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Abstract 
In quantitative studies on animal movements and foraging, there has been ongoing 
debate over the relevance of Lévy walk and related stochastic models to 
understanding mobility patterns of diverse organisms. In this study, we collected 

and analyzed a large number of GPS logs that tracked the movements of different 
livestock species in northwestern Kenya. Statistically principled analysis has only 
found scant evidence for the scale-free movement patterns of the Lévy walk and its 

variants. Instead, the analysis has given strong support to composite exponential 
distributions (composite Brownian walks) as the best description of livestock 
movement trajectories in a wide array of parameter settings. Furthermore, this 

support has become overwhelming and near universal under an alternative 
criterion for model selection. These results illuminate the multi-scale and 
multi-modal nature of livestock spatial behavior. They also have broader theoretical 

and empirical implications for the related literature. 
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Introduction 
  Over the past two decades, quantitative studies on animal movements and 

foraging have expanded considerably. Apart from the huge advancement in 
tracking technologies, one of the driving forces behind this expansion has been the 
ongoing debate over Lévy flight/walk and related stochastic models in describing 

these movements [1-3]. A Lévy walk is a class of random walk where a walker’s step 
length at each move is drawn from a fat-tailed power law distribution with a certain 
range of exponent (see the next section) [4]. Ever since the seminal, somewhat 

controversial works by Viswanathan and his colleagues [5, 6], arguments and 
counter-arguments concerning the ability of this model to describe the mobility 
patterns of moving organisms have brought a great variety of theoretical [7-13], 

methodological [14-17], and empirical works [18-20]. 
  In this debate, a wide array of organisms has been reported to follow Lévy walk or 
its variants (e.g., ‘truncated’ Lévy walk). Examples include bacteria [21], cells [22], 

mussels [23], insects [6, 24], marine predators [18, 19], herbivores [6], primates [25, 
26], and even ancient extinct species [27]. Human beings are no exception [2, 3, 28]. 
Lévy walk models have been considered to represent the movements of such diverse 

populations as African hunter-gatherers [29, 30], Peruvian anchovy fishermen [31], 
US travellers [32], and UK burglars [33]. Although strong counter-examples always 
exist [14, 15], mounting evidence seems to suggest that diverse living organisms 

actually adopt Lévy walk-like scale-free mobility patterns, especially in harsh 
environments with few resources [6, 18]. 
  In the study reported here, we examined the applicability of these patterns to yet 

another group of organisms: livestock animals such as cattle, goats, sheep, and 
camels. These domesticated herbivores have had close relationships with human 
beings for thousands of years. Naturally, one might expect some characteristic 

traits that carry a trace of this long history in the livestock movements. Moreover, 
livestock animals are major contributors to human livelihood as well as its 
disruption, for example, by carrying deadly diseases such as sleeping sickness. Thus, 

seeking formal descriptions of livestock mobility has wider practical implications. 
  In the recent literature on animal husbandry and pastoralism, livestock 
movements have been actively tracked with GPS devices [34-42]. Most of these 
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studies, however, have not been done from the dynamic perspective that pursues 
direct representations of the spatio-temporal behavior of livestock animals. Rather, 
obtained GPS data points are quickly aggregated into static summary variables 

such as a total walked distance and an average speed for use in ensuing statistical 
analyses. Furthermore, one experimental study that explicitly investigated Lévy 
walks in the context of goat movements [43] suffers from a common methodological 

flaw that affects many other works. That is, in fitting the power law to mobility data, 
this study applied linear regression to the log-transformed distribution of step 
lengths. Such an operation, which tends to cause a systematic bias in an estimated 

parameter, has largely been discredited [14, 17, 44]. This casts a serious doubt on 
the assumed presence of Lévy patterns that the authors derived from their 
analyses. 

  Thus, a significant gap still exists regarding the relevance of the Lévy walk or any 
other stochastic representations to livestock mobility patterns. We aim to bridge 
this gap by analyzing a large dataset on livestock movements in a statistically 

principled manner. 
 

Materials and Methods 
  We tracked livestock movements during daily herding in northwest Kenya from 
2012 to 2014. The study area surrounds a small town named Tangulbei 
(0°48'18.3"N 36°16'48.3"E) in the Rift Valley Province, and 20 Pokot households 

residing there collaborated with the data collection. In each collection trial, in each 
household, we attached a GPS logger (Holux wireless M-241) to one selected animal 
in a livestock corral in the early morning and released the individual. The device 

was retrieved in the same place in the evening after several (mostly one or two) 
days of daily herding. For the 20 households, we repeated such a trial 151 times 
(excluding failed ones such as accidental abortion of tracking) in different periods of 

time with the total number of days approaching 200. Most of the trials occurred 
from October 2012 to February 2013, but some of the data was taken as late as in 
June 2014. The tracked individuals, 42 in total, consists of 20 goats, 11 cattle, 10 

calves, and 1 camel. The GPS loggers recorded their locations at 5-second intervals. 
The total number of the data points obtained amounts to 2,126,457. 
  We then converted this huge dataset into a collection of step length distributions. 
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For each set of the GPS logs that were obtained in each data collection trial, we first 
extracted its subsets according to the date and the time of measurement. Regarding 
the measurement time, we used only data points that were recorded during 

5:00-17:00, as typical daily herding take places within this duration. For each daily 
subset of data thus extracted, we further discretized the location history of an 
individual animal into a series of movement ‘steps’. Following a prominent work on 

Tanzanian hunter-gatherers [30], we define a movement step as a geodesic line 
segment between two locations on the recorded trajectory (1) whose length is longer 
than some minimum threshold value (Δxmin) and (2) along which change in the 

direction of the individual does not exceed some maximum threshold angle (Δθmax). 
Following the same work again, we also investigated the ‘outbound’ case (δout=1) 
where a movement trajectory only consists of locations between the first data point 

(x0) and the point farthest away from x0, in addition to the ‘round-trip’ case (δout=0) 
where all the data points are used. The three parameters (Δxmin, Δθmax, and δout) were 
systematically manipulated ({1.0, 2.0, …, 9.0, 10.0} for Δxmin; {5.0, 10.0, …, 85.0, 

90.0} for Δθmax; {0, 1} for δout; thus 10 x 18 x 2 = 360 combinations in total) in order to 
obtain robust results. 
  For each parameter combination, we derived step length distributions from daily 

livestock trajectories and repeated model estimation/selection procedures against 
each of these distributions to obtain an overall distribution of best-fit models. The 
following random walk models, where L denotes the random variable for step 

lengths and l its realization, were investigated as possible descriptions of livestock 
mobility patterns. This expanded set of models ensures stringent assessment of the 
validity of a given model [15, 30]. 

 
Power Law 

 
		
P L= l( ) = µ −1

lmin
1−µ l

−µ   (1) 

Truncated Power Law 

 
		
P L= l( ) = µ −1

lmin
1−µ − lmax

1−µ l
−µ   (2) 

Exponential Distribution (Brownian) 
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 		P L= l( ) = λe−λ l−lmin( )   (3) 

Composite Exponential Distributions (Composite Brownian) 

 

		

P L= l( ) = pjλ je
−λ j l−lmin( )

j=1

k

∑

pk =1− pj
j=1

k−1

∑
  (4) 

We estimated two-composite (k=2), three-composite (k=3), and four-composite (k=4) 
exponential distributions. 

 
  Among the parameters that appear in the above equations, the left and the right 
truncation cutoffs (lmin and lmax) were just assigned the minimum and the maximum 

values of a given step length distribution, respectively. Regarding the other 
parameters, we employed the standard, mostly reliable maximum-likelihood 
estimation (MLE) [14, 17, 44]. We then calculated the likelihood of a given 

distribution under each of the estimated models and, considering the number of 
free-moving parameters, computed Akaike’s information criterion (AIC) for each 
model. The random walk model that minimizes AIC can be considered as the model 

that best fits the given livestock trajectory. 
 

Results 
  The results of these analyses give very strong support to the composite Brownian 
walks against the Lévy models (the power law and the truncated power law) across 
livestock species. Figure 1 illustrates the overall picture. Each panel in the figure is 

a heat map that displays relative frequencies (0.0-1.0) of a given type of model 
becoming the best-fit model in various combinations of Δxmin and Δθmax. The 
candidate models are grouped into either composite Brownian walks [panels (a) and 

(c)] or Lévy walks (power law or truncated power law) [(b) and (d)]. The simple 
exponential distribution is omitted because of the negligible support it received. 
Results are shown for both the round-trip (δout=0) cases [(a) and (b)] and the 

outbound (δout=1) cases [(c) and (d)]. As the figure shows, in a broad range of 
parameter combinations, one of the composite Brownian models (k=2, 3, or 4 in 
equation (4)) minimized AIC for the greater part of step length distributions 
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(typically more than 85%; total average 82.6%). This support became weak only in 
limited conditions, notably those with Δxmin=1.0. In these cases, the Lévy models, 
mostly the truncated version, best described the majority of livestock trajectories 

(total average 17.4%). 
 
 

Figure 1. Heat maps showing best-fit frequencies 
The x-axes denote changes in Δθmax, whereas the y-axes denote changes in Δxmin. (a) 

Composite Brownian walks (k=2, 3, or 4) in round-trips (δout=0); (b) Lévy walks (power law 

or truncated power law) in round-trips; (c) composite Brownian walks in outbound trips 

(δout=1); (d) Lévy walks in outbound trips. 

 
 

1.0

0.0

(a) (b)

(c) (d)
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  Moreover, even this limited support for the Lévy walks becomes untenable if one 
changes ways of perceiving the ‘best’ model. Figure 2 illuminates this point. Here, 
we computed, for each combination of Δxmin and Δθmax, the frequency in which a 

given type of model maximized the likelihood of each step-length distribution, 
rather than minimized the AIC. In other words, in determining best-fit models, we 
now focus on the accuracy of a model’s description of data regardless of the number 

of parameters. As the figure clearly demonstrates, this change has made the noted 
contrast even more pronounced. The support for the composite Brownians has 
become overwhelming (total average 98.0%) in any combination of parameters, 

while that for the Lévys has been rendered almost negligible (1.9%). 
  Two graphs in Figure 3 give examples of detailed composition of best-fit models 
(selected in the AIC criterion) in each combination of Δxmin and Δθmax. It shows that 

the relative strength of the models can change considerably depending on the 
parameters even in the same group of models. Among the composite Brownian 
walks, the tendency is that step-length distributions that were derived with larger 

Δθmax, that is, coarser data, are likely to support simpler models with smaller k 
values (k=2 or 3). Similarly, the truncated power law is more likely to be selected for 
larger Δθmax, even though the overall level of this frequency is critically dependent 

on the other parameter, Δxmin, as the two graphs demonstrate. 
  Regarding parameter estimation, Table 1 shows examples of MLE parameters 
computed for a composite Brownian model. The estimation was done against the 

round-trip data (δout=0) with Δxmin=5.0 and Δθmax=30.0. The 3-composite Brownian 
walk (k=3), for which these parameters were estimated, best described the majority 
of the step-length distributions (125 out of 193) obtained in this combination of δout, 
Δxmin, and Δθmax. In the table, 1/λj (j=1,2,3) gives a component scale (in meters) for 

an animal’s step length and pj denotes its contribution to that length (see Equation 
(4)). Although one can easily see substantial individual variations, the parameters 

also contain useful information on general properties of livestock mobility. For 
example, one can find that the average move of each animal more or less consists of 
the following distinctive scales of movement (note that the estimated parameters 

are relative to lmin, which, given Δxmin is no less than 5.0 meters): several-hundred 
meters of relatively infrequent long-range jump, around 10.0 meters of short-range 
move, and relatively frequent displacement of slightly above 5.0 meters. 
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Figure 2. Heat maps showing best-fit frequencies (maximum likelihood) 
The same as Figure 1, except that the best-fit criterion is now changed to the maximum 

likelihood criterion. (a) Composite Brownian walks (k=2, 3, or 4) in round-trips (δout=0); (b) 

Lévy walks (power law or truncated power law) in round-trips; (c) composite Brownian 

walks in outbound trips (δout=1); (d) Lévy walks in outbound trips. 

   
 

1.0

0.0

(a) (b)

(c) (d)
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Figure 3. Frequency distributions of best-fit models 

Each bar represents a stacked histogram that displays the frequency of each candidate 

model becoming the best-fit model for a given value of Δθmax. (a)Δxmin=1.0; (b)Δxmin=5.0. 

Both were computed from the round-trip data (δout=0). 

(a)

(b)
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Table 1. Parameters estimated for composite Brownian walks (k=3) 

 

Note: The table shows examples of MLE parameters of composite Brownian walks. These 

were computed for the round-trip tracks (δout=0) in the setting of Δxmin=5.0 and Δθmax=30.0. 

Out of 193 step-length distributions derived from these tracks, 125 support the 3-composite 

Brownian walk as their best description. The table details information on 32 cases extracted 

from these 125 cases. n denotes the number of move steps in the corresponding step-length 

distribution, pj andλj (j=1,2,3) the MLE parameters computed against that distribution (see 

Equation (4)), and ‘Avg scale’ the average mobility scale (in meters) of the animal concerned 

that is computed from these parameters. 

 
 

Livestock Date n p1 p2 p3 1/λ1(m) 1/λ2 (m) 1/λ3 (m) Avg scale (m)

Calf 2012/10/15 85 0.264 0.339 0.397 24.090 2.440 0.363 7.330

Calf 2012/10/23 89 0.083 0.286 0.631 51.469 2.099 0.624 5.261

Calf 2012/11/9 66 0.345 0.420 0.235 35.675 3.217 0.328 13.747

Calf 2012/11/21 42 0.243 0.645 0.111 70.154 2.318 0.037 18.562

Calf 2013/2/12 86 0.106 0.220 0.674 106.398 6.470 0.771 13.255

Calf 2013/2/15 223 0.063 0.380 0.557 31.153 1.731 0.332 2.808

Calf 2013/2/19 41 0.166 0.467 0.367 170.733 2.030 0.302 29.464

Cow 2012/10/17 85 0.132 0.190 0.678 149.458 11.836 0.816 22.508

Cow 2012/10/23 39 0.116 0.280 0.604 450.200 6.647 0.778 54.483

Cow 2012/11/6 65 0.105 0.163 0.732 256.083 23.468 1.266 31.530

Cow 2012/11/17 35 0.069 0.597 0.334 127.137 6.463 0.294 12.701

Cow 2013/2/22 36 0.191 0.453 0.356 599.650 4.493 0.373 116.818

Goat 2012/10/15 89 0.156 0.296 0.548 279.036 5.856 0.867 45.638

Goat 2012/10/25 51 0.187 0.245 0.568 339.213 12.777 1.323 67.228

Goat 2012/11/10 68 0.205 0.364 0.430 52.467 1.675 0.242 11.485

Goat 2012/11/15 134 0.098 0.511 0.391 191.515 3.344 0.428 20.632

Goat 2012/11/22 20 0.070 0.426 0.504 301.475 24.355 0.696 31.691

Goat 2012/11/25 59 0.346 0.138 0.515 252.115 20.263 1.907 91.084

Goat 2012/12/6 24 0.399 0.401 0.200 171.550 4.062 0.240 70.106

Goat 2013/1/2 101 0.094 0.523 0.383 240.674 2.981 0.456 24.337

Goat 2013/1/9 23 0.345 0.213 0.442 516.854 10.494 1.947 181.298

Goat 2013/2/11 150 0.061 0.248 0.691 134.968 7.028 0.874 10.591

Goat 2013/2/12 63 0.213 0.438 0.349 137.715 3.706 0.402 31.083

Goat 2013/2/15 21 0.112 0.211 0.677 338.591 9.704 1.317 40.718

Goat 2013/2/16 66 0.194 0.257 0.548 112.442 6.012 0.565 23.717

Goat 2013/2/20 20 0.157 0.679 0.164 370.353 2.467 0.169 59.982

Goat 2013/2/22 123 0.199 0.549 0.252 214.757 2.166 0.298 44.036

Goat 2014/6/12 44 0.082 0.161 0.757 498.789 23.330 1.913 46.020

Goat 2014/6/14 117 0.161 0.530 0.309 87.525 4.578 0.541 16.659
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Discussion 
  Given the accumulation of studies that indicate the prevalence of Lévy walks in 
organism movements, the above results, which clearly suggest otherwise, might 

seem somewhat surprising. However, these results allow straightforward biological 
and ecological interpretations. The robust and widespread support given to the 
composite Brownian walks confirms a simple fact: moving organisms have several 

distinctive modes of spatial behavior. Livestock animals rest, graze, walk and run 
during daily herding [36, 40, 45]. These animals sometimes intensively exploit 
nearby resources while they extensively search for distant pasture and water at 

other times [34]. The composite Brownian models and their estimated parameters 
might contain useful quantitative information on these different modes of behavior 
observed at multiple spatial scales. These findings are also relevant to formal 

modeling of animal movements and foraging [10-12, 46]. 
  In a much broader context, there are two ways of interpreting this apparent 
deviation from the assumed ubiquity of Lévy walks. Firstly, one can argue that the 

Lévy-type scale-free mobility pattern is not ubiquitous at all because many of the 
previous works that gave support to this pattern did so in a methodologically flawed 
manner. In fact, several high-profile studies on ‘Lévy foraging hypotheses’ lost 

ground in re-examination of their findings based on statistically enhanced 
approaches [5, 14, 15, 23]. These approaches, including model estimation based on 
MLE and model selection in a sufficiently large set of candidate models, also gave 

the present study a solid methodological foundation. 
  Moreover, we also showed that empirical support to Lévy walks could critically 
depend on contingent aspects of a model selection criterion. In the case of AIC, the 

truncated Lévy walk occasionally beat other competing models mostly because of 
the fewer number of parameters it has rather than the inherent accuracy of data 
description. Although AIC is one of the established statistics in model selection and 

has also been widely employed in the preceding studies on organism movements, it 
is not necessarily an obvious choice. Other selection criteria such as those based on 
the likelihood ratio should also be tried in selecting best-fit models [44, 47]. 

  On the other hand, one can also claim that there is something special about 
domesticated animals, which might contribute to any systematic discrepancy in 
movement patterns between livestock and other ‘wild’ organisms. For example, 
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livestock animals, even if extensively herded under open access or communal land 
tenure regimes, typically have some limited grazing ranges (‘herding radius’) set by 
their owners for management or other social purposes (e.g., conflict avoidance) [36, 

40, 48, 49]. These ranges, normally encircling main homesteads and water points, 
can effectively constrain the inherent mobility of the animals concerned. Thus, 
possibly except in extreme circumstances such as severe drought, these animals 

might be unlikely to show extraordinarily long jumps in their movement 
trajectories, which characterize scale free mobility patterns such as the Lévy walk. 
The increasing trend toward sedentarization in the contemporary pastoralism [50] 

seems to make these considerations even more important. 
  The two interpretations discussed so far are not mutually exclusive and both are 
worth exploring by further analysis. Sound methodologies combined with broad 

consideration of causal mechanisms can lead to balanced assessment of movement 
patterns of living organisms. 
 

Conclusions 
  We carried out a comprehensive investigation into a large dataset on livestock 
mobility and obtained highly robust, clear results concerning stochastic 

representation of livestock movements. However, these are only a part of what can 
be derived from our dataset. First of all, the analysis can be made more rigorous 
with additional application of statistical procedures. For example, before the model 

selection, we can screen candidate random walk models by means of some 
goodness-of-fit test such as the Kolmogorov-Smirnov test [44]. We can also extend 
the analysis to other aspects of livestock mobility, including diffusion statistics, 

velocity statistics, directional persistency and bias, and distributions of flight times 
and waiting times. These will help us obtain more complete stochastic descriptions 
of livestock movements, which are then amenable to the whole set of mathematical 

tools provided by random walk theory [2, 51, 52]. 
  Beyond the framework of random movements and foraging, the inquiry can be 
directed more deeply into livestock spatio-temporal behavior and its driving 

mechanism. The first task along this direction will be to examine possible effects of 
species and seasonal differences on various aspects of livestock mobility. We will 
also greatly benefit from the use of other data such as vegetation distributions 
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derived from satellite imagery [53-56] since these data enable us to place livestock 
movement trajectories in a proper spatial context. We will continue to work on the 
livestock mobility dataset from these diverse angles. 
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