To investigate its relationship with the developmental plasticity, we next 251 
consider a model of critical period plasticity in binocular matching (Wang et al., 2010)(Wang et al., 252 
2013). In mice, one week after the eye opening, typically, binocular neurons in V1 still have different 253 
orientation selectivity for inputs from two eyes. Nevertheless, two more weeks after, selective 254 
orientations for both eyes get closer, and eventually they almost coincide with each other (Wang et 255 
al., 2010). Moreover, this binocular matching is disrupted by accelerating inhibitory maturation (Wang 256 
et al., 2013). Thus, expectedly, activity of inhibitory neurons play a crucial role in binocular matching 257 
in addition to Hebbian plasticity at excitatory synapses. 258 
 We modeled this process with a two-layered single cell model introduced in Fig. 5 (Fig. 7A 259 
right; see Model A4 in Methods for details). Input spike trains were modeled as rate modulated 260 
Poisson processes driven by a circular variable θ, which corresponds to the direction of moving 261 
visual stimuli. We assumed followings: (i) inputs from ipsi- and contralateral eyes already have some 262 
weak orientation selectivity at the eye opening (Wang et al., 2010)(Espinosa and Stryker, 2012), (ii) 263 
Inhibitory cells are driven by both ipsi- and contralateral eyes (Yazaki-Sugiyama et al., 264 
2009)(Kuhlman et al., 2011), (iii) The average selectivity of inhibitory inputs comes in between the 265 
selectivity for ipsilateral excitatory inputs and that for contralateral excitatory inputs (Fig. 7A left). The 266 
last assumption has not yet been supported from experimental evidence, but if inhibition is provided 267 
from neighboring interneurons, these inhibitory neurons are likely to be driven by similar sets of 268 
feedforward excitatory inputs to those driving the output neuron. Here, we consider direction 269 
selectivity instead of orientation selectivity for mathematical convenience, but the same argument 270 
holds for the latter.  271 
 In the simulation, we first run the process without inhibition then introduced GABAergic 272 
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inputs after a while (red lines in Fig. 7B,E represent the starting points of inhibitory inputs), because 273 
maturation of inhibitory neurons typically occurs in a later stage of the development (Hensch, 2005). 274 
Upon the introduction of inhibition, in each branch, the mean preferred direction of excitatory 275 
synapses converges to that of the local inhibition owing to heterosynaptic plasticity (Fig. 7B top; see 276 
Model A4 for details), though synaptic weight development was biased toward the selectivity of the 277 
postsynaptic neuron (Fig. 7D; here, the bias is toward the right side). This dendritic E/I balancing 278 
shrinks the difference between ipsilateral and contralateral selectivity on average, because both of 279 
them get closer to the inhibitory selectivity (Fig. 7B middle). As a result, binocular selectivity becomes 280 
stronger (Fig. 7B bottom), and the responses for monocular inputs approximately coincide with each 281 
other (Fig 7C right). Deprivation of contralateral inputs immediately after the introduction of inhibition 282 
blocks binocular matching (Fig. 7E), as expected from the experiment (Wang et al., 2010). 283 

In addition, precocious GABA maturation is known to disrupt binocular matching (Wang et 284 
al., 2013). Our model suggests that the disruption is possibly related to the violation of the third 285 
assumption in the model. When the direction of the mean inhibitory selectivity is far different from 286 
both ipsilateral and contralateral selectivity (in Fig 7F, at the parameter regions outside of the area 287 
surrounded by purple and green lines), h-STDP does not work effectively (Fig. 7F top), and the 288 
difference between ipsi- and contralateral inputs is not reduced (Fig. 7F middle). As a result, 289 
binocular direction selectivity is not improved by learning (Fig. 7F bottom). These results indicate that 290 
GABA-maturation and resultant h-STDP are an important part of the underlying mechanisms of 291 
critical period plasticity in binocular matching. 292 
 293 
 294 
Discussion 295 
In this study, we first showed that a calcium-based plasticity model robustly captures several 296 
characteristics of plasticity-related interaction between neighboring synapses in millisecond 297 
timescale, by introducing heterosynaptic interaction terms (Fig. 2,3). Based on this proposed model, 298 
we next investigated the possible functions of h-STDP. Our study revealed that correlated E/I 299 
synaptic inputs on the same hotspot causes the detailed dendritic E/I balance (Fig. 4,5), which is 300 
beneficial for change detection (Fig. 6). Furthermore, we found that h-STDP can induce binocular 301 
matching upon GABA maturation, and support an accurate input estimation (Fig. 7). 302 
 303 
Experimental predictions 304 
 Our study provides three experimental testable predictions: First, the results in Figure 4 305 
indicate that LTD at an excitatory synapse is cancelled out by coincident inhibitory inputs to the 306 
nearby dendrite. Thus, LTD by low frequency stimuli (Malenka and Bear, 2004) can be attenuated by 307 
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coincident GABA uncaging around the stimulated spine. Note that this result would not contradict 308 
with GABA-driven heterosynaptic LTD observed in paired stimulation, because in that experiment, 309 
the excitatory spine was presumably overexcited for inducing LTD in the absence of GABA (Hayama 310 
et al., 2013). Indeed, coincident GABAergic inputs may induce hetersosynaptic LTD if combined with 311 
presynaptic stimulation at a moderately high frequency that itself does not cause LTD (Blaise and 312 
Bronzino, 2003) .  313 
 Secondly, our results provide a hypothesis for synaptic organization on dendritic tree. It is 314 
known that excitatory synaptic inputs to a dendritic hotspot often show correlated activities 315 
(Kleindienst et al., 2011)(Takahashi et al., 2012). Our results indicate that an inhibitory input may 316 
also be correlated to excitatory inputs projecting to the nearby dendrite (Fig. 4,5), especially on a 317 
dendritic tree of an excitatory neuron that is sensitive to changes in the external environment (Fig. 6). 318 
Moreover, the model explains why feature selectivity of these spines only shows a weak similarity 319 
despite their correlations (Jia et al., 2010) (Chen et al., 2011). Suppose a synaptic cluster is carved 320 
by the heterosynaptic effect of common inhibitory inputs, but not by excitatory-to-excitatory 321 
interactions, variability within the cluster tends to be large, because inhibitory neurons typically have 322 
a wider feature selectivity than excitatory neurons (Ma et al., 2010)(Moore and Wehr, 2013). In 323 
addition, it should also be noted that, E-to-E heterosynaptic LTP is typically induced as a 324 
meta-plasticity in the timescale of minutes (Harvey and Svoboda, 2007), which itself is not sufficient 325 
to create a correlation-based synaptic cluster. 326 
 The third implication of the model is about binocular matching. Our model indicates that 327 
GABA-maturation plays a critical role in binocular matching, and proposes a candidate mechanism 328 
for disruption of binocular matching by precocious GABA maturation (Wang et al., 2013) (Fig. 7). 329 
However, the phenomenon can also be explained by Hebbian plasticity plus some kind of 330 
meta-plasticity. If binocular matching is purely induced by Hebbian plasticity not through 331 
heterosynaptic mechanism, selective orientation after the matching should depend solely on the 332 
initial selectivity for monocular inputs, assuming that selectivity of presynaptic neurons remains the 333 
same. Especially when the contralateral input is larger than the ipsilateral input, the resultant 334 
selectivity should approximately coincide with the original contralateral selectivity. On the other hand, 335 
if the proposed mechanism takes part in the development, the consequent selectivity should also be 336 
influenced by the mean selectivity of inhibitory input neurons. Thus, long-term imaging of monocular 337 
selectivity at binocular neurons in V1 would reveal whether a covariance-based rule is sufficient 338 
enough to explain the phenomena, or some other mechanisms including the proposed one also play 339 
a major role in the shift.  340 
 341 
Carrier of heterosynaptic interaction 342 
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Heterosynaptic plasticity has been observed in various spatial and temporal scales, and arguably 343 
underlying molecular mechanisms are different for different spatiotemporal scales (Nishiyama and 344 
Yasuda, 2015). In the case of milliseconds-order interaction, single-atomic ions are strong 345 
candidates, because poly-atomic ions such as IP3 are too big to move rapidly from spine to spine 346 
(Santamaria et al., 2006). Suppose that changes in Ca2+ concentration at an un-stimulated spine are 347 
crucial for heterosynaptic plasticity, Ca2+ influx/outflux from either intra or extracellular sources are 348 
necessary for induction of heterosynaptic plasticity. Because inhibitory synaptic inputs often change 349 
the local Ca2+ concentration in the dendritic branch (Müllner et al., 2015), intracellular spreading of 350 
Ca2+ may be a major source for Ca2+ changes in nearby un-stimulated spines. At the same time, 351 
because inhibitory inputs significantly modulate the membrane voltage of local dendrite(Gidon and 352 
Segev, 2012), a synaptic input should strongly drive Ca2+ influx/outflux from extracellular sources 353 
even at NMDA and VDCC of nearby un-stimulated spines. In addition, most of intracellular 354 
calcium-ions exist within calcium-buffer (Higley and Sabatini, 2012), and arguably they are also 355 
important for induction of synaptic plasticity. In our model, both current-based interaction (Model A) 356 
and calcium-based interaction (ModeI B) replicate the experimental results (Fig. 2 and 3, 357 
respectively). Nevertheless, our analytical study suggest that the heterosynaptic Ca2+ change 358 
typically needs to be comparable with the homosynaptic change in order to cause significant 359 
heterosynaptic plasticity through calcium-based interaction (Fig. 3C, D). Thus, our study implies 360 
possible importance of current-based interaction and spine specific influx/outflux of extracellular Ca2+ 361 
for heterosynaptic plasticity.  362 

Note that heterosynaptic interaction does not need to work in milliseconds order to interfere 363 
with STDP. For instance, E-to-E heterosynaptic LTD can be initiated by spreading of LTD-related 364 
molecules, not by messengers of neural activity (Hayama et al., 2013). In addition, for a shift in STDP 365 
time window, changes in the ratio between calcium influx through NMDA and the influx through 366 
VDCC possibly play a crucial role (Paille et al., 2013). 367 
 368 
Inhibitory cell types 369 
Somatostatin positive (SOM+) inhibitory neurons are typically projected to the apical dendrite, their 370 
IPSP curves is shorter than the timescales of NMDA or Ca2+ dynamics (Markram et al., 2004), and 371 
they often show strong feature selectivity compared to other inhibitory neuron types (Ma et al., 2010). 372 
Thus, this inhibitory cell type is the likely candidate for heterosynaptic STDP. However, our results do 373 
not exclude parvalbumin positive (PV+) inhibitory neurons, which usually have projections to proximal 374 
dendrites, and also are typically fast spiking (Markram et al., 2004). In particular, h-STDP through 375 
PV+ cell may play important roles in critical period plasticity (Takesian and Hensch, 2013).  376 
 377 
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Related theoretical studies 378 
Previous biophysical simulation studies revealed that synaptic plasticity at excitatory synapse 379 
critically depends on inhibitory inputs at nearby dendrite (Cutsuridis, 2011)(Bar-Ilan et al., 380 
2013)(Jedlicka et al., 2015), but these studies did not reveal the functional roles of the heterosynaptic 381 
plasticity. On the other hands, network modeling studies found that heterosynaptic plasticity provides 382 
a homeostatic mechanism (Chen et al., 2013)(Zenke et al., 2015), but in these models, 383 
heterosynaptic plasticity was modeled as a global homeostatic plasticity without any branch 384 
specificity, and the advantage over other homeostatic mechanisms was unclear. In this study, by 385 
considering intermediate abstraction with analytical but biologically plausible models, we proposed 386 
candidate mechanisms for experimental results that have not been modeled before, and revealed 387 
potential functions of h-STDP in neural circuit formation.  388 
 389 
 390 
Methods 391 
Model A1: Calcium-based STDP model with current-based heterosynaptic interaction 392 
 Let us first consider membrane dynamics of a dendritic spine. Membrane potential of a 393 
spine is mainly driven by presynaptic inputs through AMPA/NMDA receptors, backpropagation of 394 
postsynaptic spike, leaky currents, and current influx/outflux caused by excitatory/inhibitory synaptic 395 
inputs at nearby synapses. Hence, we modeled membrane dynamics of spine i with the following 396 
differential equation: 397 
dui t( )
dt

= −
ui t( )
τm

+ γ AxiA t( ) + γ NgN ui( )xiN t( ) + γ BPxiBP t( )− γ I x j
I t − dI( )

j∈Ωi
I

∑ + γ E x j
E t − dE( )

j∈Ωi
E

∑ ,  (2) 398 

where ui is the membrane potential of the spine, and τm is the membrane time constant. Here, 399 
conductance changes were approximated by current changes (see Table 1 for definitions of 400 
variables). The resting potential was renormalized to zero for simplicity. In next terms, xi

A and xi
N are 401 

glutamate concentration on AMPA/NMDA receptors respectively. The function gN(ui)=αNui+βN 402 
represents voltage dependence of current influx through NMDA receptors. This positive feedback is 403 
enhanced when additional current is provided through back-propagation. As a result, the model 404 
reproduces large depolarization caused by coincident spike between presynaptic and postsynaptic 405 
neurons. Although AMPA receptor also shows voltage dependence, here we neglected the 406 
dependence, as the relative change is small around the resting potential (Lüscher and Malenka, 407 
2012). xi

BP is the effect of backpropagation from soma, and the last two term of the equation 408 
represents heterosynaptic current, which is given as the sum of inhibitory (excitatory) currents xj

I (xj
E) 409 

at nearby synapses. We defined sets of nearby inhibitory/excitatory synapses as Ωi
I and Ωi

E 410 
respectively, and their delays were denoted as dI and dE. Each input xi

Q (Q = A,N,BP,I,E) is given as 411 
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convoluted spikes: 412 
dxiQ t( )
dt

= −
xiQ t( )
τQ

+ δ t − sk( )
sk
∑ ,

     (3)
 413 

where sk represents the spike timing of the k-th spike. In the simulation, although convolution is 414 
calculated at the heterosynaptic synapse, this does not influence results because exponential decay 415 
is linear.  416 
 We next consider calcium influx to a spine through NMDA receptors and VDCC. For a 417 
given membrane potential ui, calcium concentration at spine i can be written as 418 

dci
dt

= − ci
τC

+ gN ui( )xiN t( ) + gV ui( ),       (4) 419 

where gV(ui)= αVui represents calcium influx through VDCC, and gN(ui)xi
N(t) is the influx from NMDA.  420 

 Calcium concentration at spine is the major indicator of synaptic plasticity, and many 421 
results indicate that high Ca2+ concentration on a spine typically induces LTP, while low 422 
concentration often causes LTD (Lüscher and Malenka, 2012). Previous modeling studies revealed 423 
calcium-based synaptic plasticity model constructed on that principle well replicate various 424 
homosynaptic STDP time window observed in in vitro experiments (Shouval et al., 2002)(Graupner 425 
and Brunel, 2012). Hence, here we employed their framework for plasticity model. We additionally 426 
introduced an intermediate variable to reflect all-or-none nature of synaptic weight change (Petersen 427 
et al., 1998). This variable approximately represents the concentration of plasticity related enzymes 428 
such as CaMKII or PP1 (Graupner and Brunel, 2007). In the proposed model the intermediate yi and 429 
synaptic weight wi follow 430 

dyi t( )
dt

= −
yi t( )
τ y

+Cp ci −θp⎡⎣ ⎤⎦+ −Cd ci −θd[ ]+ ,
    (5)

 431 

 
dwi t( )
dt

= Bp yi − yth[ ]+ −Bd − yi + yth( )⎡⎣ ⎤⎦+ .     (6)
 432 

[X]+ is a sign function which returns 1 if X ≥ 0, returns 0 otherwise. Note that, in this model setting, as 433 
observed in recent experiments (Gambino et al., 2014), back-propagation is not necessary for LTP, if 434 
presynaptic inputs are given when the membrane potential at the spine is well depolarized. 435 
 In the simulation, we set common parameters as τC=18.0ms, τM=3.0ms, τN=15.0ms, 436 
τA=3.0ms, τBP=3.0ms, τI=3.0ms, τE=6.0ms, τY=50s, dI=0.0ms, αN=1.0, αV =2.0, γA=1.0, θp=70, θd=35, 437 
Cp=2.3, Cd=1.0, Bp=0.001, Bd=0.0005. In the model of STDP at striatum, in addition, we used βN=1.0, 438 
γN=0.0, γBP=8.0, γI=5.0, yth=250, while for the model of Schaffer collateral synapses, we used dE=1.0, 439 
βN=0.0, γN=0.2, γBP=8.5, γI=3.0, γE=1.0, yth=750. In the parameter search, decay time constants 440 
were chosen from biologically reasonable ranges (Koch, 1998), αN, γA, Cd, Bd were fixed at unitary 441 
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values, and other parameters were manually tuned. Synaptic weight variables {w} were bounded to 0 442 
< w < 500, and initialized at w = 100. All other variables were initialized at zero in the simulation. 443 
Paired stimulation was given every 1 second for 100 seconds, and synaptic weight changes were 444 
calculated from the values 400 seconds after the end of stimulation. In the cortico-striatal synapse 445 
model, the inhibitory spike was presented at the same timing with the presynaptic spike, and for 446 
Schaffer collateral synapses, inhibitory spikes were given 10 milliseconds before pre (post) spikes in 447 
pre-post (post-pre) stimulation protocols. In calculation of intermediate variable y(t) in Fig. 2B,D, we 448 
ignored the effect of exponential term, because of the difference in timescale. We subtracted 7.5 449 
milliseconds of axonal delay from the timing of presynaptic stimulation in the calculation of spike 450 
timing difference.  451 
 452 
Model A2: Models of a dendritic hotspot 453 
Dendritic hotspot model was constructed based on the Schaffer collateral synapse model described 454 
above. For simplicity, we hypothesized that heterosynaptic effect by inhibitory spike arrives at 455 
excitatory spines at the same time, and also disregarded E-to-E interaction by setting γE=0.0. 456 
Correlated spikes were generated using hidden variables as in previous studies (Vogels et al., 457 
2011)(Hiratani and Fukai, 2015). We generated five dynamic hidden variables, and updated them at 458 

each time step by sµ t + Δt( ) = ζ − 1
2( ) 1−αs( ) + sµ t( )αs , where αs = exp −Δt τS[ ] , τS=10ms, and 459 

ζ is a random variable uniformly chosen from [0,1). In the simulation, the time step was set at 460 
Δt=0.1ms. Activities of presynaptic neurons were generated by rate-modulated Poisson process with 461 

ri
E t( ) = rX

E + rS
Esµ t( )⎡⎣ ⎤⎦+  for excitatory neuron i modulated by the hidden variable μ. Similarly, the 462 

presynaptic inhibitory neuron was described by a Poisson-model with r I t( ) = rX
I + rS

Is0 t( )⎡⎣ ⎤⎦+ . 463 

Activity of the postsynaptic neuron was given as a Poisson-model with a fixed rate rpost. We set 464 
parameters {rx

E, rs
E, rpost} in a way that all pre and postsynaptic excitatory neurons show the same 465 

firing rate, to avoid the effect of firing-rate difference on synaptic plasticity.  466 
For parameters, we used γI=2.0, βN=1.0, γBP=8.0, Cp=2.15, yth=250 and other parameters 467 

were kept at the same value with the original Schaffer collateral model. Except for Fig. 4D, the delay 468 
of inhibitory spike was set as zero. Presynaptic activities were given by rX

E=1.0Hz, rS
E=500.0, 469 

rX
I=2.0Hz, rS

I=1000.0, and postsynaptic firing rate was set as rpost = 5.0Hz.  470 
 471 
Model A3: A two-layered single cell model 472 
Previous studies suggest that complicated dendritic computation can be approximated by a 473 
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two-layered single cell model (Poirazi et al., 2003)(London and Häusser, 2005). Thus, we 474 
constructed a single cell model by assuming that each hotspot works as a subunit of a two-layered 475 

model. We defined the mean potential of a dendritic subunit k byubk t( ) ≡ wi
kuik t( ) wo

ENb
E( )i=1

Nb
E

∑ , and 476 

calculated the somatic membrane potential by usoma t( ) ≡ gb ubk t( )( )k∑ . Postsynaptic spikes were 477 

given as a rate-modulated Poisson model with the rate usoma(t)/Idv(t). Idv(t) is the divisive inhibition 478 
term introduced to keep the output firing rate at rpost. By using the mean somatic potential 479 

dusoma t( )
dt = − usoma t( )−usoma t( )

τv , Idv(t) was calculated as Idv t( ) ≡ usoma t( ) rpost . In the simulation, we used 480 

Cp=1.93, τv=1s, gb(u)=u if u>0, otherwise gb(u)=0, and other parameters were kept at the same 481 
values with the hotspot model. 482 
 483 
Model A4: A model of binocular matching 484 
For the model of critical period plasticity of binocular matching, we used the two-layered single cell 485 
model introduced in the previous section (Model A3). The neuron has K=100 dendritic branches, 486 
each receives NE

b=20 excitatory inputs and 1 inhibitory input. At each branch, half of excitatory inputs 487 
are from the contralateral eye, and the other half are from the ipsilateral eye. Each excitatory input 488 
neuron have direction selectivity characterized with θk,i

E, and shows rate-modulated Poisson firing 489 
with  490 

rk ,j t( ) = rxE exp βE cos θ t( )−θk ,jE( )⎡⎣ ⎤⎦ I0 βE( ) ,  491 

where I0(βE) is the modified Bessel function of order 0. Similarly, firing rate of an inhibitory neuron 492 

was given as rkI t( ) = rxI exp βI cos θ t( )−θkI( )⎡⎣ ⎤⎦ I0 βI( ) . For each excitatory input neuron, mean 493 

direction selectivity {θk,i
Q} was randomly chosen from a von Mises distribution 494 

exp βS cos θk ,i
Q −θQ( )⎡⎣ ⎤⎦ 2πI0 βS( ) , where Q={contra, ipsi}. In the simulation, we used θcontra=-π/4, 495 

θipsi=π/4. Correspondingly, mean direction selectivity of a inhibitory neuron {θk
I} was defined as the 496 

sum of its selectivity for ipsi- and contralateral inputs (ie. θk
I = θk

I,ipsi + θk
I,contra), where θk

I,ipsi and 497 

θk
I,contra were also randomly depicted from exp βS cos θk

Q −θQ( )⎡⎣ ⎤⎦ 2πI0 βS( ) . Direction of visual 498 

stimulus θ(t) changes randomly with θ t + Δt( ) = θ t( ) +σ srζG  where ζG  is a Gaussian random 499 
variable, and Δt is the time step of the simulation. To mimic monocular deprivation, in the shadowed 500 
area of Fig. 7E, we replaced contra-driven input neuron activity with a Poisson spike with constant 501 
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firing rate rmd
E. In addition, to simulate the lack of contra-driven inputs to inhibitory neurons, we 502 

replaced inhibitory activity with rkI t( ) = rmdI + rxI 2( )exp βI cos θ t( )−θkI ,ipsi( )⎡⎣ ⎤⎦ I0 βI( ) . Similarly, in 503 

Fig. 7C, we measured direction selectivity by providing monocular inputs, while replacing the inputs 504 
from the other eye with a homogeneous Poisson spikes with firing rate rmd

E.  505 
 To evaluate the development of binocular matching, we introduced three order parameters. 506 
First, the difference between mean excitatory direction selectivity and inhibitory selectivity at a 507 

branch k was evaluated by θb,k
d = arg wk ,i

E ei θk ,i
E −θk

I( )
i∑( ) . Similarly, the global direction selectivity 508 

difference between inputs from the ipsi- and contralateral eyes were defined by 509 

θG
d = d̂ arg wk ,i

E eiθk ,iE

i∈ipsi
∑

k=1

K

∑⎛
⎝⎜

⎞

⎠⎟
,arg wk ,i

E eiθk ,iE

i∈contra
∑

k=1

K

∑⎛⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, 510 

where the function d̂ [θ1,θ2 ]  calculates the phase difference between two angles. Finally, direction 511 
selectivity index DSI for binocular input was calculated by 512 

 DSI = wk ,i
E eiθk ,i

E

i=1

Nb
E

∑
k=1

K

∑ wk ,i
E

i=1

Nb
E

∑
k=1

K

∑ . 513 

For the calculation of the monocular direction selectivity index, at each branch k, we took sum over 514 
Nb

E/2 excitatory inputs corresponding to the each eye instead of all Nb
E inputs.  515 

 In the simulation, we set γI=2.5, Cp=1.85, yth=750.0, and the rest of parameters were kept 516 
at the values used in the Model A3. Inputs parameters were set at βE=4.0, βI=2.0, βS=1.0, θcontra=-π/4, 517 

θipsi=π/4, rX
E=5.0, rX

I=10.0, rmd
E=1.0, rmd

I=1.0, σ sr = 0.1 Δt .  518 

 519 
Model B: A reduced analytical model of a spine  520 

If we shrink equations for membrane potential and calcium concentration into one, the 521 
reduced equation would be written as, 522 

dCi t( )
dt

= −
Ci t( )
τC

+CpreX i t( ) +Cpost 1+ gC Ci t − Δt( )( )⎡⎣ ⎤⎦Xpost t( )

−CI X j
I t − dI( )

j∈Ωi
I

∑ +CE X j
E t − dE( )

j∈Ωi
E

∑ ,
 523 

where gc(X) =η[X]+ captures the nonlinear effect caused by pre-post coincidence. gc was calculated 524 
from the value of Ci at t=t-Δt to avoid pathological divergence caused by the delta function. In the 525 
simulation, we simply used value of Ci one time step before. Here, all input Xi, Xpost, Xj

I, Xj
E are given 526 
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as point processes, and dI, dE are heterosynaptic delays. For the intermediate y, we used the same 527 
equation as before. Note that above equation is basically same with the one in (Graupner and Brunel, 528 
2012) except for the nonlinear term gc(C) and the heterosynaptic terms. 529 
 Let us consider weight dynamics of an excitatory synapse that has only one inhibitory 530 
synapse in its neighbor. For analytical tractability, we consider the case when presynaptic, 531 
postsynaptic, and inhibitory neurons fire only one spikes at t=tpre, tpost, tI respectively. In case of the 532 
CA1 experiment, because GABA uncaging was always performed before pre and postsynaptic spike, 533 
the timing of inhibitory spike is given as tI = min(tpre,tpost)–δI for δI > 0. Note that spike timings are 534 
counted at the excitatory spine, so the actual timings are t’pre=tpre-daxon, t’post=tpost-ddendrite, t’I= 535 
tI-dI-dinh_axon. In this setting, the change in intermediate variable of the excitatory synapse is given as  536 

Δy =
G1 C1,tpre − tpost( ) +G2 Cpre +C1e

− tpre−tpost( ) τC( )                                             (if  tpost < tpre )

G1 C2,tpost − tpre( ) +G2 Cpost 1+ gC C2e
− tpost −tpre( ) τC( )⎡

⎣⎢
⎤
⎦⎥
+C2e

− tpost −tpre( ) τC⎛
⎝

⎞
⎠      (otherwise)

⎧

⎨
⎪⎪

⎩
⎪
⎪

  537 

where, 538 

C1 ≡Cpost −CIe
− tpost −tI( ) τC ,  C2 ≡Cpre −CIe

− tpre−tI( ) τC   539 

G1 C,Δt( ) ≡ Bp C −θp⎡⎣ ⎤⎦+ τC log C
θp − Δt⎡⎣ ⎤⎦+ Δt + Δt −τC log C

θp
⎡⎣ ⎤⎦+ τC log

C
θp( )

−Bd C −θd[ ]+ τC log C
θd − Δt⎡⎣ ⎤⎦+ Δt + Δt −τC log C

θd
⎡⎣ ⎤⎦+ τC log

C
θd( ),

  540 

G2 C( ) ≡ Bp C −θp⎡⎣ ⎤⎦+ τC log
C
θp −Bd C −θd[ ]+ τC log C

θd .  541 

Similarly, in case of the striatum experiment, by setting η=0, the change in the intermediate variable 542 
is given as 543 

Δy =

G1 Cpost ,tpre − tpost( ) +G1 C3,tI − tpre( ) +G2 −CI +C3e
− tI −tpre( ) τC( )     (if  tpost < tpre < tI )

G1 Cpre ,tI − tpre( ) +G1 C4,tpost − tI( ) +G2 Cpost +C4e
− tpost −tI( ) τC( )     (if  tpre < tI < tpost )

G1 Cpre ,tpost − tpre( ) +G1 C5,tI − tpost( ) +G2 −CI +C5e
− tI −tpost( ) τC( )     (if  tpre < tpost < tI ),

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

544 

where 545 

C3 ≡Cpre +Cposte
− tpre−tpost( ) τC , C4 ≡ −CI +Cpree

− tI −tpre( ) τC , and C5 ≡Cpost +Cpree
− tpost −tpre( ) τC . 546 

 In the simulation, parameters were set at τc=30ms, Cpost=2.0, θp=1.6, θd=1.0, Bp=2.25, 547 
Bd=1.0. Additionally, in the model of a Schaffer collateral synapse, we used δI=1.0, Cpre=1.0, CE=0.30, 548 
η=2.0, and for the model of a cortico-striatal synapse, we employed δI=5.0, Cpre=0.75, CE=0.0, η=0.0. 549 
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In Fig. 3C and D, we used the parameter set for the model of Schaffer collateral synapse. 550 
 551 
Model C: Detailed single NEURON model 552 
 To see whether the dendritic E/I balance indeed benefits single neuron computation, we 553 
studied dendritic computation in detailed single neuron models using NEURON simulator (Hines and 554 
Carnevale, 1997). For the morphology and active properties of the neuron, we employed a previously 555 
developed model of spiny neuron in cortical layer 4 (Mainen and Sejnowski, 1996). On the model, we 556 
distributed synaptic inputs in three different ways, and studied their response for stochastic stimuli 557 
from five independent sources.  558 

First, in all three models, we uniformly distributed 200 inhibitory inputs on every 28 μm of 559 
the dendritic tree (Fig. 6A left). The inputs are selective for one of five stimuli, as indicated by colors 560 
in Figure 6A-left, and none of inhibitory inputs are spatially clustered. Synaptic inputs were 561 
approximated with double exponential conductance change, where rise and decay time constants 562 
were 0.1ms and 10ms respectively, and the reversal potential was set at -70mV. For the activity, we 563 
assumed that each presynaptic inhibitory neuron responds to its selective stimuli with a 564 
homogeneous Poisson firing, and stays silent otherwise. Here, we assumed 5 milliseconds delay 565 
between excitatory and inhibitory inputs.  566 
 Based on the given distribution of inhibitory inputs, in the dendritic E/I balance model, we 567 
distributed excitatory inputs in a way that selectivity of excitatory and inhibitory inputs matches locally. 568 
To this end, of 1000 excitatory inputs placed at every 5.5μm, we assumed that five neighboring 569 
inputs show the same selectivity, so that the selectivity of each excitatory input roughly matches the 570 
selectivity of the nearest inhibitory input (Fig. 6A middle-left). As we have shown in Figure 4 and 5, 571 
this input distribution can be achieved through heterosynaptic plasticity, even if initially excitatory 572 
selectivity is random distributed. As for synaptic inputs, we modeled both AMPA and NMDA channels 573 
by considering two synapse models with different timescales. For AMPA inputs, rise and decay time 574 
constants were set at 0.1ms and 5.0ms, whereas in NMDA inputs rise and decay time constants 575 
were 1.0ms and 50ms. In both channels, the reversal potential was set at 0mV. The activity was 576 
modeled as a homogeneous Poisson spiking during the selective stimuli, and total silence otherwise.  577 

To perform comparison, we considered two additional excitatory inputs distributions. One 578 
is a random model, in which excitatory selectivity do not have any clustering structure (Fig. 6A 579 
middle-right). The other one is excitatory clustering model, in which five neighboring excitatory inputs 580 
have the same selectivity as in the dendritic E/I balance model, but the selectivity of the cluster is 581 
different from the selectivity of nearest inhibitory inputs (Fig. 6A-right). Excitatory clustering model 582 
was created by misaligning the excitatory inputs in the dendritic E/I balance model. In both models, 583 
synapses and activity were modeled in the same way with the dendritic E/I balance model.  584 
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In the simulations, duration of each stimulus was uniformly sampled from 300-700ms. The 585 
ratio of change detecting spikes was calculated by 586 

 ratio =
0 ≤ sk − tµs ≤ 25ms⎡⎣ ⎤⎦+µ=2

5∑k∑
t2s ≤ sk ≤ t5f⎡⎣ ⎤⎦+k∑

   587 

where {sk} are timings of output spikes, tμs and tμf are the starting point and the end point of the μ-th 588 
stimulus. We excluded the first stimulus (μ=1) from the evaluation, because the model often 589 
exhibited bursty activity regardless of synaptic configuration. The data points in Fig. 6C,D was 590 
calculated by averaging over 100 simulations. Parameter settings and additional details of the model 591 
will be available at the modelDB.  592 
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 737 
Table 1. Definitions of variables  738 
ui(t) Membrane potential at spine i Eq. 2 

ci(t) Calcium concentration at spine i Eq. 3 

yi(t) Intermediate factor (interim synaptic weight) Eq. 5 

wi(t) Synaptic weight of spine i Eq. 6 

gN(u) Voltage dependence of NMDA receptor gN(ui)=αNui+βN 

gV(u) Voltage dependence of VDCC gv(ui)=αvui 

xA
i(t) Inputs through AMPA receptor Eq. 4 (Q=A) 

xN
i(t) Inputs through NMDA receptor Eq. 4 (Q=N) 

xBP
i(t) Back propagation Eq. 4 (Q=BP) 

xE
i(t) Excitatory heterosynaptic inputs Eq. 4 (Q=E) 

xI
i(t) Inhibitory heterosynaptic inputs Eq. 4 (Q=I) 

ub
k(t) Membrane potential at dendritic branch k 

ub
k t( ) = wi

kui
k t( ) wo

ENb
E( )

i =1

Nb
E

∑   

usoma(t) Membrane potential at the soma 
usoma t( ) = gb ub

k t( )( )
k∑   

gb(u) Dendritic nonlinearity function 
gb u( ) =

u     (if  u > 0)

0    (otherwise)
⎧
⎨
⎩   

 739 
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Figure 1: Schematic figure of the model of heterosynaptic spike-timing-dependent plasticity
(h-STDP). A) Two variables in the spine u(t) and c(t) represent the normalized membrane potential
and Ca2+ concentration respectively. Presynaptic action potentials modulate the membrane potential u(t)
through AMPA (xA) and NMDA (g

N

(u)xN ) receptors. In addition, u(t) is modified by back-propagation
(xBP ), and heterosynaptic current caused by excitatory (xE) and inhibitory (xI) inputs. Calcium level c(t) is
modulated by influx/outflux through NMDA (g

N

(u)xN ) and VDCC (g
V

(u)). Consequently, c(t) is indirectly
controlled by u(t) because both NMDA and VDCC are voltage-dependent. B) An example of dynamics of
the membrane potential variable u(t) (top), Ca2+ concentration c(t) (middle), and the intermediate variable
y(t) that controls the synaptic weight w(t)(bottom). Change in the Ca2+ level roughly follows the membrane
potential dynamics, and the intermediate variable y(t) is positively (negatively) modulated when Ca2+ level
is above LTP(LTD) thresholds represented by orange(cyan) dotted lines. Based on the intermediate variable
y(t), synaptic weight w(t) is updated in a slow timescale (see Fig. 4C for example).
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Figure 2: The model reproduces spike-timing-dependent heterosynaptic e↵ects. A) Spike timing
window with/without a di-synaptic GABAergic input. Lines are simulation data, and points are experi-
mental data taken from (Paille et al., 2013). Vertical dotted lines represent the spike-timing di↵erences at
which Fig. B is calculated. B) Dynamics of calcium concentration c(t) (top) and the intermediate vari-
able y(t) (bottom) at the stimulated spine. Gray areas in the bottom figures represent regions satisfying
y(t) < y

th

/K

rep

, in which the change in the intermediate is not reflected into synaptic weight, where K

rep

represents the number of paired stimulation given in the simulation for Fig. A. C) Synaptic weight change
with/without GABAergic inputs right before pre/post stimulation. Data points were taken from (Hayama
et al., 2013). The cyan point is a result from muscimol application, not GABA uncaging. D) Dynamics of
c(t) and y(t) at the stimulated spine (blue lines) and a neighboring spine (green lines).
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Figure 3: Heterosynaptic STDP can be understood as phase transitions on STDP time window
in an analytical model. A, B) STDP windows at various strength of heterosynaptic inhibitory e↵ect
C

I

. Fig. A corresponds to the striatum experiment, and Fig. B corresponds to the CA1 experiment. Note
that values in Fig. B were calculated by ỹ = sgn(y) · [y � 15]

+

to reflect the e↵ect of thresholding. C)
Phase diagram of STDP time window calculated for inhibitory e↵ect C

I

and LTP threshold ✓

p

. Colors
show the number of local minimum/maximum, and lines are typical STDP time windows at each phase.
Parameters written on right-side (top) of the panel represent the critical values of ✓

p

(C
I

). D) Phase diagram
calculated for heterosynaptic excitatory e↵ect parameter C

E

and postsynaptic e↵ect parameters C
post

at a
fixed inhibitory e↵ect (C

I

= 0.5).
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Figure 4: Emergence of detailed dendritic excitatory/inhibitory balance by heterosynaptic
STDP. A) A schematic figure of a dendritic hotspot model. The shaft synapse represent an inhibitory
input. Colors represent spike correlation between synaptic inputs. B) Examples of correlated spike inputs.
Each raster plot was calculated from 50 simulation trials. C) Changes in intermediate variable y(top) and
weight w(bottom) by h-STDP. The blue lines represent dynamics of synapses correlated with the inhibitory
input. D) Synaptic weight change at the excitatory synapses correlated with the inhibitory inputs, at various
inhibitory delays. Error bars in Fig. C and D represent standard deviations over 50 simulation trials. E)
Relative weight changes w

R

calculated at various parameters. We defined w

R

by hwE

i

i
i2corr � hwE

i

i
i2un-corr,

where ”corr” represents a set of excitatory synapses correlated with the inhibitory synapse, and ”un-corr”
stands for uncorrelated ones. Here, weights were calculated by taking average over 10 simulations. F)
Probability of LTP/LTD occurrence calculated from a simulation. Lines represent the mean LTP/LTD
probabilities at excitatory synapses correlated with the inhibitory input (blue lines) and other synapses
(gray lines), respectively. G, H) Results in single-spike simulations. E/I coincidence prevents LTD e↵ect
due to pre-spike (G), without a↵ecting LTP e↵ect due to pre-post coincidence (H). In Fig. G, inhibitory
spikes were provided at t = 0 in the black line, t = �100ms in the gray line, and the excitatory presynaptic
spike was given at t = 0 in both lines. Similarly, in Fig. H, postsynaptic spikes were provided at t = �75
(light-gray), 0 (black), +75ms (dark-gray), and the presynaptic spike was given at t = 0 in all lines.

4

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2016. ; https://doi.org/10.1101/056093doi: bioRxiv preprint 

https://doi.org/10.1101/056093
http://creativecommons.org/licenses/by/4.0/


Time[min]

S
yn

ap
tic

 w
ei

gh
ts

A

B

divisive
inhibition

Figure 5: Detailed dendritic excitatory/inhibitory balance in a two-layered single cell model.
A) Schematics of the single cell model. In the model, each branch receives 10 excitatory inputs and 1
inhibitory input. As in Fig. 4A, inhibitory inputs are represented by shaft synapses. The left (right)
branch corresponds to the bottom-left (top-right) branch in Fig. B. B) Synaptic weight change at each
branch. Error bars are standard deviations over 10 simulation trials.
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Figure 6: Dendritic excitatory/inhibitory balance enables change detection in a detailed single
neuron model. A) Synaptic organization in the model. Colored points on the dendrites indicate sites of
synaptic inputs, and the color represents the type of stimulus for which its presynaptic neuron is selective
(see Model C in Method for details). The vertical lines represent the axon, and the arrows indicate the
point at which the data for Fig. E was recorded. Schematic figures at the left top of neurons describe the
ways selectivity of excitatory synapses was configured. In the schematic figures, shaft synapses represent
inhibitory synaptic inputs, and spine synapses represent nearby excitatory inputs. B) Examples of neural
response for five continuous stimuli in the three models. Colored horizontal bars at the top of panels
represent the type of stimulus presented, and the gray vertical bars represent the change points. C, D)
Ratio of change detecting spikes in three models. In Fig. C, we modified firing rates of both excitatory and
inhibitory inputs, while keeping their ratio at r

I

= 4r
E

. In Fig. D, we modified the firing rate of inhibitory
inputs, while fixing the firing rate of excitatory inputs at 14Hz. Horizontal black lines represent the chance
level. E) Traces of dendritic membrane potential (top) and intracellular calcium concentration (bottom) at
the dendrite pointed by the arrow in Fig. A, for the stimulus configuration depicted in Fig. B.
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Figure 7: Heterosynaptic plasticity can trigger binocular matching. A) (left) Direction selectivity
of input neurons. In the model, as depicted by black vertical lines, majorities of excitatory input neurons
from the contralateral (ipsilateral) eye are selective for directions around ✓ = �⇡/4 (✓ = ⇡/4), while inputs
from the inhibitory neurons are weakly selective for ✓ = 0. (right) A schematic figure of model configuration.
Each dendritic branch receives inputs from both ipsi- and contralateral driven excitatory neurons and also
from inhibitory neurons. B) (top): Di↵erence between mean excitatory direction selectivity and inhibitory
direction selectivity in each branch. (middle): Di↵erence between mean ipsi-driven excitatory direction
selectivity and mean contra-driven excitatory direction selectivity over all synapses on the neuron. (bottom):
Direction selectivity index (DSI) calculated for contralateral inputs (purple), ipsilateral inputs (light-green),
and binocular inputs (black). See Model A

4

in the Methods for the details of evaluation methods. Red
vertical lines represent the timing for introduction of inhibitory inputs. Throughout Fig. 7, error bars are
standard deviations over 10 simulation trials. C) Firing responses of the neuron for monocular inputs, right
after the initiation of inhibitory inputs (left; t=30min), and after the learning (right; t=60min). D) Examples
of direction selectivity of a branch before (gray lines; t=0min) and after (purple/light-green lines; t=60min)
the learning. Black lines represent the selectivity of the inhibitory input to the branch. E) Behavior in
monocular deprivation model. In shadowed areas, to mimic monocular deprivation, contra-driven inputs
were replaced with rate-fixed Poisson inputs. Ordinates are the same with Fig. B. F) Synaptic weights
development at di↵erent mean inhibitory selectivity. Ordinates are the same with Fig. B, and values were
calculated at t=60min. Purple and green vertical dotted lines are mean selectivity of contra- and ipsilateral
excitatory inputs respectively.
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