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Abstract

In computational proteomics, identi�cation of peptides with an unlimited number of

post-translational modi�cation (PTM) types is a challenging task. The computational

cost increases exponentially with respect to the number of modi�able amino acids and

linearly with respect to the number of potential PTM types at each amino acid. The

problem becomes intractable very quickly if we want to enumerate all possible modi-

�cation patterns. Existing tools (e.g., MS-Alignment, ProteinProspector, and MODa)

avoid enumerating modi�cation patterns in database search by using an alignment-

based approach to localize and characterize modi�ed amino acids. This approach avoids

enumerating all possible modi�cation patterns in a database search. However, due to

the large search space and PTM localization issue, the sensitivity of these tools is low.

This paper proposes a novel method named PIPI to achieve PTM-invariant peptide

identi�cation. PIPI �rst codes peptide sequences into Boolean vectors and converts
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experimental spectra into real-valued vectors. Then, it �nds the top 10 peptide-coded

vectors for each spectrum-coded vector. After that, PIPI uses a dynamic program-

ming algorithm to localize and characterize modi�ed amino acids. Simulations and

real data experiments have shown that PIPI outperforms existing tools by identifying

more peptide-spectrum matches (PSMs) and reporting fewer false positives. It also

runs much faster than existing tools when the database is large.

1 Introduction

Shotgun proteomics has achieved great success after more than 20 years' development. Based

on the database search idea, researchers have proposed many tools to identify peptides.

According to the approaches to dealing with post-translational modi�cation (PTM), we can

classify these tools into two categories: restricted tools1�15 and unrestricted tools5,16�35.

Restricted tools generate theoretical spectra by in silico fragmenting peptide sequences.

They infer an experimental spectrum's corresponding peptide sequence by �nding the most

similar theoretical spectrum. These tools need to generate di�erent theoretical spectra cor-

responding to di�erent modi�cation patterns. Given a peptide sequence, the number of

theoretical spectra follows

k∑
i=0

nk

 k

i

 = (n+ 1)k, (1)

where k is the number of modi�able amino acids and n is the average number of potential

PTM types at each modi�able amino acid. The number of theoretical spectra already be-

comes very large, even when we only consider a few PTM types. Some tools9�15 use tags

to accelerate searching speed. A tag is a sequence fragment inferred from a spectrum, and

based on the number of amino acids, they can have various lengths. For simplicity, from

now on, we use �spectrum� to refer to �experimental spectrum� if there is no possible con-

fusion. Given a spectrum, tag-based tools infer the tag compositions and locate peptide

sequences containing those tags, and they use these peptide sequences as a custom database
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to search for the result. Even with optimized algorithms, the problem becomes intractable

very quickly if we want to enumerate all modi�cation patterns. Thus, these tools only allow

a small number of modi�ed amino acids and PTM types during a database search.

Unrestricted tools identify spectra with unlimited PTM types by inferring the locations

of modi�ed amino acids during a database search. Spider18 and OpenSea20 obtain parts of a

spectrum's sequence by de novo sequencing36�38. Then, they infer the modi�ed amino acids

by comparing the sequence parts with the corresponding peptide sequence from a database.

MS-Alignment17 compares an experimental spectrum with PTM-free theoretical spectra.

It uses a dynamic programming algorithm with �ve jumping rules to �nd the overlapping

peaks, and treats gaps between the overlapping parts as modi�ed amino acids. MS-Alignment

only supports up to two modi�able amino acids in each spectrum. MODa31 infers various

lengths of sequence fragments from a spectrum, and aligns tags against peptide sequences.

It also uses a dynamic programming algorithm to �nd the best alignment result. After the

alignment, it calculates a score for each sequence and selects the one with the highest score.

All these tools' scoring functions rely on the modi�cation pattern, which means that

the accuracy of PTM localization strongly in�uences the performance of the identi�cation.

However, PTM localization is not an easy task. Although various methods have been pro-

posed39�41, it is still di�cult to determine the exact locations42�44.

In this paper, we propose a PTM-invariant peptide identi�cation method named PIPI,

which belongs to the category of unrestricted tools. PIPI �rst builds a theoretical database

of peptide sequences by converting each sequence into a coded Boolean vector. Each element

in the vector indicates whether the corresponding three-amino-acid tag exists in the original

sequence. When analyzing a spectrum, PIPI only extracts peaks whose relative distances

are invariant to PTM. Then, it converts peaks into a vector and searches for the top 10

candidates. PIPI doesn't need to infer the exact locations of modi�ed amino acids during

the database search. Thus, it bypasses the PTM localization problem in database search

and leads to a better performance in both peptide identi�cation and PTM characterization.
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Figure 1: The work-�ow of PIPI.

The rest of the paper is organized as follows: Section 2 describes coding, database search,

PTM localization and characterization, �nal score calculation, and q-value estimation in

detail. Section 3 presents three sets of experiments to demonstrate the performance of PIPI.

Section 4 discusses the relationship between PIPI and existing tools. It also raises the issue

of low accuracy in PTM localization and characterization.

2 Methodology

Figure 1 shows the work-�ow of PIPI. There are four major steps:

1. Peptide sequence coding and spectrum coding.

2. Database search.

3. PTM location and characterization.

4. Final score calculation and q-value estimation.

We will describe each step in detail.
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Figure 2: An illustration of peptide coding and database building. Top: PIPI extracts tags
from a peptide sequence with an overlapped sliding window. It codes di�erent tags into a
Boolean vector. Each peptide sequence in the database becomes a coded vector. Bottom:

PIPI codes all peptide sequences into Boolean vectors one by one.

2.1 Peptide Sequence Coding and Spectrum Coding

2.1.1 Peptide sequence coding

PIPI in silico digests proteins to peptides and codes peptide sequences into Boolean vectors,

called peptide-coded vectors. Given a peptide sequence, PIPI extracts three-length tags from

the N-terminal to the C-terminal with an overlapped sliding window (Figure 2). Because

there is no intensity information in a peptide sequence, values in the peptide-coded vector

are either 0 or 1. Elements corresponding to extracted tags have 1 values and the others

have 0 values. PIPI codes each digested peptide sequence into a peptide-coded vector, and

after coding, it indexes all vectors based on their corresponding peptides' masses.
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2.1.2 Spectrum coding

Given a spectrum, PIPI �rst removes noisy peaks and normalizes peak intensities. It uses the

peak intensity with the highest frequency as a threshold45, and eliminates all peaks whose

intensities are smaller than the threshold. Then, PIPI replaces each peak's intensity with

its square root and normalizes the peak intensities, as in SEQUEST2, by dividing the whole

m/z range into 10 regions. In each region, it normalizes peak intensities so that the highest

one equals 1.

Some ions may not be detected in a spectrum, due to the limited fragmentation e�ciency

and instrument's detection sensitivity. PIPI checks each peak to see if its complementary

peak exists in a spectrum. If not, it adds the complementary peak with the same intensity

to the corresponding location. Two peaks are complementary to each other if the sum of

their m/z values equals Sm+2×pm, where Sm is the precursor mass of the spectrum and pm

is the mass of a proton. Please note that PIPI only considers single charged fragmentations.

PIPI also adds two one-intensity peaks with the m/z values corresponding to the N-terminal

and the C-terminal, respectively.

After adding peaks, PIPI expresses a spectrum as a matrix SLs×2, where Ls is the total

number of peaks. The elements si,1 and si,2 are the m/z value and the intensity of the i-th

peak, respectively. Two peaks can form a peak pair if they satisfy the following relationship

|sj,1 − si,1 −∆k| ≤ 2τ , where k ∈ [1, 22] is an index of the 22 amino acids (considering �U�

and �O�), ∆k is the mass of one of the 22 amino acids, and τ is the MS/MS mass tolerance.

A peak pair consisting of the i-th and the j-th peak is denoted as P (i, j). Two peak pairs

P (i, j) and P (i′, j′) can be linked if j = i′, and a number of pairs can be linked sequentially

to form a tag. For simplicity, we denote an Lt length tag as P1P2 · · ·PLt . In practice, most

spectra can produce many tags due to the large number of noisy peaks. If there were more

than 200 tags in a spectrum, PIPI would divide the whole m/z range into 10 regions and

keep the top 20 tags in each region.

PIPI codes tags with the same length into a vector v = [v1, v2, · · · , vi, · · · , vLv ], where
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Lv is the length of the vector and

vi =
∑
i∈I

si,2, (2)

I = {i|i ∈ P1P2 · · ·PLt}. (3)

Here i ∈ P1P2 · · ·PLt means that i belongs to one of the indexes of the peaks forming

P1P2 · · ·PLt . In this paper, we set Lt = 3, and will demonstrate that this is a good choice

later on. We call the vector a spectrum-coded vector. Since the tags extracted from a

spectrum can be from b-ions or y-ions (under a collision-induced dissociation (CID) setting),

PIPI cannot determine the direction of a tag. Thus, PIPI treats a tag and its reversed version

as the same. PIPI also treats amino acids �I� and �J� equally because they have an identical

mass. There are in total 22 amino acids, including two additional ones, �U� and �O�. With

the setting above, we can obtain the length of the vector:

Lv =
213 − 21− 21× 20

2
+ 21 + 21× 20 = 4851. (4)

The order of the tags doesn't matter as long as it is consistent in the whole work-�ow. Figure

3 illustrates how PIPI codes a spectrum.

2.2 Similarity Measure and Database Search

2.2.1 Similarity measure

A spectrum-coded vector contains local information of a spectrum. A peptide-coded vector

contains the sequence information of a peptide. PIPI uses the cross-correlation coe�cient as

the similarity measure:

S(v1,v2) =
(v1)

Tv2

||v1||||v2||
, (5)

where v1 is a spectrum-coded vector and v2 is a peptide-coded vector. There are two parts

in the cross-correlation coe�cient: a dot product in the numerator and a product of two l-2
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Figure 3: An illustration of spectrum coding. PIPI extracts three-length tags from a spec-
trum and codes these tags into a vector. Its indexes indicate di�erent tags, and its values
are the intensity summations of the peaks forming the corresponding tags.

norms in the denominator. Given two vectors, the dot product measures the overlapping

level. The denominator normalizes the dot product, and the cross-correlation coe�cient

measures the similarity between a spectrum and a peptide sequence.

In order to choose the right tag length, we studied the discriminant power of di�er-

ent lengths empirically. We used the whole proteome of Homo sapiens (human) from

UniProtKB/Swiss-Prot (20,205 proteins, 2015-11 release) using in silico digested these pro-

teins with trypsin, and kept peptides with masses from 500 Da to 5,000 Da, allowing no

missed-cleavage. There were in total 638,480 nonredundant peptides. We let PIPI code all

these peptides and calculate the cross-correlation coe�cients using pairs of peptide-coded

vectors whose peptides' masses' di�erences were from −250 Da to 250 Da. It used di�erent

tag lengths, from 2 to 4 amino acids, for coding. Table 1 shows the relative frequencies of the

cross-correlation coe�cients from 0 to 0.5. Please note that the cross-correlation coe�cient

of two identical vectors equals 1. Most of the cross-correlation coe�cients under the �tag 3�

and �tag 4� settings are smaller than 0.1, which means that PIPI can separate coded vectors
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Table 1: Relative frequencies of the cross-correlation coe�cients from 0 to 0.5.

hhhhhhhhhhhhhhhhhhhhhhhhhCross-Correlation Coe�cients

Tag Lengths
Tag 2 Tag 3 Tag 4

0∼0.1 0.6496 0.9735 0.9982
0.1∼0.2 0.2168 0.0206 0.0013
0.2∼0.3 0.1016 0.0050 0.0000
0.3∼0.4 0.0233 0.0000 0.0000
0.4∼0.5 0.0067 0.0000 0.0000

from di�erent peptide sequences well. Since a longer tag requires a higher spectrum quality,

which is not always satis�ed, we decided to use tags of length of three amino acids.

We also used a real data set to investigate the discriminant power of coded vectors cou-

pled with the cross-correlation coe�cient measure. We chose 18,757 MS/MS spectra from a

data set published by Chick et al. 34 . There are 14,843 PTM-free spectra and 3,914 PTM-

containing spectra, and all of them were identi�ed by Comet7 with q-values ≤ 0.01. Comet

is an open source implementation of SEQUEST's algorithm. We set 5 variable modi�ca-

tions (i.e. Oxidation, Phosphorylation, Acetylation, Methylation, and Deamidated) in using

Comet. We let PIPI code them and calculate the cross-correlation coe�cients using pairs

of coded vectors. Without considering PTM di�erence, if a pair of two di�erent vectors was

from the same peptide, it was called a homologous pair, and if a pair of two di�erent vectors

was from di�erent peptides, it was called a heterologous pair. The allowed peptide mass dif-

ference was also from -250 Da to 250 Da. Because we allowed a wide mass di�erence and did

not consider PTM di�erence in determining the homologous pairs and heterologous pairs,

the comparison was PTM-invariant. Figure 4 shows two histograms corresponding to cross-

correlation coe�cients of the homologous pairs and heterologous pairs, respectively. Each

histogram was normalized by its total count. We can see that the coded vectors coupled with

the cross-correlation coe�cient measure separates the heterologous pairs from homologous

pairs well.
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Figure 4: Two histograms of the cross-correlation coe�cients from pair-wisely comparing
coded vectors. Homologous pairs and heterologous pairs are labeled with di�erent colors.

2.2.2 Database search

After coding all spectra and peptide sequences, PIPI �nds the 10 most similar peptide-

coded vectors for each spectrum-coded vector. Given a spectrum-coded vector, PIPI �rst

�nds all possible peptide-coded vectors whose corresponding peptides' masses are within the

range [Sm − ν, Sm + ν], where Sm is the spectrum's precursor mass and ν is a pre-de�ned

value. Then, it uses Equation (5) to measure the similarity between a spectrum-coded vector

and a peptide-coded vector. For each spectrum-coded vector, PIPI only keeps the top 10

peptide-coded vectors with the highest similarity scores.
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2.3 PTM Location and Characterization

Here we describe how PIPI locates and characterizes modi�ed amino acids given a spectrum

and a peptide sequence.

Researchers have used dynamic programming based approaches to infer the locations

and mass shifts of modi�ed amino acids. MS-Alignment aligns an experimental spectrum's

peaks against those from a theoretical spectrum, while MODa aligns tags of di�erent lengths

against a peptide sequence. Since PIPI's coding procedure has already extracted three-length

tags from a spectrum, it aligns tags against a peptide sequence using dynamic programming.

Before the alignment, PIPI compares each tag's m/z value in the experimental spectrum

with that in the PTM-free theoretical spectrum. It only keeps those tags whose experimental

m/z values are within the range [Tmz − ν, Tmz + ν], where Tmz is the m/z value in the PTM-

free theoretical spectrum. We call this process tag cleaning (Figure 5). After tag cleaning,

PIPI adds the N-terminal and the C-terminal as two special tags.

We denote a tag as ti, where i is an index. We de�ne t
(1)
i as the location of the �rst

amino acid in the peptide sequence and I(ti) as the summation of the peak intensities of the

tag. The dynamic programming matrix is D|{ti}|×(n+2), where |{ti}| is the number of tags

and n equals the length of the peptide sequence. During the dynamic programming, there

are two kinds of jumps: jumps within a tag and jumps between two tags. Because tags have

sequence and peak location information, not all jumps between tags are meaningful. Thus,

we de�ne the following jumping rules (Figure 6):

1. Jumps within a tag are allowed (the green arrows in Figure 6).

2. Jumps from the end of a tag to the start of another tag are allowed (the black arrows

in Figure 6).

3. Jumps from the middle of a tag to the start of another tag are allowed only if the end

of the former tag overlaps with the start of the latter tag (the blue arrow in Figure 6).

Overlapping means that they have the same substring and the same peak locations.
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Figure 5: An illustration of tag cleaning. PIPI compares tags against a peptide sequence
to obtain the relative shifts from the corresponding PTM-free location. The diagonal green
or red bars indicate tags. PIPI only keeps those tags whose relative shifts are within a
pre-de�ned range (green bars in the �gure).

4. Jumps from the end of a tag to the end of another tag are not allowed (the red arrow

in Figure 6).

Jumps between tags can be classi�ed into two categories:

1. There is no modi�ed amino acid between two tags, which is called a non-PTM jump

(circled 1 in Figure 6).

2. There are modi�ed amino acids between two tags, which is called a PTM jump (circled

2 in Figure 6).
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Figure 6: An illustration of tag alignment. Tags are aligned against a peptide sequence. The
�n� and �c� indicate two special tags: N-terminal and C-terminal. There is a modi�cation on
�M� in the peptide sequence. Jumps between or within tags are labeled with di�erent colors
corresponding to di�erent jumping types. Numbers on the jumping arrows indicate whether
the jump is a non-PTM jump (circled 1) or a PTM jump (circled 2).

Thus, the scoring rules are as follows:

di,j =


d
i,t

(1)
i −1

+ I(ti) jump within a tag

d
i′,t

(1)
i

+ I(ti) non-PTM jump from i′ to i

d
i′,t

(1)
i

+ I(ti)− p PTM jump from i′ to i

, (6)

where di,j is an element of D|{ti}|×(n+2) and p is a penalty for a PTM jump.
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2.4 Final Scoring and q-value Estimation

For peptide identi�cation, restricted tools (e.g., Mascot, SEQUEST, MS-GF+, and Comet)

have a higher sensitivity than unrestricted tools (e.g., MS-Alignment, ProteinProspector,

and MODa) if modi�cation patterns are included in the theoretical spectra. Besides, the

original spectrum contains more information than the coded vector. As PIPI has already

known each spectrum-peptide pair's modi�cation pattern after the PTM localization and

characterization step (Section 2.3), it calculates scores using the original spectrum.

After the database search step (Section 2.2), each spectrum has 10 peptide sequences as

candidates. PIPI calculates a score for each spectrum-peptide pair using the XCorr2:

XCorr(t, e) = tTe− 1

150

75∑
δ=−75,δ ̸=0

tTeδ, (7)

where t is a vector of the digitized theoretical spectrum, e is a vector of the digitized

experimental spectrum, and δ is an m/z shift. XCorr is a score function used by popular

tools such as SEQUEST and Comet. For each spectrum, the top-scored peptide is kept

as the �nal result. Finally, we use Percolator46 to calculate the PSMs' q-values. In most

cases46�49, people convert FDR to q-value that is monotonically decreasing with respect to

the score. Without speci�c description, we always convert FDR to q-value and use it as

cut-o�.

3 Experimental Results

We used three sets of experiments to demonstrate the correctness and performance of PIPI.

The �rst set contained 2 simulation experiments using 12,064 high-quality MS/MS spectra

and two custom databases. The second used 5 public data sets from standard protein mixture

samples50. The third used 24 public data sets from Chick et al. 34 . Please refer to Klimek

et al. 50 and Chick et al. 34 for details of the sample preparation and data acquisition.
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In these three sets of experiments, we used MS-Alignment (version: 20120109), Protein-

Prospector (version: 5.16.0), MODa (version: 1.51), and PIPI (version: 20160418) to do the

unrestricted search. MS-Alignment needs the maximum number of modi�able amino acids

in each spectrum to be speci�ed, and the default value is 1. We set it to 2 in the second

simulation experiment and 1 in the other experiments. ProteinProspector works in either

a restricted or unrestricted manner, and we used it in the unrestricted manner by allowing

mass modi�cations on all amino acids. We set the maximum number of modi�able amino

acids to 2 (the default value) in all experiments. MODa and PIPI don't limit the number of

modi�able amino acids in each spectrum. All of these four tools' precursor mass tolerance

was 10 ppm, and MS/MS mass tolerance was 0.02 Da. We only considered MS/MS spectra

whose precursor masses were from 600 Da to 5000 Da. This is a common range, recom-

mended by many tools1,2,4,6,7. The allowed modi�cation delta mass was from -250 Da to 250

Da as in Chick et al. 34 . We allowed all amino acids, the N-terminal, and the C-terminal

to be modi�ed. We allowed no missed-cleavage. Because ProteinProspector doesn't provide

q-values for its results, we used an in-house program to estimate the q-values with the target-

decoy strategy51. MS-Alignment and MODa do provide q-values for their results, and we

used Percolator46 to estimate q-values for PIPI's results. All four tools' q-value cut-o� was

0.01.

3.1 Simulation Experiments

We picked 12,064 PTM-free MS/MS spectra from the data sets in Chick et al. 34 . All of them

have E-values ≤ 0.01, as reported by Comet. The reason for using the E-value rather than

q-value is that the E-value is more conservative and we would like to get highly con�dent

results. These spectra correspond to 6,753 non-redundant peptides.

We randomly selected half of these peptides and randomly replaced one amino acid in

each selected peptide according to the following rules:

1. �K� and �R� cannot be replaced.
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2. �P� following �K� or �R� cannot be replaced.

3. Replaced amino acid cannot be �K� or �R�.

4. Replaced amino acid cannot be �P� if there is a �K� or �R� before it.

5. �I� cannot be replaced with �L� and vice versa.

With the modi�ed peptides as a database, we had 6,111 spectra containing no modi�ed

amino acid and 5,953 spectra containing one modi�ed amino acid. Let's call this simulation

data set �Simulation 1�.

We randomly selected half of the original peptides again and replaced two amino acids in

each selected peptide at random. Then, we had another set of data containing 6,113 spectra

without any modi�ed amino acid and 5,951 spectra with two modi�ed amino acids. Let's call

this simulation data set �Simulation 2�. The spectra �les and databases can be downloaded

from http://bioinformatics.ust.hk/pipi.html.

We added 116 common contaminant proteins from the common repository of adventitious

proteins (cRAP)52 to the two databases, respectively. We also generated a decoy database

by reversing the peptide sequences without changing the C-terminal.

Since we knew the ground truth of the two data sets, we could label the true positives and

false positives for the results. Because ProteinProspector often reports multiple modi�cation

patterns for a PSM, we did not consider the di�erence in the modi�cation patterns in the

PSM comparison. Figure 7 shows the stacked bars of the results. For each bar, the yellow

part corresponds to false positives and the blue part corresponds to true positives. The value

in each blue part is the number of true positives, and the value at the top of each stacked

bar is the total number of positives. PIPI identi�ed more true PSMs than MS-Alignment,

ProteinProspector, and MODa. We also calculated the false discovery proportion (FDP) for

these results:

FDP =
F

R
, (8)
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Table 2: FDP of two simulation experiments. PIPI has the lowest FDP values.

XXXXXXXXXXXXTools
Simulations

Simulation 1 Simulation 2

MS-Alignment 0.03 0.05
ProteinProspector 0.07 0.23

MODa 0.05 0.07
PIPI 0.02 0.03
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Figure 7: Bar plots showing the number of positive PSMs identi�ed by MS-Alignment,
ProteinProspector, MODa, and PIPI, respectively. �MSA� stands for MS-Alignment and
�PP� stands for ProteinProspector. The �rst plot shows the results of �Simulation 1�, and
the second plot shows the results of �Simulation 2�. The blue part corresponds to true
positives, and the yellow part corresponds to false positives. The value in each blue part is
the number of true positives, and the value at the top of each stacked bar is the total number
of corresponding positives.

where F is the number of false positives and R is the number of positives. Table 2 shows

the FDP of the results. PIPI outperformed the other three tools by providing more positive

identi�cation results with lower FDP values. The detailed results of these two experiments

are available at http://bioinformatics.ust.hk/pipi.html.

3.2 Experiments with Standard Protein Mixture Samples

We used �ve public data sets from the standard protein mixture samples50 to demonstrate

the performance of PIPI with real data. We used the database published along with the

data sets, in which there are 18 standard proteins and 1,818 contaminant proteins.
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Since the samples only contained 18 puri�ed proteins, peptides belonging to these proteins

had a highly possibility of being true positives, and peptides belonging to the contaminant

proteins had a highly possibility of being false positives. We have plotted stacked bars

showing the number of positive PSMs, as shown in Figure 8. For each bar, the yellow

part corresponds to false positives and the blue part corresponds to true positives. The

value in each blue part is the number of true positives and the value at the top of each

stacked bar is the total number of positives. Since the decision on true positives was not

accurate, we did not calculate the FDP for these results. These experiments showed that

PIPI outperforms the other three tools in real data applications. The detailed results are

available at http://bioinformatics.ust.hk/pipi.html.

3.3 Experiments with 24 Real Data Sets

We used 24 data sets from Chick et al. 34 . There are in total 1,309,561 MS/MS spectra

whose precursor charges are from 1 to 7 and precursor masses are from 600 Da to 5000 Da.

Since the samples were from HEK293 cells, we used the whole proteome of Homo sapiens

from UniProtKB/Swiss-Prot (20,205 proteins, 2015-11 release) as the database for MODa

and PIPI. MS-Alignment and ProteinProspector would need years to search these data sets

against the whole human proteome, so we generated a small database based on the procedure

proposed by MS-Alignment17. We �rst searched these data sets against the whole human

proteome using Inspect11, which is a restricted tool. Then, we picked all the proteins that had

at least 2 peptides and 10 spectra that were identi�ed. We used these proteins to generate

a small database, which, without considering decoy proteins, contains 4125 proteins. This

approach was recommended by the authors of MS-Alignment and ProteinProspector.

Since we did not have the ground truth for the data sets, we only compared the number

of positive PSMs. Because Chick et al. 34 only reported nonredundant peptides instead of

PSMs, we did not compare our results with theirs. Figure 9 shows that PIPI identi�ed more

PSMs than MS-Alignment, ProteinProspector, and MODa in all data sets. This result is
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Figure 8: A bar plot showing the number of positive PSMs from identifying standard protein
mixture samples. �MSA� stands for MS-Alignment and �PP� stands for ProteinProspector.
The blue part corresponds to true positives, and the yellow part corresponds to false positives.
The value in the blue part is the number of true positives, and the value at the top of the
bar is the total number of positives.

consistent with that from the last section. The detailed results can be downloaded from

http://bioinformatics.ust.hk/pipi.html.

3.4 Running time

We ran MS-Alignment, MODa, and PIPI on our computers with i7-6700 CPU (3.40 GHz)

and 32 GB RAM. We ran ProteinProspector on the web server provided by its developers53.

As discussed in Section 3.3, we let MS-Alignment and ProteinProspector search against a

small database, while MODa and PIPI searched against the whole human proteome. In

19

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 27, 2016. ; https://doi.org/10.1101/055806doi: bioRxiv preprint 

http://bioinformatics.ust.hk/pipi.html
https://doi.org/10.1101/055806


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.5

1

1.5

2

2.5

3
N

um
be

r 
of

 p
os

iti
ve

 P
S

M
s

×104 Human Sample

MS-Alignment
ProteinProspector
MODa
PIPI

Figure 9: A bar plot shows the number of positive PSMs identi�ed from 24 data sets. MS-
Alignment, ProteinProspector, MODa, and PIPI were used.

Table 3: The average running time of analyzing one data set in the three sets of experiments,
respectively. The unit is hours. The running time of MS-Alignment and ProteinProspector
is marked with an �∗� for analyzing 24 real data sets. This indicates that they used a custom
database that is much smaller than the database used in MODa and PIPI.

XXXXXXXXXXXXExperiments
Tools

MS-Alignment ProteinProspector MODa PIPI

Simulation Experiments 15.05 0.77 0.07 0.25
Standard Protein Mixture Experiments 0.31 0.22 0.02 0.03

24 Real Data Experiments 56.87∗ 13.87∗ 15.40 3.17

the experiments discussed in other sections, MS-Alignment, ProteinProspector, MODa, and

PIPI used the same database.

Table 3 shows the running time of analyzing one data set by MS-Alignment, Protein-

Prospector, MODa, and PIPI, respectively. The databases in the simulation experiments

and standard protein mixture experiments were relatively small, while the databases in the

24 real data experiments were large. Table 3 indicates that PIPI is faster than all other tools

in searching a large database.
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4 Discussion

We can classify peptide identi�cation methods into two main categories: de novo sequenc-

ing36�38 and database search1�3,6,7. De novo sequencing infers a spectrum's sequence without

using any database. It checks pairs of peaks, and labels them if their distances are within

the tolerance ranges of the amino acids' masses. Then, it links the labeled peak pairs into

paths and scores them. Finally, it �nds a high-scored path and interprets the path into a

peptide sequence. Clearly, de novo sequencing requires a high-quality spectrum. Missing

peaks and unspeci�ed PTM types are disasters for de novo sequencing. Database search

infers a spectrum's sequence by �nding the most similar candidate from a database. After

de�ning a scoring scheme, it compares each experimental spectrum with all possible theoret-

ical spectra. The top-scored candidate is the �nal result. Clearly, this approach is tolerant

to missing peaks and noisy peaks, but unspeci�ed PTM types still cause trouble.

PIPI extracts local sequence information by inferring substring (a.k.a. tags) from a

spectrum. The process of extracting tags is similar to de novo sequencing. But the key

di�erence is that PIPI doesn't try to infer the whole sequence. Instead, PIPI codes all tags

into a feature vector and uses the feature vector for identi�cation purposes. This procedure

is similar to database search. The subtle di�erence is that database search compares an

experimental spectrum with theoretical spectra, while PIPI compares a vector coded from a

spectrum with vectors coded from peptide sequences. The former is sensitive to PTM, while

the latter is invariant to PTM.

There are tools (e.g., MS-Alignment and MODa) that try to identify peptides without

specifying PTM types beforehand. The major di�erence between these tools and PIPI is that

the former perform alignment during the database search, while PIPI performs alignment

after the database search. During the database search, MS-Alignment aligns an experimental

spectrum against every possible theoretical spectrum, and MODa aligns a spectrum's tags

against every possible peptide sequence. These two tools use their alignment results in their

scoring procedures. In contrast, PIPI represents experimental spectra and peptide sequences
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Table 4: A table showing the numbers of PSMs having correct modi�cation patterns, the
total numbers of correctly identi�ed PTM-containing PSMs, and their ratios.

XXXXXXXXXXXXTools
Simulations Simulation 1 Simulation 2

True Total Ratio True Total Ratio
MS-Alignment 1540 2105 0.73 34 992 0.03

MODa 2172 3327 0.65 423 1717 0.25
PIPI 2816 4178 0.67 753 2596 0.29

with coded vectors, and uses them to �nd each spectrum's top 10 peptide sequences. After

narrowing down the candidates, PIPI aligns a spectrum's tags against each peptide sequence,

and calculates a �nal score for q-value estimation.

There are also di�erences in the dynamic programming algorithms among these three

tools. MS-Alignment aligns an experimental spectrum against a theoretical spectrum, while

PIPI aligns tags against a peptide sequence. Because there are many peaks in an experi-

mental spectrum, MS-Alignment is more than 10 times slower than PIPI, as presented in

Section 3.4. MODa aligns variant lengths of tags against a peptide sequence, while PIPI

aligns three-length tags against a peptide sequence.

As we mentioned in Section 1, the accuracy of PTM localization is low. We used two

simulation experiments, as discussed in Section 3.1, to demonstrate this issue. Table 4 shows

the numbers of correct modi�cation patterns, the numbers of correct PSMs containing PTM,

and their ratios. Because ProteinProspector often outputs multiple modi�cation patterns

for a PSM, we do not list its results in this table. Among the PSMs containing correct

modi�cation patterns, a considerable percentage have incorrectly characterized modi�cation

patterns. PTM localization is still an open question42�44. The discussion of this question is

beyond the scope of this paper.
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