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 1 

ABSTRACT 2 

Rapid and cost-effective genotyping of large mapping populations can be achieved by sequencing a 3 

reduced representation of the genome of every individual in a given population and using that 4 

information to generate genetic markers. A customized genotyping-by-sequencing (GBS) pipeline was 5 

developed to genotype a rice F2 population from a cross of Oryza sativa ssp. japonica cv. Nipponbare 6 

and the African wild rice species Oryza longistaminata. While most GBS pipelines aim to analyze mainly 7 

homozygous populations we attempted to genotype a highly heterozygous F2 population. We show how 8 

species- and population-specific improvements of established protocols can drastically increase sample 9 

throughput and genotype quality. Using as few as 50,000 reads for some individuals (134,000 reads on 10 

average) we were able to generate up to 8,154 informative SNP markers in 1,081 F2 individuals. 11 

Additionally, the effects of enzyme choice, read coverage and data post-processing are evaluated. Using 12 

GBS-derived markers we were able to assemble a genetic map of 1,536 cM. To demonstrate the 13 

usefulness of our GBS pipeline we determined QTL for the number of tillers. We were able to map four 14 

QTLs to chromosomes 1, 3, 4 and 8 and confirm their effects using introgression lines. We provide an 15 

example of how to successfully use GBS with heterozygous F2 populations. By using the comparatively 16 

low-cost MiSeq platform we show that the GBS method is flexible and cost-effective even for smaller 17 

laboratories. 18 

 19 

INTRODUCTION 20 

 21 

The advances in sequencing technology have drastically improved our ability to determine and 22 

simultaneously genotype genetic markers (Davey et al. 2011). The enormous number of short (50 to 200 23 

bp) reads produced by sequencing platforms has drastically reduced the costs and time associated with 24 

DNA sequencing. Those advances may be utilized in whole-genome resequencing approaches to 25 

generate a collection of reads from untargeted sites in the genome (Takagi et al. 2013; Duitama et al. 26 

2015). Other approaches aim at reducing the complexity of the genome by sequencing only a targeted 27 

fraction of the genome. Those genotyping-by-sequencing (GBS) approaches were successful in 28 

generating tens of thousands of markers even in plant species with large and repetitive genomes, like 29 
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maize, wheat or barley (Poland et al. 2012; Romay et al. 2013) or in more heterozygous animal species 1 

like cattle or pig (Gualdrón Duarte et al. 2013; Donato et al. 2013). 2 

It was shown that GBS can be used as a fast and cost-effective tool in population genetics, QTL 3 

(quantitative trait locus) discovery, high-resolution mapping and genomic selection (Spindel et al. 2013; 4 

Huang et al. 2014; Rabbi et al. 2014; Elmer et al. 2015; Lin et al. 2015; Burrell et al. 2015; Begum et al. 5 

2015). Since GBS data typically generates relatively dense marker data a popular analysis choice is a 6 

genome-wide association study (GWAS) (He et al. 2014; Begum et al. 2015; Sonah et al. 2015). This kind 7 

of study employs a panel of cultivars or varieties. In addition, there are some examples of QTL analyses 8 

using bi-parental populations combined with GBS (Spindel et al. 2013; Honsdorf et al. 2014). In those 9 

studies recombinant inbreed lines that already underwent several rounds of selfing were used to detect 10 

QTLs. There are also examples of the use of GBS to genotype less fixed populations, like F2s (Pootakham 11 

et al. 2015; Rowan et al. 2015). In many cases desirable traits are found only in wild relatives or are 12 

spread across diverse elite cultivars. The application of GBS to genotype F2s or breeding materials will 13 

greatly facilitate gene discovery and marker-assisted selection in breeding projects. 14 

While GBS certainly has huge benefits for scientists and the breeding community, there are some 15 

inherent drawbacks to which no universal solution has been found yet (Poland and Rife 2012; He et al. 16 

2014). The data produced by GBS and similar strategies has many missing datapoints compared to 17 

datasets from classical, “manually” produced genetic marker data or chip-based systems. Furthermore, 18 

there is a considerable error-rate associated with GBS-derived genotypes. Both of these issues can be 19 

dealt with at the cost of intensive post-processing, data correction and imputation, which is time 20 

consuming and requires specific bioinformatics attention. Also, for each GBS project the researcher has 21 

to balance the cost of the sequencing platform with the goal of generating high enough read coverage 22 

and in turn marker resolution for the intended analysis. Most GBS strategies aim to sequence only a 23 

defined fraction of the whole genome to reduce the number of reads necessary for adequate per-24 

marker read coverage. A common approach is the use of one or two REs to produce fragments with 25 

defined endpoints instead of random shearing of input DNA. A recent protocol (Elshire et al. 2011) uses 26 

a combination of a restriction enzyme (RE) with a 6 bp recognition sequence to target specific sites in 27 

the genome and a RE with a more common 4 bp recognition sequence to generate fragments of suitable 28 

length. It was also shown that the choice of RE can influence sequencing results (Heffelfinger et al. 2014). 29 

Another common strategy to reduce sequencing costs is the use of multiplexed libraries. By ligating a 30 

sample-specific, unique adapter sequence (also called a barcode) to the DNA fragments before pooling 31 
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and library preparation DNA from multiple individuals may be processed in a single library. Currently, 1 

between 96-fold and 384-fold multiplexed libraries seem to be most common, with between 500,000 2 

and a few million reads dedicated to each individual sample. 3 

In most cases GBS aims at detecting and simultaneously genotyping a large number of single nucleotide 4 

polymorphism (SNP) markers. In this study we used GBS on a rice F2 population derived from a cross of 5 

an elite cultivar from East Asia (Oryza sativa ssp. Japonica cv. Nipponbare, NB) and a West African wild 6 

rice (Oryza longistaminata, OL). Several complex traits are found in OL but are absent in NB. For 7 

example, OL is capable of perennial growth, while NB is an annual plant. Furthermore, OL is capable of 8 

clonal propagation through the use of rhizomes. To identify the genetic basis of those traits we wanted 9 

to perform linkage analysis in an F2 population. Since there are only few markers available for this cross 10 

in public datasets and traditional marker development and genotyping can be laborious we established 11 

a GBS pipeline. 12 

Performing GBS on an F2 population incurs some specific difficulties since 50 % of all SNP sites are 13 

expected to be in a heterozygous state. This demands higher read coverage to accurately call genotypes, 14 

since correctly calling a heterozygous allele requires the presence of reads from both allele states 15 

(Johnson et al. 2015; Hyma et al. 2015). Some existing GBS pipelines and imputation algorithms deal 16 

with that problem by omitting heterozygous calls. In our case that solution was not acceptable, since 17 

this would potentially eliminate 50 % of all markers. Another problem associated with using a wild 18 

variant in a cross is that there is considerable heterozygosity in the wild parent’s genome. This can lead 19 

to the inability to correctly infer parental haplotypes. In this F2 population 20 % of all SNP sites found 20 

were heterozygous in OL, whereas only 1 % were so in NB. In addition, it might be possible that the wild 21 

parent (OL) has genome rearrangements or gene copy number variations as compared to the cultivated 22 

parent (NB). Those rearrangements might cause erroneous genotypes in specific regions and linkage of 23 

markers which are in reality located on different chromosomes. 24 

By a combination of the comparatively low-cost Illumina MiSeq platform (Loman et al. 2012) and high 25 

multiplexing we created a cost-effective, medium throughput (a few hundred to a thousand individuals) 26 

genotyping pipeline. The pipeline was designed to specifically address rice F2 populations, but it should 27 

be useful for any F2 population. We investigated the effects of two different REs and different levels of 28 

multiplexing on the number of detected SNP markers. Also, we provide an example of how relatively 29 

low-coverage data (ca. 150,000 reads per sample) can be sufficient to generate high density genetic 30 

maps. Our pipeline uses simple error correction and imputation methods that take advantage of the 31 
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long, uniparental haplotype blocks found in F2 populations. To show that our GBS pipeline is producing 1 

useful genotypes we mapped QTLs for tiller number and confirmed these QTLs using introgression lines 2 

derived from the same parents as the F2 population. 3 

 4 

MATERIALS AND METHODS 5 

 6 

Plant cultivation and population development: 7 

The population used in this study was produced and cultivated in the International Rice Research 8 

Institute (IRRI), Los Baños, Philippines. An African wild rice, Oryza longistaminata Acc. IRGC110404 (OL) 9 

as male was crossed with the cultivar Oryza sativa japonica cv. Nipponbare (NB) as female to produce F1 10 

plants and subsequently F2 populations by self-pollination. Since NB and OL are rather distant relatives 11 

within the Orzya genus there is some degree of incompatibility between both parents. Specifically, the 12 

cross between NB and OL led to a failure of endosperm development resulting in embryonic death. 13 

Therefore embryo-rescue had to be performed to avoid embryonic death of F1 seeds. In total 301 and 14 

813 F2 plants were grown in the paddy field in the screen house of IRRI in the spring season (Feb-May) 15 

and the fall season (Sep-Dec) of 2014, respectively. The total number of tillers (primary and branched 16 

shoots of grass plants) was determined after digging up those F2 plants from the paddy field. Leaf blades 17 

of the F2s and three replicate individual plants of each, NB and OL were sampled for DNA extraction. 18 

Previously we developed a set of introgression lines (ILs) which harbor between one and three 19 

substituted genomic segments derived from OL in the NB genomic background (Ramos et al. 2016). The 20 

ILs consist of BC4F7 and BC5F6 plants derived from a cross between OL as female and NB as male and 21 

successive backcrosses by NB followed by self-fertilization. Four ILs were selected based on the QTL 22 

regions found in this study. The ILs and the recurrent parent NB were germinated in a greenhouse and 23 

cultivated for 30 days. The seedlings were then transplanted to paddy fields at the research station of 24 

Nagoya University, Togo, Aichi Prefecture, Japan. Ten plants per line were planted in each row. The 25 

number of tillers was counted at the flowering stage in the ILs and NB excluding damaged plants and 26 

plants next to the border of the plot to avoid position effects. 27 

 28 
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Library preparation and sequencing: 1 

Genomic DNA from plant material was extracted using the cetyltrimethylammonium bromide (CTAB) 2 

method (Doyle and Doyle 1987). DNA integrity was analyzed by electrophoresis using a 1 % agarose gel. 3 

DNA concentration of each sample was measured using a QuantusTM Fluorometer with a 4 

QuantiFluorTM dsDNA system (Promega, Madison, WI, USA) and adjusted to 10 ng μl-1. Libraries were 5 

prepared using a combination of two restriction enzymes according to (Poland et al. 2012) with the 6 

following modifications: Genomic DNA samples (100 ng each) were digested in 20 μl of CutSmart Buffer 7 

by 8 units of PstI or KpnI, each with 8 units of MspI (all New England Biolabs (Ipswich, MA, USA), for PstI 8 

and KpnI the High-Fidelity version was used). The digestion was performed at 37 °C for 1 h, followed by 9 

an inactivation step at 65 °C for 20 min. Ligation was conducted in CutSmart Buffer without any 10 

modifications to the original protocol. A set of 192 unique barcodes were selected from the list of 384 11 

barcodes designed for PstI listed in (Poland et al. 2012). These barcodes were utilized for both, adapters 12 

with PstI overhang and KpnI overhang. 32-multiplexed libraries for samples digested by PstI and MspI or 13 

96-multiplexed libraries for KpnI and MspI were prepared by pooling samples and subsequent PCR-14 

amplification. DNA qualities and fragment sizes in the prepared libraries were evaluated using a 15 

Microchip Electrophoresis System for DNA/RNA analysis (MCE®-202 MultiNA, SHIMADZU, Kyoto, Japan). 16 

In total ten 32-multiplexed libraries and nine 96-multiplexed libraries were prepared. The libraries were 17 

sequenced using a MiSeq instrument with the MiSeq reagents kit v3 for 150 cycles (Illumina Inc., San 18 

Diego, CA, USA). 19 

Detection of SNPs from raw sequencing data: 20 

To detect informative SNPs from raw sequencing data the TASSEL 4 (Trait Analysis by Association, 21 

Evolution and Linkage 4) GBS pipeline (Glaubitz et al. 2014) was used. This included creation of a 22 

collection of unique, 64 bp long sequences (tags) from the raw sequencing data, alignment of tags to the 23 

IRGSP release 7 of the Oryza sativa Nipponbare reference genome (Kawahara et al. 2013) using BWA 24 

(Burrows-Wheeler Aligner) (Li and Durbin 2009) with the –aln and –samse options, SNP calling and 25 

filtering of SNPs based on minor allele frequency. To identify samples with poor read coverage the 26 

TASSEL 4 log files for each library were inspected for individuals with very low read coverage (< 1,000 27 

reads in our case). These individuals were removed from the analyses or resequenced in another library 28 

if enough plant material was available. We noted that there is a positive correlation between the 29 

number of reads and the integrity of the extracted DNA. Initially, SNPs were called without specifying a 30 
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filter using the DiscoverySNPCallerPlugin from TASSEL 4. Then all SNPs with a minor allele frequency of 1 

less than 0.25 were removed, as those likely represented sequencing errors or rare alleles. 2 

In the next step the SNPs were filtered based on parental alleles to leave only SNPs which have fixed, 3 

but alternate alleles at any given locus. To achieve this we selected only those SNPs which were: (1) not 4 

variable within each set of triplicate parental samples, (2) not heterozygous in either parent and (3) 5 

different between both parents. Filtering was performed using the hapmap-formatted files and awk. The 6 

resulting collection of SNPs was then thinned out using vcf-tools (Danecek et al. 2011) to a minimum 7 

distance of 64 bp between two SNP sites. This eliminated redundant SNPs originating from the same tag, 8 

which in most cases had identical parental genotypes within each tag. This collection of SNPs was then 9 

used to explore the effects of different levels of missing data and imputation. 10 

Preliminary analyses indicated that the biggest source of error would be undercalled heterozygous 11 

alleles (true heterozygous alleles wrongly called as homozygous alleles due to the absence of reads from 12 

one of the two states of a heterozygous allele). To counter for this we used vcf-tools to only allow 13 

genotypes that are supported by at least 7 reads per site and sample. This limits the probability of 14 

undercalling a heterozygous site to a theoretical maximum of 1.6 % (Swarts et al. 2014). In the same 15 

step a filter for different levels of missing data was implemented. Specifically, we generated (pre-16 

imputation, pre-error-correction) datasets in which up to 5 %, 50 % or 75 % of all genotypes for any 17 

given site were missing. 18 

Imputation and error correction: 19 

As shown here and in Spindel et al. (Spindel et al. 2013) GBS data inherently contains errors and has to 20 

be imputed to be useful for linkage analysis. For our work we took advantage of the fact that missing 21 

data and wrongly called alleles are randomly distributed across sites and samples. Furthermore, the F2 22 

population in this study is characterized by long-range, uniform parental haplotypes that are long 23 

compared to the putative errors. We thus developed a simple imputation and error correction algorithm 24 

that is based on regular expressions and executed in R (R Development Core Team 2008). 25 

In the first step the data is transformed from the nucleotide-based hapmap format to an ABH-based 26 

format, where A represents NB, B represents OL and H represents heterozygous alleles. After conversion 27 

we first imputed missing data. Stretches of missing genotypes were filled with the appropriate allele if 28 

both flanking, not missing alleles were of the same state. This imputation resulted in an almost complete 29 

elimination of missing alleles. Next, we tried to address the undercalling of heterozygous sites. 30 
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Empirically we set a minimum haplotype length of four sites. In any given F2 individual, if a series of 1 

homozygous or missing sites of length ≤ 4 was flanked on both sites by a heterozygous allele, this stretch 2 

was replaced with heterozygous sites. The other main error type seemed to be single erroneous alleles 3 

interspersed in longer homozygous haplotypes. We assumed those errors to come from misalignments 4 

of reads, probably due to structural differences in the genome of OL compared to the NB reference 5 

genome. To counter for this we used a similar strategy as we used to correct undercalled heterozygous 6 

alleles, but used a minimum haplotype length of 1. This procedure reduce the number of missing 7 

genotypes as a percentage of all genotypes from 2.07 % to 0.18 % while it increased the number of 8 

heterozygous alleles from 46.27 % to 54.57 % (data from the fall 2014 population with up to 75 % 9 

missing data per site, full dataset in Table S1). In the final step data from both analyzed populations was 10 

combined based on the assumed physical position of SNP markers. Since two different enzymes were 11 

used for the spring 2014 and the fall 2014 population no SNP marker was found in both datasets, as 12 

different enzymes generate different sets of reads. Thus, we imputed missing data again using the rules 13 

devised above to fill in sites. All TASSEL scripts and the scripts used for post-TASSEL data processing can 14 

be found in Data S1. The imputation and error correction logic described here (in addition to functions 15 

for graphical analyses of genotypes) is also available in the ‘ABHgenotypeR’ package for R, which is 16 

available at https://github.com/StefanReuscher/ABHgenotypeR or via CRAN (Comprehensive R archive 17 

network). 18 

 19 

Data analysis: 20 

General data analysis was performed using the TASSEL graphical user interface and R. QTL analyses and 21 

simulations were performed using the R package ‘qtl’ (v1.37.11) (Broman et al. 2003). For QTL 22 

simulations, phenotypic values and genotypes of simulated F2 populations were generated using the 23 

function “sim.cross” implemented in the ‘qtl’ package and described in detail in (Broman and Sen 2009). 24 

“sim.cross” requires a genetic map of markers, the number of individuals and a model of QTLs to 25 

generate a simulated population. For simulating the genetic map of markers, we used the “sim.map” 26 

function which requires chromosome lengths and marker numbers. The lengths of the chromosomes 27 

were set to 140 cM, 115 cM, 130 cM, 110 cM, 100 cM, 105 cM, 110 cM, 100 cM, 75 cM, 80 cM, 100 cM 28 

and 105 cM for chromosomes 1 to 12, respectively, based on a genetic map of microsatellite markers 29 

developed in our previous QTL study for F2 populations derived from a cross between NB and OL. 30 

Simulations with 50, 100, 200 or 400 equally spaced markers were performed. For simulating 31 
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phenotypic values which were affected by a number of simulated QTLs we assumed the existence of 1 

eight QTLs (on 8 out of 12 chromosomes), each of which had an additive effect of 0.5. The residual 2 

phenotypic variation was assumed to be normally distributed with a variance of 1. Under these 3 

assumptions each of the simulated QTLs had 4.17 % contribution to the phenotypic variance. With the 4 

simulated genetic map and the QTL model, data sets of F2 populations for 200, 400, 600, 800 and 1000 5 

individuals were generated using “sim.cross”. We performed simple interval mapping in the simulated 6 

F2 populations using the function “scanone” with the multiple imputation method (Sen and Churchill 7 

2001). In the multiple imputation method genotypes between markers were imputed with 1 cM 8 

intervals based on genotypes of flanking markers and multiple imputed genotype data were generated 9 

for each individual. Then, a linear regression model was fitted for each marker using the imputed 10 

genotype data and the phenotype data with the assumption of normal distribution of phenotypic values. 11 

The threshold for significant LOD scores was calculated from 1,000 permutation tests. According to past 12 

studies, confidence intervals of detected QTLs were usually larger than 10 cM (Darvasi 1998; Kearsey 13 

and Farquhar 1998), so we used that size as a threshold. If a significant QTL (P ≤ 0.05) was detected 14 

around the simulated, true QTL position (±10 cM), we counted it as correctly detected. For each 15 

condition 100 simulations were performed and the probability to correctly detect all QTLs was 16 

calculated. 17 

Genetic maps using real data were constructed using the “est.map” function with default parameters. 18 

QTL analyses for the number of tillers in 1,081 F2 plants was performed using a linear regression model 19 

with the multiple imputation method by “scanone”. The threshold for significant LOD scores was 20 

calculated from 1,000 permutation tests. The 95 % confidence intervals of significant QTLs were 21 

estimated using the function “bayesint” which takes 10LOD score values for an obtained LOD profile and 22 

rescales it to have an area of 1, followed by calculating the connected interval having 95 % coverage of 23 

the area. The function “fitqtl” was used for calculating percentages of variance of the significant QTLs by 24 

calculating the coefficient of determination for each single-QTL model obtained using “scanone”. 25 

Additive and dominant effects of the significant QTLs were calculated from mean phenotypic values for 26 

each genotype at the QTL positions obtained by using the function “effectplot”. 27 

Genome-wide analysis of restriction sites were performed using the “restric” tool from the emboss 28 

software suite (Rice et al. 2000). Random sampling of reads from fastq files was performed using fastq-29 

tools (http://homes.cs.washington.edu/~dcjones/fastq-tools/). 30 

 31 
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Statement on data availability: 1 

Dataset S1 contains all code necessary to replicate the GBS-pipeline. The data imputation and error-2 

correction logic is also available as the R package “ABHgenotypeR”. Dataset S2 contains all genotypes 3 

from this study, including marker order and position. Complete genotype and SNP descriptions are 4 

available upon request. 5 

 6 

RESULTS 7 

Application of GBS to a rice F2 population: 8 

A population of 268 F2 plants from a cross of NB and OL, including triplicate parental samples, from the 9 

spring 2014 season was sequenced first. From this population libraries of 32 samples each were 10 

prepared and processed with the GBS pipeline (Fig. 1). This approach resulted in 618,844 average reads 11 

per individual, which yielded 108,905 potentially useful SNP sites before the application of any filtering 12 

(Table 1). Filtering those sites resulted in at least 2,144 markers (5 % missing data). Analyses using 13 

simulated data to determine QTL detection probabilities showed that this number of markers is more 14 

than sufficient to detect even weak QTL (see Figure S1). In fact, a few hundred markers gave sufficient 15 

detection power while at the same time the number of F2 individuals appears to be the limiting factor. 16 

We therefore optimized our GBS pipeline to process more F2 individuals at the expense of generating a 17 

lower number of SNP markers by multiplexing more samples per library. 18 

For a larger population of 813 F2 plants and triplicate parental samples from the fall 2014 season the 19 

following changes were implemented: (1) Instead of using PstI as the rare-cutting enzyme we used KpnI. 20 

There are 107,953 PstI cut sites reported in the NB reference genome, while there are only 45,065 KpnI 21 

cut sites. Thus, if all parameters were kept constant, in libraries prepared with KpnI the resulting reads 22 

will be distributed among fewer sites, but reach a higher per-site coverage. (2) Taking advantage of the 23 

higher per-site coverage using KpnI we increased the number of samples per library. Prior to library 24 

preparation we examined the effects of decreased read coverage per F2 individual by randomly 25 

sampling a fraction of reads from each input fastq file. In these simulated multiplexing analyses it 26 

became clear that the undercalling of heterozygous sites (50 % in an F2 population) would become a 27 

large source of errors if multiplexing is increased (see Figure S2). Based on those results 96-fold 28 

multiplexing was deemed feasible and implemented with the fall 2014 population. This resulted in an 29 
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average of 134,447 reads per F2 which yielded 37,938 potential SNP sites. After processing and allowing 1 

up to 5 % missing data a minimum of 301 SNP sites remained for analysis. 2 

As expected, higher multiplexing and a change to KpnI led to a lower number of detected SNP sites. 3 

When processed through our GBS pipeline however, both datasets led to similar genotype patterns, the 4 

main difference being the number of sites that were reliably detected. As the final step of the GBS 5 

pipeline both datasets were merged. To describe and evaluate the results of the GBS pipeline we 6 

subsequently use data from the fall 2014 dataset. For results regarding the genetics of the NB x OL F2 7 

population and linkage analysis we used the combined datasets to maximize detection power and 8 

resolution. 9 

 10 

Analysis of general SNP properties: 11 

The unfiltered GBS dataset contained a high proportion of missing data (Fig. 2A) and only ca. 4,500 out 12 

of 37,938 sites were detected in all samples. Also, a substantial number of SNPs was observed with very 13 

low minor allele frequencies (MAF) (Fig. 2B). We used a threshold of MAF > 0.25 and different 14 

proportions of missing data (< 5 %, < 50 %, < 75 %) and analyzed the MAF and the proportion of 15 

heterozygous sites. When using a very stringent filter of < 5 % missing data both, the MAF and the 16 

proportion of heterozygous sites reached a lower limit at around 0.35 (Fig. 2C and D). At a higher 17 

proportion of missing data some sites could be observed which had a MAF and proportion of 18 

heterozygosity as low as the set threshold of 0.25 (Fig. 2 E to H). The bigger spread in allele frequencies 19 

and heterozygosity observed for datasets with a higher percentage of missing data might be explained 20 

by the inclusion of sites with low read coverage in those datasets. SNP sites which are supported by a 21 

small number of reads are more prone to errors. For example, reads representing either NB or OL alleles 22 

could have different amplification efficiencies during library preparation. For SNPs with high read 23 

coverage this might have no effects, but for SNPs with low read coverage this might skew our ability to 24 

detect a specific allele. This observation highlights the importance of both, adequate read coverage and 25 

post SNP-calling error correction. 26 

To evaluate the fidelity of GBS genotypes we independently genotyped 93 F2 plants using simple-27 

sequence repeat (SSR) markers and compared both sets of genotypes. It was found that the majority of 28 

parental genotypes (> 90 %) was identical when the results of both genotyping systems were compared 29 

(see Figure S3). The 10 % disagreeing markers are explained by single SSR markers in which up to 1/3 of 30 
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all genotypes disagree and probably by the SSR marker and the closest GBS marker being on different 1 

sides of a recombination event. 2 

Next we evaluated the distribution of SNP sites along the chromosome (Fig. 3). SNP sites were notably 3 

sparser in the centromeric regions, probably as a result of a high amount of repetitive sequence 4 

elements which prevent reads to be mapped to a unique position. Also the distribution of sites along the 5 

chromosome arms was not even. In general, the SNP density at any given chromosome position 6 

increased with the amount of missing data allowed. However, there were some chromosomal region 7 

with low SNP density in which the number of SNPs was hardly affected by the amount of missing data. 8 

This was not caused by uneven distribution of KpnI recognition sites (data no shown). For example, a 9 

SNP density below the average was observed on the long arms of chromosome 4 and chromosome 9. 10 

The occurrence of such SNP deserts was observed before (Wang et al. 2009; Krishnan S et al. 2014), but 11 

it is unclear if and how those regions are associated with domestication. 12 

In an ideal F2 population one would expect that the parental alleles segregate according to a 1:2:1 ratio 13 

(parent A : heterozygous : parent B). However, a plot of allele states along the chromosomes revealed 14 

regions with distorted genotype ratios (Fig. 4). As a general trend the OL alleles seemed to be 15 

transmitted at slightly lower levels. As an extreme example, the long arm of chromosome 4 has a 16 

drastically reduced frequency of the OL allele, with OL genotype frequencies decreasing to less than 17 

10 %, as opposed to the expected 25 %. In most chromosomal regions where one parental allele was 18 

found underrepresented the frequency of heterozygous genotypes in turn was increased to more than 19 

50 %. Very likely those effects are due to chromosomal regions associated with reproductive 20 

incompatibility. 21 

 22 

Constructing a genetic map: 23 

To inspect GBS genotypes and haplotypes we constructed graphical representations of genotypes (Fig. 5, 24 

full dataset in Data S2). This made it obvious that GBS data without imputation and error correction 25 

contains wrongly called genotypes (Fig. 5A). Since F2 populations have relatively long haplotypes the 26 

observed very short (1-2 markers) uniform genotype stretches found as islands in longer stretches are 27 

most likely errors. After imputation of missing data (Fig. 5B) we used a simple error correction algorithm 28 

based on haplotype length to efficiently correct those errors (Fig. 5C). 29 
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When we used the fall 2014 dataset to construct a genetic map it became again clear that raw GBS data 1 

cannot be used directly (Fig. 6). When uncorrected data with up to 75 % or 50 % (Fig. 6 A; B, D and E) of 2 

missing data per site was used to generate a genetic map, chromosomes appeared expanded with 3 

chromosomes of up to 3,500 cM. The map distention we observed was conspicuously similar to the 4 

distention shown in (Spindel et al. 2013) and we applied a similar strategy to consolidate our genetic 5 

map. Both, a rigorous restriction on missing data (up to 5 % missing, Fig. 6 G-I) or imputation and error 6 

correction (Fig. 6 C and F) seemed to alleviate the problem. Restricting missing data led to a strong 7 

reduction of available SNP sites (compare 837 for 50 % missing to 301 for 5 % missing) but also 8 

shortened the genetic map. Using filtering, imputation and error correction we gradually improved the 9 

genetic map even when up to 75% of genotypes were initially missing for each individual site. The final 10 

genetic map (Fig. 6 I) had a total size of 1,536 cM which is in agreement with other data. We still 11 

observed some distention, for example on chromosome 5 and chromosome 12. Although haplotypes 12 

and alleles appear to be correct in those region we can observe strong linkage of markers in those 13 

region with markers from different chromosomes (data not shown). 14 

 15 

QTL analysis: 16 

Being able to produce a correct genetic map using the combined dataset reassured us that our GBS data 17 

is sufficient for linkage analysis. For QTL analysis in 1,081 F2 plants we chose to use the number of tiller 18 

as the phenotype. We detected four significant QTLs on chromosomes 1, 3, 4 and 8 which were named 19 

qOLTN1, qOLTN2, qOLTN3 and qOLTN4, respectively (Fig. 7A). Among these four QTLs qOLTN1 on 20 

chromosome 1 showed the highest LOD score with 20.15 (Fig. 7B), while the other QTLs showed LOD 21 

scores less than 6.9. To analyze these QTLs in more detail, we calculated 95 % confidence intervals, 22 

percentages of variance and effects for each QTL (Table 2). The confidence interval of qOLTN1 spanned a 23 

3.6 Mb region from 27. 1 Mb to 30.7 Mb on chromosome 1. This QTL explained 8.23 % of the variance in 24 

the number of tillers of the F2 population and showed a negative additive effect of -9.17 and a positive 25 

dominant effect of 5.22. These results suggested that an OL allele at qOLTN1 acts recessive to decrease 26 

the number of tillers as compared to NB. Unlike the case of qOLTN1, the other QTLs gave only little 27 

contributions on the differences in the number of tillers and relatively smaller effects (Table 2). 28 

Interestingly, qOLTN4 exhibited a positive superdominant effect in which the additive effect was -2.44 29 

while the dominant effect was 4.51. This result means that heterozygotes at qOLTN4 produce more 30 

tillers than either NB homozygotes or OL homozygotes. 31 
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To evaluate the results of our QTL simulation (see Figure S1) against this real data we performed linkage 1 

analyses for random subsets of varying numbers of F2 plants. As predicted in our simulations, we found 2 

that up to 1,000 F2 plants are necessary to reliably detect all significant QTL (see Figure S4). When we 3 

used all 1081 F2 plants for linkage analysis but varied the amount of missing data allowed in the pre-4 

filtered datasets we found very similar LOD score profiles (see Figure S5). We thus used the dataset with 5 

up to 75 % missing data per site before post-processing to maximize marker resolution. 6 

To verify the QTLs we conducted a field experiment to measure the number of tillers in introgression 7 

lines (ILs) having OL genomic segments at each of the QTL locations. Four ILs having OL chromosomal 8 

segments around QTL locations were selected from the pool of ILs and named IL-qOLTN1, IL-qOLTN2, IL-9 

qOLTN3 and IL-qOLTN4 for having OL chromosomal segments around qOLTN1, qOLTN2, qOLTN3 and 10 

qOLTN4, respectively. IL-qOLTN1 and IL-qOLTN2 showed a significant decrease in the number of tillers 11 

compared with NB (Table 3). The reductions of tillers in these two ILs is in agreement with the negative 12 

additive effects of qOLTN1 and qOLTN2 (Table 2). Furthermore, IL-qOLTN3 and IL-qOLTN4 produced 13 

more and less tillers than NB, although the differences were not significant. However, the results 14 

observed in IL-qOLTN3 and IL-qOLTN4 also corresponded to the positive and negative additive effects of 15 

qOLTN3 and qOLTN4, respectively. In summary, we could successfully detect four QTLs using our GBS 16 

data for the number of tillers and verify the effects of those QTLs in ILs. 17 

 18 

DISCUSSION 19 

Our aim for this study was to utilize GBS for rapid genotyping of rice F2 populations. As expected, GBS 20 

proved to be a robust and efficient method to genotype large populations (Elshire et al. 2011; Lu et al. 21 

2013; Spindel et al. 2013; Liu et al. 2014). For successful application of GBS it is necessary to generate 22 

adequate read coverage across the genome and also for each individual that is sequenced. In our 23 

approach to genotype a rice F2 population we further took into account the number of individuals and 24 

markers that are necessary to detect QTLs. Since one of the main motivations to perform GBS is to save 25 

time and money compared to classical markers one would like to use as few sequencing runs on any 26 

platform as necessary to achieve the desired sequencing depth. Our choice to change the enzyme from 27 

PstI to KpnI lead to predictable changes in the resulting SNP collection. Also other reports showed that 28 

enzyme choice is an important parameter to optimize GBS for any given species (Heffelfinger et al. 2014). 29 

Marker density depends also partially on sequencing depth, which in turn depends on the number of 30 
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individual per sequencing run. To be most efficient it is thus advisable to take into account the desired 1 

marker density when laying out a genotyping project involving GBS. In our experience, performing a 2 

small-scale pilot experiment using the desired population and sequencing platform, combined with 3 

linkage analysis on simulated data, allowed us to use GBS more efficiently. The results of linkage 4 

analyses using both, simulated (see Figure S1) and experimental data (see Figures S4 and S5) suggested 5 

that our GBS approach resulted in a saturation of markers. The fact that our linkage analysis yields 6 

comparable results even when up to 75 % of missing data for each marker were acceptable in the raw 7 

data shows that even simple imputation algorithms can reinforce the usefulness of GBS data 8 

tremendously. We speculate that for certain applications even less markers and in turn less reads per 9 

individual would be sufficient, thus allowing even higher multiplexing and sample throughput. Of course, 10 

this might also depend on the genome size of the analyzed species and the amount of repetitive 11 

elements in that genome. 12 

 13 

Optimizing GBS strategies: 14 

Although we were successful in using GBS we noticed several shortcomings where no best practice 15 

seems to be established yet. There seems to be very little consensus about how GBS protocols should be 16 

adapted to different species and to different populations. For variant calling, filtering and exploration of 17 

our dataset we used the TASSEL4 (Glaubitz et al. 2014) which was develop to work efficiently with large 18 

maize populations. It became apparent that additional specific bioinformatics analyses were necessary 19 

to get the most information from our dataset. This shows that a given GBS protocol needs to be 20 

optimized for a specific species or population. Another issue is the high error rate of raw GBS data. 21 

While it is possible to eliminate most errors using post SNP-calling error correction some errors will 22 

inevitably remain. It would be worth to investigate the source of some errors, as this might lead to new 23 

insights into the population in question. In our case, where a wild species is crossed to a cultivar it can 24 

be assumed that there will be large-scale differences between the two parental genome contributing to 25 

the F2 individuals. Those differences most likely include gene copy number variations or even 26 

rearrangements of regions between chromosomes. Since we only have a reference genome available for 27 

one of the parents at the moment we have no way to control directly for those potential sources of 28 

errors. We found indirect evidence for such large rearrangements when we looked at genome-wide 29 

linkage of markers. We found several regions in which seemingly correct haplotypes were in strong 30 

linkage disequilibrium with both, neighboring regions and regions on other chromosomes (data not 31 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 27, 2016. ; https://doi.org/10.1101/055798doi: bioRxiv preprint 

https://doi.org/10.1101/055798


17 
 

shown). Future GBS pipelines could address those issues, either by taking into account improved 1 

reference genome information or through linkage disequilibrium filtering. 2 

When we established our GBS pipeline we noticed several irregularities in the genome-wide SNP 3 

statistics. For example, we noticed that several regions of the genome were sparsely covered with SNPs 4 

(Fig. 3). Also we noted that in several region the parental allele frequency was deviating from the 5 

expected 1:2:1 ratio (Fig. 4). It is important to note that this population is affected by reproductive 6 

incompatibilities and we had to routinely use embryo-rescue to propagate plant materials. It is very 7 

likely that the deviating allele frequency is a consequence of reproductive incompatibility which has its 8 

genetic basis in these regions. To further analyze this it would be necessary to genotype the offspring of 9 

multiple F1 crosses. We suggest that GBS might be a useful tool to study reproductive isolation and 10 

preferential transmission, since it can quickly define regions with allele distortion.  11 

 12 

CONCLUSION 13 

In summary we show an application of GBS to perform linkage analysis in a rice F2 population. We also 14 

provide an example on how to plan and carry out adequate, cost effective reduced-representation 15 

sequencing. With our dataset we successfully detected QTLs for tiller number on chromosomes 1, 3, 4 16 

and 8 which we could confirm using ILs. We suggest for future GBS genotyping efforts to evaluate 17 

enzyme choice, multiplexing of libraries and post-processing to meet the requirements of the desired 18 

post-GBS analyses. We predict that the efficiency of GBS in terms of pricing and time will improve even 19 

more in the future. 20 

 21 

LIST OF ABBREVIATIONS 22 

GBS: Genotyping-by-sequencing, NB: Oryza sativa japonica ‘Nipponbare’, OL: Oryza longistaminata, RE 23 

restriction enzyme, MAF: minor allele frequency, IL introgression lines, SNP single-nucleotide 24 

polymorphism, SSR simple sequence repeat, BWA Burrows-Wheeler Aligner, QTL quantitative trait locus, 25 

GWAS genome-wide association study, TASSEL trait analysis by association, evolution and linkage. 26 

 27 
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TABLES 1 

Table 1: 2 

Basic parameters of both GBS experiments described in this work. 3 

 spring 2014 fall 2014 

enzymes PstI-MspI KpnI-MspI 

number of F2 individuals 268 813 

multiplexing 32 96 

reads per sample (mean ± SD)
a
 618,843.7 ± 178,135.8 134,447.3 ± 50,788.87 

no. of initial SNPs
b
 108,905 37,938 

no. of sites (< 5% missing data) 2,144 301 

no. of sites (< 50% missing data) 5,812 837 

no. of sites (< 75% missing data) 7,058 1,096 

a
 Numbers are based on good, barcoded, aligned reads. 4 

b 
Number of SNP sites called by TASSEL before any filtering steps were applied. 5 

  6 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 27, 2016. ; https://doi.org/10.1101/055798doi: bioRxiv preprint 

https://doi.org/10.1101/055798


20 
 

 1 

Table 2: 2 

Percentages of variance and effects of the significant QTLs. 3 

QTL 

name
a
 

chr 
LOD 

score 

left 

bound
b
 

peak 

position
c
 

right 

bound
d
 

% of 

variance 

additive 

effect
e
 

dominant 

effect
f
 

qOLTN1 1 20.15 27,085 29,323 30,648 8.23 -9.17 5.22 

qOLTN2 3 6.67 16,459 23,610 27,706 2.80 -4.66 -0.65 

qOLTN3 4 6.68 12,436 12,591 18,420 2.80 5.07 -1.10 

qOLTN4 8 4.91 16,523 19,907 22,362 2.07 -2.44 4.51 

a
 Oryza longistaminata tiller number 4 

b
 Chromosomal positions in kb of left bounds of the 95% confidence intervals. All chromosomal positions are based 5 

on the physical position of the closest marker in the NB reference genome. 6 
c 
Chromosomal positions in kb where the maximum LOD scores were detected for each QTL. 7 

d
 Chromosomal positions in kb of right bounds of the 95% confidence intervals. 8 

e
 Positive values indicate increases of the number of tillers in OL homozygotes, while negative values indicate 9 

decreases in OL homozygotes compared to NB. 10 
f
 Positive values indicate increased tiller number in heterozygotes compared with the averages of NB and OL 11 

homozygotes while negative values indicates decreases in heterozygotes compared with the averages of NB and 12 

OL homozygotes. 13 

  14 
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 1 

Table 3: 2 

Tiller number in the introgression lines. 3 

genotype
a
 chr.

b
 markers

c
 position

d
 No. of tillers

e
 

NB - - - 13.67±1.70 

IL-qOLTN1 1 RM1287-RM297 10.8-33.8 8.14±1.64 * 

IL-qOLTN2 3 OL3L26-RM3436 5.4-28.2 11.13±1.27 * 

IL-qOLTN3 4 End-RM3866 0-23.8 15.00±3.12 

IL-qOLTN4 8 RM1235-RM5485 12.1-24.2 11.67±2.87 

a
 NB indicates Nipponbare, IL-qOLTN1 to 4 indicates introgression lines that carry the respective QTL for tiller 4 

number 5 
b
 Chromosome which have an O. longistaminata chromosomal segment. 6 

c
 Flanking simple sequence repeat markers of an introgressed O. longistaminata chromosomal segment. “End” 7 

indicates the end of short arm. 8 
d
 Physical positions of the flanking SSR markers in Mb. 9 

e
 The number of tillers measured in 7-9 plants for each line are shown in mean±sd. * indicates a significant 10 

difference compared with NB at P ≤ 0.05 according to Student’s t-test with Bonferroni-Holm correction for multiple 11 

testing. 12 

 13 

 14 
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FIGURE LEGENDS 22 

 23 

Figure 1: Flowchart of the GBS data processing 24 

A schematic overview of the different steps of the GBS pipeline. 25 

 26 
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Figure 2: Basic SNP characteristics using different filter settings for missing 1 

data. 2 

Shown are histograms representing the number of SNP sites that exhibit a certain sample coverage (A), 3 

minor allele frequency (B, C, E, G) or proportion of heterozygous sites (D, F, H). Data is from 813 F2 4 

plants from the fall 2014 population and was generated using the TASSEL 4 site report function. For A 5 

and B unfiltered data directly after SNP calling was used. For C to H, SNP sites were filtered by the 6 

indicated proportion of missing data per sample, but no further data imputation or error correction was 7 

performed. 8 

 9 

Figure 3: Marker densities along the chromosomes. 10 

Shown is the marker density along the 12 rice chromosomes. The number of markers was determined 11 

for bins of 1 Mb. Different colored lines represent datasets with the indicated proportion of missing data. 12 

Data is from the fall 2014 population (n = 813 individuals). 13 

 14 

Figure 4: Parental allele frequencies along the chromosomes. 15 

Shown are the frequencies of parental alleles observed along the 12 rice chromosomes. Data is from the 16 

joined datasets from spring and fall 2014. Only marker present in 95 % of all samples in the respective 17 

dataset are shown. 18 

 19 

Figure 5: Graphical representations of GBS-derived genotypes at different 20 

stages of post-processing. 21 

Shown are graphical representations of genotypes after inferring parental alleles (A), after inferring 22 

parental alleles and imputation of missing data (B) and after inferring of parental alleles, imputation and 23 

error correction (C). Genotypes of 50 representative F2 individuals are shown, with each F2 as a single 24 

horizontal track. The chromosome length is proportional to the number of markers and only 25 

chromosome 1 to 3 are shown. In total 312 markers (fall 2014 population, up to 50 % missing data) are 26 

displayed with genotypes color-coded as blue (NB), orange (OL), green (heterozygous) and black (not 27 

determined). 28 
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 1 

Figure 6: Genetic maps from datasets with different proportions of missing 2 

data and post-processing. 3 

Shown are linkage maps of GBS marker datasets. Panels show datasets with SNP-calling thresholds 4 

allowing up to 75 % (A-C), 50 % (D-F) and 5 % (G-I) missing data, at different steps of the GBS pipeline. 5 

Uncorrected (A, D, G) indicates data without further post-processing. Imputed (B, E, H) indicates data 6 

with missing data imputed, but no error correction performed. Corrected (C, F, I) indicates data with 7 

both, imputation and error-correction performed. Data is from 813 F2 plants from the fall 2014 dataset. 8 

Distances between markers are shown in centimorgan (cM). 9 

 10 

Figure 7: Detection of QTL for tiller number using GBS markers. 11 

Shown are the results of a linkage analysis to detect QTL that have an effect on tiller number using data 12 

from joined spring and fall datasets with up to 75 % missing data per marker. LOD scores are shown as 13 

black lines for all 12 chromosomes (A) or for chromosome 1 only (B). A LOD threshold for significance (P 14 

≤ 0.05) is shown as a dashed orange line. The blue area in (B) highlights the 95 % confidence interval of 15 

qOLTN1 (QTL1 for tiller number Oryza longistaminata). Distances are shown in centimorgan (cM). 16 

 17 
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