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Abstract 
Recent technological advances have enabled assaying DNA methylation at 

single-cell resolution. Current protocols are limited by incomplete CpG 

coverage and hence methods to predict missing methylation states are critical 

to enable genome-wide analyses. Here, we report DeepCpG, a computational 

approach based on deep neural networks to predict DNA methylation states 

from DNA sequence and incomplete methylation profiles in single cells. We 

evaluated DeepCpG on single-cell methylation data from five cell types 

generated using alternative sequencing protocols, finding that DeepCpG 

yields substantially more accurate predictions than previous methods. 

Additionally, we show that the parameters of our model can be interpreted, 

thereby providing insights into the effect of sequence composition on 

methylation variability. 
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Background 
DNA methylation is one of the most extensively studied epigenetic marks, and 

is known to be implicated in a wide range of biological processes, including 

chromosome instability, X-chromosome inactivation, cell differentiation, 

cancer progression and gene regulation [1–4]. 

 

Well-established protocols exist for quantifying average DNA methylation 

levels in populations of cells. Recent technological advances have enabled 

profiling DNA methylation at single-cell resolution, either using genome-wide 

bisulfite sequencing (scBS-seq [5]) or reduced representation protocols 

(scRRBS-seq [6–8]). These protocols have already provided unprecedented 

insights into the regulation and the dynamics of DNA methylation in single 

cells [6,9], and have uncovered new linkages between epigenetic and 

transcriptional heterogeneity [8,10,11].  

 

Because of the small amounts of genomic DNA starting material per cell, 

single-cell methylation analyses are intrinsically limited by moderate CpG 

coverage (Figure 1a, 20-40% for scBS-seq [5]; 1-10% for scRRBS-seq  [6–

8]). Consequently, a first critical step is to predict missing methylation states 

to enable genome-wide analyses. While methods exist for predicting average 

DNA methylation profiles in cell populations [12–16], these approaches do not 

account for cell-to-cell variability. Additionally, existing methods require a 

priori defined features and genome annotations, which are typically limited to 

a narrow set of cell types and conditions. 
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Here, we report DeepCpG, a computational method based on deep neural 

networks [17–19] for predicting single-cell methylation states and for 

modelling the sources of DNA methylation variability. DeepCpG leverages 

associations between DNA sequence patterns and methylation states as well 

as between neighbouring CpG sites, both within individual cells and across 

cells. Unlike previous methods [12,13,15,20–23], our approach does not 

separate the extraction of informative features and model training. Instead, 

DeepCpG is based on a modular architecture and learns predictive DNA 

sequence- and methylation patterns in a data-driven manner. We evaluated 

DeepCpG on mouse embryonic stem cells profiled using whole-genome 

single-cell methylation profiling (scBS-seq [5]), as well as on human and 

mouse cells profiled using a reduced representation protocol (scRRBS-seq 

[8]). On all cell types, DeepCpG yielded substantially more accurate 

predictions of methylation states than previous approaches. Additionally, 

DeepCpG uncovered both previously known and de novo sequence motifs 

that are associated with methylation changes and methylation variability 

between cells. 

Results and discussion 
DeepCpG is trained to predict binary CpG methylation states from local DNA 

sequence windows and observed neighbouring methylation states (Figure 

1a). A major feature of the model is its modular architecture, consisting of a 

CpG module to account for correlations between CpG sites within and across 

cells, a DNA module to detect informative sequence patterns, and a fusion 

module that integrates the evidence from the CpG and DNA module to predict 

methylation states at target CpG sites (Figure 1b).  
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Figure 1 | DeepCpG model training and applications. (a) Sparse single-cell CpG 
profiles, for example as obtained from scBS-seq [5] or scRRBS-seq  [6–8]. 
Methylated CpG sites are denoted by ones, un-methylated CpG sites by zeros, and 
question marks denote CpG sites with unknown methylation state (missing data). (b) 
Modular architecture of DeepCpG. The DNA module consists of two convolutional 
and pooling layers to identify predictive motifs from the local sequence context, and 
one fully connected layer to model motif interactions. The CpG module scans the 
CpG neighbourhood of multiple cells (rows in b), using a bidirectional gated recurrent 
network (GRU [24]), yielding compressed features in a vector of constant size. The 
fusion module learns interactions between higher-level features derived from the 
DNA- and CpG module to predict methylation states in all cells. (c,d) The trained 
DeepCpG model can be used for different downstream analyses, including genome-
wide imputation of missing CpG sites (c) and the discovery of DNA sequence motifs 
that are associated with DNA methylation levels or cell-to-cell variability (d).  
 

 

Briefly, the DNA and CpG module were designed to specifically model each of 

these data modalities. The DNA module is based on a convolutional 

architecture, which has been successfully applied in different domains [25–

28], including genomics [29–33]. The module takes DNA sequences in 

windows centred on target CpG sites as input, which are scanned for 
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sequence motifs using convolutional filters, analogous to conventional 

position weight matrices [34,35] (Methods). The CpG module is based on a 

bidirectional gated recurrent network [24], a sequential model that compresses 

patterns of neighbouring CpG states from a variable number of cells into a 

fixed-length feature vector (Methods). Finally, the fusion module learns 

interactions between output features of the DNA- and CpG module, and 

predicts the methylation state at target sites in all cells using a multi-task 

architecture. The trained DeepCpG model can be used for different 

downstream analyses, including i) to impute low-coverage methylation profiles 

for sets of cells (Figure 1c), and ii) to discover DNA sequence motifs that are 

associated with methylation states and cell-to-cell variability (Figure 1d). 

 

Accurate prediction of single-cell methylation states 
First, we assessed the ability of DeepCpG to predict single-cell methylation 

states and compared the model to existing imputation strategies for DNA 

methylation (Methods). As a baseline approach, we considered local 

averaging of the observed methylation states, either in 3 kb windows centred 

on the target site of the same cell (WinAvg) [36], or across cells at the target 

site (CpGAvg). Additionally, we compared DeepCpG to a random forest 

classifiers [37] trained on individual cells using the DNA sequence information 

and neighbouring CpG states as input (RF). Finally, we evaluated a recently 

proposed random forest model to predict methylation rates for bulk ensembles 

of cells [12], which takes comprehensive DNA annotations into account, 

including genomic contexts, and tissue-specific regularly annotations such as 

DNase1 hypersensitivity sites, histone modification marks, and transcription 
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factor binding sites (RF Zhang).  All methods were trained, selected, and 

tested on distinct chromosomes via holdout validation (Methods). Since the 

proportion of methylated versus unmethylated CpG sites can be unbalanced 

in globally hypo- or hyper-methylated cells, we used the area under the 

receiver operating characteristics curve (AUC) to quantify the prediction 

performance of different models. We have also considered a range of 

alternative metrics, including precision-recall curves, F1 score [38], and 

Matthews correlation coefficient [39], resulting in overall consistently 

conclusions  (Additional File 1: Figure 1-3).  

 

Initially, we applied all methods to 18 serum-cultured mouse embryonic stem 

cells (mESCs, average CpG coverage 17.7%, Additional File 1: Figure 4), 

profiled using whole-genome single-cell bisulfite sequencing (scBS-seq [5]). 

 

DeepCpG yielded more accurate predictions than any of the alternative 

methods, both genome-wide and in different genomic contexts (Figure 2). 

Notably, DeepCpG was consistently more accurate than RF Zhang, a model 

that relies on genomic annotations. These results indicate that DeepCpG can 

automatically learn higher-level annotations from the DNA sequence. This 

ability is particularly important for analysing single-cell datasets, where 

individual cells may be from different cell types and states, making it difficult to 

derive appropriate annotations. 

 

To assess the relative importance of DNA sequence features compared to 

neighbouring CpG sites, we trained the same models, however, either 
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exclusively using DNA sequence features (DeepCpG Seq, RF Seq) or 

neighbouring methylation states (DeepCpG CpG, RF CpG). Consistently with 

previous studies in bulk populations [12], methylation states were more 

predictive than DNA features, and models trained with both CpG and DNA 

features performed best (Figure 2b). Notably, DeepCpG trained with CpG 

features alone outperformed a random forest classifiers trained with both CpG 

and DNA features. A likely explanation for the accuracy of the CpG module is 

its recurrent network architecture, which enables the module to effectively 

transfer information from neighbouring CpG sites across different cells 

(Additional File 1: Figure 5, 20). 

 

The largest relative gains between RF and DeepCpG were observed when 

training both models with DNA sequence information only (AUC 0.83 versus 

0.80, Fig. 2b). This demonstrates the strength of the DeepCpG DNA module 

to extract predictive sequence features from wide DNA sequence windows of 

up to 1001 bp (Additional File 1: Figure 7a), which is in particular critical for 

accurate predictions from DNA in uncovered genomic regions, for example 

when using reduced representation sequencing data [6–8]. Consistent with 

this, DeepCpG outperformed other methods by a large margin in genomic 

contexts with low CpG coverage (Figure 2c, Additional File 1: Figure 6).  

 

Next we explored the prediction performance of all models in different 

genomic contexts. In line with previous findings [12,13], all models performed 

best in GC-rich contexts (Figure 2d). However, the relative gains in 

performance of DeepCpG were largest in GC-poor genomic contexts, 
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including non-CGI promoters, enhancer regions, and histone modification 

marks (H3K4me1, H3K27ac) — contexts that are known to be associated with 

higher methylation variability between cells [36]. 

 

We also applied DeepCpG to 12 2i-cultured mESCs profiled using scBS-seq 

[5] and to data from three cell types profiled using scRRBS-seq [8], including 

25 human hepatocellular carcinoma cells (HCC), 6 human heptoplastoma-

derived (HepG2) cells, and an additional set of 6 mESCs. Notably, in contrast 

to the serum cells, the human cell types are globally hypo-methylated 

(Additional File 1: Figure 4). Across all cell types, DeepCpG yielded 

substantially more accurate predictions than alternative methods, 

demonstrating the broad applicability of the model, including to hypo- and 

hyper-methylated cells, as well to data generated using different sequencing 

protocols. 
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Figure 2 | DeepCpG accurately predicts single-cell CpG methylation states. (a) 
Genome-wide prediction performance for imputing CpG sites in 18 serum-grown 
mouse embryonic stem cells (mESCs) profiled using scBS-seq [5]. Performance is 
measured by the area under the receiver-operating characteristic curve (AUC), using 
holdout validation. Considered were DeepCpG, a random forest classifiers trained 
either using DNA sequence and CpG features (RF), or trained using additional 
annotations from corresponding cell types (RF Zhang [12]). Baseline models inferred 
missing methylation states by averaging observed methylation states, either across 
consecutive 3 kb regions within individual cells (WinAvg [5]), or across cells at a 
single CpG site (CpGAvg).  (b) Performance breakdown of DeepCpG and RF, 
considering models either trained exclusively using methylation features (DeepCpG 
CpG, RF CpG) or DNA features (DeepCpG DNA, RF DNA). (c) AUC of the models 
as in (a) stratified by genomic contexts with variable coverage across cells. Trend 
lines were fit to the observed coverage levels using local polynomial regression 
(LOESS [40]); shaded areas denote 95% confidence intervals. (d) AUC for 
alternative sequence contexts. All corresponds to the genome-wide performances as 
in (a). (e) Genome-wide prediction performance on 12 2i-grown mESCs profiled 
using scBS-seq [5], as well as three cell types profiled using scRRBS-seq [8], 
including 25 human HCC cells, 6 HepG2 cells, and 6 additional mESCs. 
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Estimation of the effect of DNA motifs and sequence mutations on 
methylation states 
In addition to imputing missing methylation states, DeepCpG can be used to 

discover methylation-associated motifs, and to investigate the effect of DNA 

sequence mutations on CpG methylation. 

 

To explore this, we used the DeepCpG DNA module trained on serum 

mESCs, and analysed the learnt filters of the first convolutional layer. These 

filters recognize DNA sequence motifs similarly to conventional position 

weight matrices, and can be visualised as sequence logos (Figure 3, 

Additional File 2). We considered two complementary metrics to assess the 

importance of the 128 motifs discovered by DeepCpG: i) their occurrence 

frequency in DNA sequence windows (activity), and ii) their estimated 

association with single-cell methylation states (Additional File 1: Figure 8). 

To investigate the co-occurrence of motifs across sequence windows, we 

applied principal component analysis (Figure 3) and hierarchical clustering 

(Additional File 1: Figure 9, 10) to motif activities.  

 

Motifs with similar nucleotide composition tended to co-occur in the same 

sequence windows, where two major motif clusters were associated with 

increased or decreased methylation levels (Additional File 1: Figure 11). 

Consistent with previous findings [16,41,42], we observed that motifs 

associated with decreased methylation tended to be CG rich and were most 

active in CG rich promoter regions, transcription start sites, as well as in 

contexts with active promoter marks such as H3K4me3 and p300 sites 

(Additional File 1: Figure 10). Conversely, motifs associated with increased 
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methylation levels tended to be AT rich and were most active in CG poor 

genomic contexts (Additional File 1: Figure 10).  

 

20 out of the 128 discovered motifs significantly (FDR<0.05) matched motifs 

annotated in the CIS-BP [43] and UniPROPE [44] database. 17 of these 

motifs were transcription factors with a known implication in DNA methylation 

[16,45,46], including CTCF [47], E2f [48], and members of the Sp/KLF family 

[49] — transcription factors and regulators of cell differentiation. 13 out of the 

20 annotated motifs had been shown to interact with DNMT3a and DNMT3b 

[45], two major DNA methylation enzymes. Three motifs have no clear 

associations with DNA methylation. These included Foxa2 [50,51] and Srf 

[52,53], which play roles in cell differentiation and embryonic development, as 

well as Zfp637 [54,55], a zinc finger protein that had recently been implicated 

with spermatogenesis in mouse. 
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Figure 3: Discovered sequence motifs associated with DNA methylation. 
Clustering of 128 motifs discovered by DeepCpG. Shown are the first two principal 
components of the motif occurrence frequencies in sequence windows (activity). 
Triangles denote motifs with significant (FDR<0.05) similarity to annotated motif in 
the CIS-BP [43] or UniPROPE [44] database. Marker size indicates the average 
activity; the estimated motif effect on methylation level is shown in colour. Sequence 
logos are shown for representative motifs with larger effects, including 10 annotated 
motifs.  
 

The trained DeepCpG model can also be used to estimate the effect of single 

nucleotide mutations on CpG methylation. In order to efficiently assess the 

mutational effect, we adapted a gradient-based approach [56], which is 

markedly more efficient than previous approaches [30,31,33] (Methods).  As 

expected, sequence changes in the direct vicinity of the target site had the 

largest effects (Figure 4). Mutations in CG dense regions such as CpG 

islands or promoters tended to have smaller effects, suggesting that DNA 
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methylation in these genomic contexts is more robust to single base-pair 

mutations. Globally, we observed a negative correlation between the 

predicted effect of single-nucleotide changes and DNA sequence 

conservation ( 𝑃 < 1.0×10'(),	 Additional File 1: Figure 12), providing 

evidence that estimated mutational effects capture genuine effects. We further 

investigated DeepCpG effect predictions in HepG2 cells for 2,379 methylation 

QTLs (mQTLs) [57], and found that effects are significantly larger for known 

mQTLs compared to matched random variants (𝑃 < 1.0×10'(),	Wilcoxon rank 

sum test; Additional File 1: Figure 13, 14). 

 

 
Figure 4: Effect of point mutations on DNA methylation. 
Average genome-wide predicted effect of DNA sequence mutations in different 
genomic contexts as a function of the distance to the CpG site.  
 

Discovery of DNA motifs that are associated with methylation variability 
We further analysed the influence of motifs discovered by DeepCpG on 

methylation variability between cells. 
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To discern motifs that affect variability between cells from those that affect the 

average methylation level, we trained a second neural network. This network 

had the same architecture and in particular reused the motifs from the DNA 

module of DeepCpG, however was trained to jointly predict the variability 

across cells and the mean methylation level of each CpG site (Methods). 

 

Notably, this model could predict both global changes in mean methylation 

levels (Pearson’s R=0.80, MAD=0.01, Additional File 1: Figure 15), as well 

as cell-to-cell variability (Pearson’s R=0.44, MAD=0.03, Figure 5d; Kendall’s 

R=0.29, Additional File 1: Figure 16).  

 

In general, there is an intrinsic mean-variance relationship of single-cell 

methylation states (Additional File 1: Figure 17), and hence the separation 

of the motif impact on mean methylation and methylation variance is partially 

confounded. To disentangle this relationship, we developed an approach to 

separately estimate the effect of individual motifs on cell-to-cell variability and 

mean methylation levels (Methods). Briefly, we quantified motif effects by 

correlating motif activities with predicted mean methylation levels and cell-to-

cell variability, and used the difference between these effect size estimates to 

identify variance- and mean methylation associated motifs. This analysis 

identified 22 motifs that were primarily associated with cell-to-cell variance 

(Figure 5). These motifs were most active in CG-poor and active enhancer 

regions — sequence contexts with increased epigenetic variability between 

cells [36]. 12 of the identified motifs were AT-rich and associated with 
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increased variability, including the differentiation factors Foxa2 [50,51], 

Hmg20b [58], and Zfp637 [54,55]. Notably, variance-increasing motifs were 

more frequent in un-conserved regions such as active enhancers, in contrast 

to variance- decreasing motifs, which were enriched in evolutionary 

conserved regions such as gene promoters (Figure 5b, Additional File 1: 

Figure 18). Our analysis also revealed 4 motifs that were primarily associated 

with mean methylation levels, which were in contrast CG rich and most active 

in conserved regions. 

 

To explore whether the model predictions for variable sites are functionally 

relevant, we overlaid predictions with methylome-transcriptome linkages 

obtained using parallel single-cell methylation and transcriptome sequencing 

in the same cell type [10]. The rationale behind this approach is that regions 

with increased methylation variability are more likely to harbour associations 

with gene expression. Consistent with this hypothesis, we identified a weak 

but globally significant association (Pearson’s correlation R=0.11, 𝑃 =

5.72×10'(0,			Additional File 1: Figure 19).  
  



 16 

 
Figure 5: Prediction of methylation variability from local DNA sequence. (a) 
Difference of motif effect on cell-to-cell variability and methylation levels for different 
genomic contexts on test chromosomes. Motifs associated with increased cell-to-cell 
variability are highlighted in brown; motifs that were primarily associated with 
changes in methylation level are shown in purple. (b) Genome-wide correlation 
coefficients between motif activity and DNA sequence conservation (left), as well as 
cell-to-cell variability (right). (c) Sequence logos for selected motifs identified in (a), 
which are marked by asterisks in (b). (d) Boxplots of the predicted and the observed 
cell-to-cell variability for different genomic contexts on held out test chromosomes 
(left), alongside Pearson’s and Kendall’s correlation coefficients within contexts 
(right). 
 

Conclusions 
Here we reported DeepCpG, a computational approach based on 

convolutional neural networks for modelling low-coverage single-cell 

methylation data. In applications to mouse and human cells, we have shown 

that DeepCpG accurately predicts missing methylation states, and detects 

sequence motifs that are associated with changes in methylation levels and 

cell-to-cell variability. 
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We have demonstrated that our model enables accurate imputation of missing 

methylation states, thereby facilitating genome-wide downstream analyses. 

DeepCpG offers major advantages in shallow sequenced cells as well as in 

sparsely covered sequence contexts with increased methylation variability 

between cells. More accurate imputation methods may also help to reduce the 

required sequencing depth in single-cell bisulfite sequencing studies, thereby 

enabling the analysis of larger numbers of cells at reduced cost. 

 

We have further shown that DeepCpG can be used to identify annotated and 

de novo sequence motifs that are predictive for DNA methylation levels or 

methylation variability, and to estimate the effect of DNA sequence mutations. 

Models such as DeepCpG further allow discerning pure epigenetic effects 

from variation that reflect DNA sequence changes. Although we have not 

considered this in our work, it would also be possible to use the model 

residuals for studying methylation variability that is unlinked to DNA sequence 

effects. 

 

Finally, we have used additional data obtained from parallel methylation-

transcriptome sequencing protocols [10] to annotate regions with increased 

methylation variability. An important area of future work will be to integrate 

multiple data modalities profiled in the same cells using parallel-profiling 

methods [8,10], which are now becoming increasingly available for different 

molecular layers. 
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Methods 
Accession codes The scBS-seq data from 18 serum and 12 2i ES-cells have 

previously been described in Smallwood et al. [5] and are available under the Gene 

Expression Omnibus (GEO) accession number GSE56879. 

 

Availability of code An implementation of DeepCpG is available at 

https://github.com/cangermueller/deepcpg. 
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DeepCpG model 
DeepCpG consists of a DNA module to extract features from the DNA 

sequence, a CpG module to extract features from the CpG neighbourhood of 

all cells, and a multi-task fusion model that integrates the evidence from both 

modules to predict the methylation state of target CpG sites for multiple cells. 
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DNA module 
The DNA module is a convolutional neural network (CNN) with multiple 

convolutional and pooling layers, and one fully connected hidden layer. CNNs 

are designed to extract features from high-dimensional inputs while keeping 

the number of model parameters tractable by applying a series of 

convolutional and pooling operations. Unless stated otherwise, the DNA 

module takes as input a 1001 bp long DNA sequence centred on a target 

CpG site 𝑛, which is represented as a binary matrix 𝑠3 by one-hot encoding 

the D = 4 nucleotides as binary vectors A=[1, 0, 0, 0], T=[0, 1, 0, 0], G=[0, 0, 

1, 0], and C=[0, 0, 0, 1]. The input matrix 𝑠3  is first transformed by a 1d-

convolutional layer, which computes the activations 𝑎356  of multiple 

convolutional filters 𝑓 at every position 𝑖 as follows: 

𝑎356 = ReLU 𝑤5>?𝑠3,6@>,?A
?B(

C
>B(    (1) 

Here, 𝑤5	are the parameters or weights of convolutional filter 𝑓 of length 𝐿. 

These can be interpreted similarly to position weight matrices (PWM), which 

are matched against the input sequence 𝑠3  at every position 𝑖 to recognize 

distinct motifs. The ReLU 𝑥 = max	(0, 𝑥)  activation function sets negative 

values to zero, such that 𝑎356  corresponds to the evidence that the motif 

represented by 𝑤5 occurs at position 𝑖. 

 

A pooling layer is used to summarize the activations of P adjacent neurons by 

their maximum value 

𝑝356 = max L MN/P 𝑎35,6@L . 

Non-overlapping pooling is applied with step size 𝑃 to decrease the dimension 

of the input sequence and hence the number of model parameters. The DNA 
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module has multiple pairs of convolutional-pooling layers to learn higher-level 

interactions between sequence motifs, which are followed by one final fully 

connected layer with a ReLU activation function. The number of convolutional-

pooling layers was optimized on the validation set. For example, two layers 

were selected for models trained on serum, HCC, and mESC cells, and three 

layers for the 2i and HepG2 cells (Additional Table 2). 

CpG module 
The CpG module consists of a non-linear embedding layer to model 

dependencies between CpG sites within cells, which is followed by a 

bidirectional gated recurrent network (GRU) [24] to model dependencies 

between cells. Inputs are 100𝑑  vectors 𝑥(, … , 𝑥S,  where 𝑥T  represents the 

methylation state and distance of 𝐾 = 25 CpG sites to the left and to the right 

of a target CpG site in cell 𝑡. Distances were transformed to relative ranges 

[0; 1]	by dividing by the maximum genome-wide distance. The embedding 

layer is fully connected and transforms 𝑥T into a 256𝑑 vector	𝑥T, which allows 

to learn possible interactions between methylations states and distances 

within cell 𝑡: 

𝑥T = ReLU 𝑊 ∙ 𝑥T + 𝑏  

The sequence of vectors 𝑥T are then fed into a bidirectional GRU [24], which 

is a variant of a recurrent neural network (RNN). RNNs have been 

successfully used for modelling long-range dependencies in natural next 

[59,60], acoustic signals [61], and more recently genomic sequences [62,63]. 

A GRU scans input sequence vectors 𝑥(, … , 𝑥S	 from left to right, and encodes 

them into fixed-sized hidden state vectors ℎ(, … , ℎS: 

𝑟T = sigmoid 𝑊>f ∙ 𝑥T +𝑊gf ∙ ℎT'( + 𝑏f  
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𝑢T = sigmoid 𝑊>i ∙ 𝑥T +𝑊gi ∙ ℎT'( + 𝑏i  

ℎT = tanh 𝑊>g ∙ 𝑥T +𝑊gg(𝑟T⨀ℎT'( + 𝑏g  

ℎT = 𝑢T⨀ℎT'( + 1 − 𝑢T ⨀ℎT 

The reset gate 𝑟T  and update gate 𝑢T  determine the relative weight of the 

previous hidden state  ℎT'(and the current input 𝑥T  for updating the current 

hidden state	ℎT. The last hidden state ℎS summarizes the entire sequence as 

a fixed-sized vector. Importantly, the set of parameters 𝑊  and 𝑏  are 

independent of the sequence length 𝑇 , which allows summarising the 

methylation neighbourhood of a variable number of cells. 

To encode cell-to-cell dependencies independently of the order of cells, the 

CpG module is based on a bidirectional GRU. It consists of a forward and 

backward GRU with 256𝑑  hidden state vectors ℎT , which scan the input 

sequence from the left and right, respectively. The last hidden state vector of 

the forward and backward GRU are concatenated into a 512𝑑 vector, which 

froms the output of the CpG module.  

Fusion module 
The fusion model takes as input the concatenated last hidden vectors of the 

DNA and CpG module, and models interactions between the extracted DNA 

sequence and CpG neighbourhood features via two fully connected hidden 

layers with 512  neurons and ReLU activation function. The output layer 

contains 𝑇 sigmoid neurons to predict the methylation rate 𝑦3T ∈ [0; 1] of CpG 

site 𝑛 in cell 𝑡: 

𝑦3T(x)=sigmoid(x)=
1

1 + e'r  
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Model training 
Model parameters were learnt on the training set by minimizing the following 

loss function: 

𝐿 𝑤 = NLLt 𝑦, 𝑦 + 𝜆P 𝑤 P 

Here, the weight-decay hyper-parameter 𝜆P  penalises large model weights 

quantified by the L2 norm, and NLLt 𝑦, 𝑦  denotes the negative log-likelihood, 

which measures how well the predicted methylation rates 𝑦3T fit to the true 

binary methylation states 𝑦3T ∈ {0,1}: 

𝑁𝐿𝐿t 𝑦, 𝑦 = − 𝑜3T

S

TB(

z

3B(

𝑦3T𝑙𝑜𝑔 𝑦3T + 1 − 𝑦3T log	(1 − 𝑦3T)  

𝑜3T  is one if the true methylation state 𝑦3T is observed for CpG site 𝑛 in cell 𝑡, 

and zero otherwise. Dropout [64] with different dropout rates for the 

sequence, CpG, and fusion module was used for additional regularization. 

Model parameters were initialized randomly following the approach in Golorot 

et al. [65]. The loss function was optimized by mini-batch stochastic gradient 

descent with a batch size of 128 and a global learning rate of 0.0001. The 

learning rate was adapted by Adam [66], and decayed by a factor of 0.95 after 

each epoch. Learning was terminated if the validation loss did not improve 

over ten consecutive epochs (early stopping). The DNA and CpG module 

were pre-trained independently to predict methylation from the DNA sequence 

(DeepCpG Seq) or the CpG neighbourhood (DeepCpG CpG). For training the 

joint module, only the parameters of the hidden layers and the output layers 

were optimized, whiling keeping the parameters of the pre-trained DNA and 

CpG module fixed. Training DeepCpG on 18 serum mESCs using a single 

NVIDIA Tesla K20 GPU took approximately 24 hours for the DNA module, 12 
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hours for the CpG module, and 4 hours for the fusion module. Model hyper-

parameters were optimized on the validation set by random sampling [67], 

and are summarized in Additional  Table 2. DeepCpG was implemented in 

Python using Theano [68] 0.8.2 and Keras [69] 1.1.2 

Prediction performance evaluation 

Data pre-processing 
We evaluated DeepCpG on different cell types profiled with scBS-seq [5] and 

scRRBS-seq [8].   

 

scBS-seq profiled cells contained 18 serum and 12 2i mouse embryonic stem 

(mESCs), which were pre-processed as described in Smallwood et al. [5], 

with reads mapped to the GRCm38 mouse genome. We excluded serum cell 

RSC27_4 and RSC27_7 since their methylation pattern deviated strongly 

from the remaining serum cells.  

 

scRRBS-seq profiled cells were downloaded from GEO (GSE65364) and 

contained 25 human hepatocellular carcinoma cells (HCCs), 6 human 

heptoplastoma-derived cells (HepG2), and 6 mESCs. Following Hou et al. [8], 

HCC cell Ca26 was excluded, as well as CpG sites with less than four read 

counts. HCC and HepG2 cells were mapped to GRCh38, and mESC cells to 

GRCm38 using the liftOver tool from the UCSC Genome Browser. 

 

Binary CpG methylation states for both scBS-seq and scRRBS-seq profiled 

cells were obtained for CpG sites with mapped reads, by defining sites with 
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more methylated than un-methylated read counts as methylated, and un-

methylated otherwise. 

Holdout validation 
For all prediction experiments and evaluations, we used chromosomes 1, 3, 5, 

7, 9, and 11 as training set, chromosomes 2, 4, 6, 8, 10, and 12 as test set, 

and the remaining chromosomes as validation set (Additional Table 5). For 

each cell type, models were fit on the training set, hyper-parameters 

optimized on the validation set, and all reported accuracies and interpretations 

exclusively evaluated on the test set. For computing binary evaluation metrics 

such as accuracy, F1 score, or MCC score, predicted methylation probabilities 

greater than 0.5 were rounded to one and zero otherwise. 

 

The prediction performance of DeepCpG was compared with averaging CpG 

sites either in windows within the same cell (WinAvg), or across cells 

(CpGAvg). We further evaluated random forest classifiers trained on each cell 

separately using either features similar to DeepCpG (RF), or genome 

annotation marks as described in Zhang et al. [12]  (RF Zhang).  

Window averaging (WinAvg) 
For window averaging, the methylation rate	𝑦3T of CpG site n and cell t was 

estimated as the mean of all observed CpG neighbours 𝑦3@L,T	in a window of 

length W = 3,001 bp centred on the target CpG site n: 

𝑦3T = mean
L M~P ,L��

(𝑦3@L,T) 

𝑦3T was set to the mean genome wide methylation rate of cell t if no CpG 

neighbours were present in the window. 
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CpG averaging (CpGAvg) 
For CpG averaging, the methylation rate 𝑦3T  of CpG site 𝑛  in cell 𝑡  was 

estimated by averaging the observed methylation states 𝑦3T� of all other cells 

𝑡′ ≠ 𝑡:  

𝑦3T = meanT��T(𝑦3T�) 

𝑦3T  was set to the genome wide average methylation rate of cell t if no 

methylation states were observed in any of the other cells. 

Random forest models (RF, RF Zhang) 
Features of the RF model were i) the methylation state and distance of 25 

CpG sites to the left and right of the target site (100 features), and ii) 𝑘-mer 

frequencies in the 1001 bp genomic sequence centred on the target site (256 

features). The optimal value for k (𝑘 = 4) was found via hold-out validation 

(Additional File 1: Figure 20a). 

 

The set of features for the RF Zhang model (Additional Table 4) included a) 

the methylation state and distance of 2 CpG neighbours to the left and right of 

the target site (8 features), b) annotated genomic contexts (23 features), c) 

transcription factor binding sites (24 features), d) histone modification marks 

(28 features), and e) DNaseI hypersensitivity sites (1 feature). All features 

were downloaded from the ChipBase database and UCSC Genome Browser 

for the GRCm37 mouse genome, and mapped to the GRCm38 mouse 

genome using the liftOver tool from the UCSC Genome Browser. 

 

A separate random forest model was trained for each cell without using data 

from other cells (Additional File 1: Figure 20b). All hyper-parameters, 
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including the number of trees and the tree depth, were optimized for each cell 

separately on the validation set by random sampling. The implementation is 

based on the RandomForestClassifer class of the scikit-learn v0.17 Python 

package.  

 

Motif analysis 
The motif analysis as presented in the main text was performed using the 

DNA module trained on serum mESCs. Motifs discovered for 2i, HCC, 

HepG2, and mESC cells are provided in Additional File 2. In the following, 

the filters of the first convolutional layer of the DNA module will be denoted by 

the motif that they recognize in the input sequence. 

Visualization, motif comparison, GO analysis 
Filters of the convolutional layer of the DNA module were visualized by 

aligning sequence fragments that maximally activated them. Specifically, the 

activations of all filters were computed for a set of sequences. For each 

sequence 𝑠3  and filter 𝑓  of length 𝐿 , sequence window 	𝑠3,6'C, … , 𝑠3,6@C	were 

selected, if the activation 𝑎356 of filter 𝑓 at position 𝑖 (Equation 1), was greater 

than 0.5 of the maximum activation of 𝑓  over all sequences, i.e. 𝑎356 >

0.5max3,6(𝑎356). Selected sequence windows were aligned and visualized as 

sequence motifs using WebLogo [70] version 3.4.  

 

Motifs discovered by DeepCpG were matched against annotated motifs in the 

Mus Musculus CIS-BP [43] and UniPROBE [44] database (version 12.12, 

updated 14 Mar 2016) using Tomtom 4.11.1 from the MEME-Suite [71]. 

Matches at FDR< 0.05 were reported as significant. 
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For Genome Ontology (GO) enrichment analysis, the web interface of the 

GOMo tool of MEME-Suite was used. 

Quantification of motif importance 
The importance of each filter was quantified by its activity (occurrence 

frequency) and its influence on model predictions.  

 

Specifically, the activity of filter 𝑓 for a set of sequences, e.g. within a certain 

genomic context, was computed as the average of mean sequence activities 

𝑎35 , where 𝑎35	 is the weighted 	mean of activities 𝑎356  across all window 

positions 𝑖	(Equation 1). A linear weighting function was used to compute 

𝑎35	that assigns the highest relative weight to the centre position. 

 

The influence of filter 𝑓 on the predicted methylation states 𝑦3T of cell 𝑡 was 

computed as the Pearson correlation 𝑟5T = cor3(𝑎35, 𝑦3T)  over CpG sites 𝑖 , 

and the mean influence 𝑟5	over all cells by averaging 𝑟5T. 

Motif co-occurrence 
The co-occurrence of filters (Figure 3a, Additional File 1: Additional Figure 

9) was quantified using principal component analysis on the mean sequence 

activations 𝑎35. 

Conservation analysis 
The association between filter activities 𝑎35 and sequence conservation was 

assessed by the Pearson correlation. PhastCons [72] conservation scores for 
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the Glire subset (phastCons60wayGlire) were downloaded from the UCSC 

Web Browser were used to quantify sequence conservation. 

Effect of sequence and methylation state changes 
We used gradient-based optimization as described in Simonyan et al. [56] to 

quantify the effect of changes in the input sequence 𝑠3  on predicted 

methylation rates 𝑦3T(𝑠3) . Specifically, let 𝑦3(𝑠3) = meanT 𝑦3T(𝑠3)  be the 

mean predicted methylation rate across cells 𝑡 . Then the effect 𝑒3,6,?�  of 

changing nucleotide 𝑑 at position 𝑖 was quantified as: 

𝑒36?� =
𝑑 𝑦3(𝑠3)
𝑑𝑠36?

∗ (1 − 𝑠36?) 

Here, the first term is the first-order gradient of 𝑦3 with respect to 𝑠36?, and the 

second term sets the effect of wild-type nucleotides (𝑠36? = 1)	to zero. The 

overall effect score 𝑒36�  at position 𝑖 was computed as the maximum absolute 

effect over all nucleotide changes, i.e. 𝑒36� = max?|𝑒36?� |. The overall effect of 

changes at position 𝑖  as shown in Figure 3b was computed as the mean 

effect 𝑒6� = mean3 𝑒36�  across all sequences.  For the mutation analysis 

shown in Additional File 1: Figure 13, 𝑒36�  was correlated with PhastCons 

(phastCons60wayGlire) conservation scores. For quantifying the effect of 

methylation QTLs (mQTLs) as shown in Additional 1: Additional Figure 14, 

we obtained mQTLs from the supplementary table of Kaplow. et al. [57], and 

used the DeepCpG DNA module trained on HepG2 cells to compute effect 

scores.  Non-mQTLs variants were randomly sampled within sequence 

windows, distance-matched to real mQTLs variants. 
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Predicting cell-to-cell variability 
For predicting cell-to-cell variability (variance) and mean methylation levels, 

we trained a second neural network with the same architecture as the DNA 

module, except for the output layer.  Specifically, output neurons were 

replaced by neurons with a sigmoid activation function to predict for a single 

CpG site 𝑛 both the mean methylation rate  𝑚3� and cell-to-cell variance 𝑣3� 

within a window of size 𝑠 ∈ {1000, 2000, 3000, 4000, 5000} bp. Multiple window 

sizes were used to make predictions at different scales, using a multi-task 

architecture, and to mitigate the uncertainty of mean- and variance estimates 

in low-coverage regions. For training the resulting model, parameters were 

initialized with the corresponding parameters of the DNA module and fine-

tuned, except for motif parameters of the convolutional layer. The training 

objective was  

𝐿 𝑤 = MSEt 𝑚,𝑚, 𝑣, 𝑣 + 𝜆( 𝑤 ( + 𝜆P 𝑤 P, 

where MSE the is mean squared error between model predictions and training 

labels: 

𝑀𝑆𝐸t 𝑚,𝑚, 𝑣, 𝑣 = (𝑚3� − 𝑚3�)P	
�

�B(

+
z

3B(

(𝑣3� − 𝑣3�)P. 

𝑚3� is the estimated mean methylation level for a window centred on target 

site 𝑛 of a certain size indexed by 𝑠: 

𝑚3� =
1
𝑇 𝑚3�T

S

TB(

. 

Here, 𝑚3�T denotes the estimated mean methylation rate of cell 𝑡 computed 

by averaging the binary methylation state 𝑦6T of all observed CpG sites 𝑌3�T 	in 

window 𝑠: 
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𝑚3�T =
1
𝑌3�T

𝑦6T
6∈����

 

𝑣3� denotes the estimated cell-to-cell variance 

𝑣3� =
(
S

𝑚3�T − 𝑚3�
PS

TB( . 

Identifying motifs associated with cell-to-cell variability 
The influence 𝑟5��  of filter	𝑓 on cell-to-cell variability in widows of size 𝑠 was 

computed as the Pearson correlation between mean sequence filter activities 

𝑎35 and predicted variance levels 𝑣3� of sites 𝑛: 

𝑟5�� 	= cor3(𝑎35, 𝑣3�) 

The influence 𝑟5��	on predicted mean methylation levels 𝑚3�  was computed 

analogously. The difference 𝑟5�? = |𝑟5�� | 	− |𝑟5��|  between the absolute value of 

the influence on variance and mean methylation levels was used to 

differentiate between motifs that were associated with either high cell-to-cell 

variance (𝑟5�? > 0.25), or changes in mean methylation levels (𝑟5�? < −0.25). 

Functional validation of predicted variability 
For functional validation, methylation-transcriptome linkages as reported in 

Angermueller et al. [10] were correlated with the predicted cell-to-cell 

variability. Specifically, let 𝑟6��  be the linkage between expression levels of 

gene 𝑖 and the mean methylation levels of an adjacent region 𝑗 [10]. Then we 

correlated 𝑟6��  with 𝑣�, which is the average predicted variability over all CpG 

sites within context 𝑗, and FDR adjusted p-values over genes 𝑖 and contexts 𝑗. 

References 
1. Robertson KD. DNA methylation and human disease. Nat. Rev. Genet. 
2005;6:597–610.  



 31 

2. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from 
epigenomics. Nat. Rev. Genet. 2008;9:465–76.  

3. Laird PW. Principles and challenges of genome-wide DNA methylation 
analysis. Nat. Rev. Genet. 2010;11:191–203.  

4. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies 
and beyond. Nat. Rev. Genet. 2012;13:484–92.  

5. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, et 
al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic 
heterogeneity. Nat. Methods. 2014;11:817–20.  

6. Farlik M, Sheffield NC, Nuzzo A, Datlinger P, Schönegger A, Klughammer 
J, et al. Single-Cell DNA Methylome Sequencing and Bioinformatic Inference 
of Epigenomic Cell-State Dynamics. Cell Rep. 2015;10:1386–97.  

7. Guo H, Zhu P, Wu X, Li X, Wen L, Tang F. Single-cell methylome 
landscapes of mouse embryonic stem cells and early embryos analysed using 
reduced representation bisulfite sequencing. Genome Res. 2013;23:2126–35.  

8. Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P, et al. Single-cell triple omics 
sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in 
hepatocellular carcinomas. Cell Res. 2016;26:304–19.  

9. Peat JR, Dean W, Clark SJ, Krueger F, Smallwood SA, Ficz G, et al. 
Genome-wide Bisulfite Sequencing in Zygotes Identifies Demethylation 
Targets and Maps the Contribution of TET3 Oxidation. Cell Rep. 
2014;9:1990–2000.  

10. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, et al. 
Parallel single-cell sequencing links transcriptional and epigenetic 
heterogeneity. Nat. Methods. 2016;13:229–32.  

11. Hu Y, Huang K, An Q, Du G, Hu G, Xue J, et al. Simultaneous profiling of 
transcriptome and DNA methylome from a single cell. Genome Biol. 2016. 

12. Zhang W, Spector TD, Deloukas P, Bell JT, Engelhardt BE. Predicting 
genome-wide DNA methylation using methylation marks, genomic position, 
and DNA regulatory elements. Genome Biol. 2015;16:14.  

13. Stevens M, Cheng JB, Li D, Xie M, Hong C, Maire CL, et al. Estimating 
absolute methylation levels at single-CpG resolution from methylation 
enrichment and restriction enzyme sequencing methods. Genome Res. 
2013;23:1541–53.  

14. Ernst J, Kellis M. Large-scale imputation of epigenomic datasets for 
systematic annotation of diverse human tissues. Nat. Biotechnol. 
2015;33:364–76.  



 32 

15. Liu Z, Xiao X, Qiu W-R, Chou K-C. iDNA-Methyl: Identifying DNA 
methylation sites via pseudo trinucleotide composition. Anal. Biochem. 
2015;474:69–77.  

16. Whitaker JW, Chen Z, Wang W. Predicting the human epigenome from 
DNA motifs. Nat. Methods. 2015;12:265–72.  

17. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et 
al. Backpropagation Applied to Handwritten Zip Code Recognition. Neural 
Comput. 1989;1:541–51.  

18. Bengio Y. Learning Deep Architectures for AI. 2008;  

19. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.  

20. Bhasin M, Zhang H, Reinherz EL, Reche PA. Prediction of methylated 
CpGs in DNA sequences using a support vector machine. FEBS Lett. 
2005;579:4302–8.  

21. Lu L. Predicting DNA methylation status using word composition. J. 
Biomed. Sci. Eng. 2010;03:672–6.  

22. Zhou X, Li Z, Dai Z, Zou X. Prediction of methylation CpGs and their 
methylation degrees in human DNA sequences. Comput. Biol. Med. 
2012;42:408–13.  

23. Li Z, Chen L, Lai Y, Dai Z, Zou X. The prediction of methylation states in 
human DNA sequences based on hexanucleotide composition and feature 
selection. Anal. Methods. 2014;6:1897.  

24. Chung J, Gulcehre C, Cho K, Bengio Y. Empirical Evaluation of Gated 
Recurrent Neural Networks on Sequence Modeling. arXiv. 2014. 

25. Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y. What is the best multi-
stage architecture for object recognition? 2009 IEEE 12th Int. Conf. Comput. 
Vis. 2009. p. 2146–53.  

26. Zhang X, Zhao J, LeCun Y. Character-level Convolutional Networks for 
Text Classification. arXiv. 2015. 

27. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image 
Recognition. arXiv. 2015. 

28. Szegedy C, Ioffe S, Vanhoucke V. Inception-v4, Inception-ResNet and the 
Impact of Residual Connections on Learning. arXiv. 2016. 

29. Denas O, Taylor J. Deep modeling of gene expression regulation in an 
erythropoiesis model. Represent. Learn. ICML Workshop. 2013. 

30. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence 
specificities of DNA- and RNA-binding proteins by deep learning. Nat. 
Biotechnol. 2015;33:831–8.  



 33 

31. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with 
deep learning-based sequence model. Nat. Methods. 2015;12:931–4.  

32. Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RKC, et 
al. The human splicing code reveals new insights into the genetic 
determinants of disease. Science. 2015;347:1254806.  

33. Kelley DR, Snoek J, Rinn J. Basset: Learning the regulatory code of the 
accessible genome with deep convolutional neural networks. bioRxiv. 2015. 

34. Stormo GD, Schneider TD, Gold L, Ehrenfeucht A. Use of the 
“Perceptron” algorithm to distinguish translational initiation sites in E. coli. 
Nucleic Acids Res. 1982;10:2997–3011.  

35. Sinha S. On counting position weight matrix matches in a sequence, with 
application to discriminative motif finding. Bioinformatics. 2006;22:e454–63.  

36. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, et 
al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic 
heterogeneity. Nat. Methods. 2014;11:817–20.  

37. Breiman L. Random forests. Mach. Learn. 2001;45:5–32.  

38. Powers DM. Evaluation: from Precision, Recall and F-measure to ROC, 
Informedness, Markedness and Correlation. J. Mach. Learn. Technol. 
2011;2:37–63.  

39. Matthews BW. Comparison of the predicted and observed secondary 
structure of T4 phage lysozyme. Biochim. Biophys. Acta BBA - Protein Struct. 
1975;405:442–51.  

40. Cleveland WS. Robust Locally Weighted Regression and Smoothing 
Scatterplots. J. Am. Stat. Assoc. 1979;74:829–36.  

41. Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, et al. 
CpG islands influence chromatin structure via the CpG-binding protein Cfp1. 
Nature. 2010;464:1082–6.  

42. Mendenhall EM, Koche RP, Truong T, Zhou VW, Issac B, Chi AS, et al. 
GC-Rich Sequence Elements Recruit PRC2 in Mammalian ES Cells. Madhani 
HD, editor. PLoS Genet. 2010;6:e1001244.  

43. Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe 
P, et al. Determination and Inference of Eukaryotic Transcription Factor 
Sequence Specificity. Cell. 2014;158:1431–43.  

44. Newburger DE, Bulyk ML. UniPROBE: an online database of protein 
binding microarray data on protein-DNA interactions. Nucleic Acids Res. 
2009;37:D77–82.  



 34 

45. Hervouet E, Vallette FM, Cartron P-F. Dnmt3/transcription factor 
interactions as crucial players in targeted DNA methylation. Epigenetics. 
2009;4:487–99.  

46. Luu P-L, Scholer HR, Arauzo-Bravo MJ. Disclosing the crosstalk among 
DNA methylation, transcription factors, and histone marks in human 
pluripotent cells through discovery of DNA methylation motifs. Genome Res. 
2013;23:2013–29.  

47. Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, et 
al. Analysis of the Vertebrate Insulator Protein CTCF-Binding Sites in the 
Human Genome. Cell. 2007;128:1231–45.  

48. Tsai S-Y, Opavsky R, Sharma N, Wu L, Naidu S, Nolan E, et al. Mouse 
development with a single E2F activator. Nature. 2008;454:1137–41.  

49. Fernandez-Zapico ME, Lomberk GA, Tsuji S, DeMars CJ, Bardsley MR, 
Lin Y-H, et al. A functional family-wide screening of SP/KLF proteins identifies 
a subset of suppressors of KRAS -mediated cell growth. Biochem. J. 
2011;435:529–37.  

50. Lee CS, Sund NJ, Behr R, Herrera PL, Kaestner KH. Foxa2 is required for 
the differentiation of pancreatic α-cells. Dev. Biol. 2005;278:484–95.  

51. Wan H, Dingle S, Xu Y, Besnard V, Kaestner KH, Ang S-L, et al. 
Compensatory Roles of Foxa1 and Foxa2 during Lung Morphogenesis. J. 
Biol. Chem. 2005;280:13809–16.  

52. Marais R, Wynne J, Treisman R. The SRF accessory protein Elk-1 
contains a growth factor-regulated transcriptional activation domain. Cell. 
1993;73:381–93.  

53. Arsenian S, Weinhold B, Oelgeschläger M, Rüther U, Nordheim A. Serum 
response factor is essential for mesoderm formation during mouse 
embryogenesis. EMBO J. 1998;17:6289–99.  

54. Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner 
S, et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated 
hexanucleotide to affect chromatin and DNA methylation of imprinting control 
regions. Mol. Cell. 2011;44:361–72.  

55. Huang G, Yuan M, Zhang J, Li J, Gong D, Li Y, et al. IL-6 mediates 
differentiation disorder during spermatogenesis in obesity-associated 
inflammation by affecting the expression of Zfp637 through the 
SOCS3/STAT3 pathway. Sci. Rep. 2016;6:28012.  

56. Simonyan K, Vedaldi A, Zisserman A. Deep Inside Convolutional 
Networks: Visualising Image Classification Models and Saliency Maps. arXiv. 
2013. 



 35 

57. Kaplow IM, MacIsaac JL, Mah SM, McEwen LM, Kobor MS, Fraser HB. A 
pooling-based approach to mapping genetic variants associated with DNA 
methylation. Genome Res. 2015;gr.183749.114.  

58. Sumoy L, Carim L, Escarceller M, Nadal M, Gratacòs M, Pujana MA, et al. 
HMG20A and HMG20B map to human chromosomes 15q24 and 19p13.3 and 
constitute a distinct class of HMG-box genes with ubiquitous expression. 
Cytogenet. Genome Res. 2000;88:62–7.  

59. Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly 
learning to align and translate. arXiv. 2014. 

60. Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, et al. 
Google’s Neural Machine Translation System: Bridging the Gap between 
Human and Machine Translation. arXiv. 2016. 

61. Graves A, Mohamed A-R, Hinton G. Speech recognition with deep 
recurrent neural networks. 2013 IEEE Int. Conf. Acoust. Speech Signal 
Process. ICASSP. 2013. p. 6645–9.  

62. Lee B, Lee T, Na B, Yoon S. DNA-Level Splice Junction Prediction using 
Deep Recurrent Neural Networks. arXiv. 2015. 

63. Quang D, Xie X. DanQ: a hybrid convolutional and recurrent deep neural 
network for quantifying the function of DNA sequences. Nucleic Acids Res. 
2016;44:e107–e107.  

64. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. 
Dropout: A simple way to prevent neural networks from overfitting. J. Mach. 
Learn. Res. 2014;15:1929–58.  

65. Glorot X, Bengio Y. Understanding the difficulty of training deep 
feedforward neural networks. Int. Conf. Artif. Intell. Stat. 2010. 

66. Kingma D, Ba J. Adam: A Method for Stochastic Optimization. arXiv. 
2014. 

67. Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J. 
Mach. Learn. Res. 2012;13:281–305.  

68. Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, et 
al. Theano: new features and speed improvements. arXiv. 2012. 

69. Chollet F. Keras: Theano-based deep learning library [Internet]. Available 
from: https://github.com/fchollet/keras 

70. Crooks GE. WebLogo: A Sequence Logo Generator. Genome Res. 
2004;14:1188–90.  

71. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. 
MEME Suite: tools for motif discovery and searching. Nucleic Acids Res. 
2009;37:W202–8.  



 36 

72. Siepel A. Evolutionarily conserved elements in vertebrate, insect, worm, 
and yeast genomes. Genome Res. 2005;15:1034–50.  

 



Cell 1 

Cell 2 

Cell 3 

0 ? 0 ? 1 0 ? 

C C
C

C

C

C

G

G

G

CH3	

CH3 
CH3	

0 1 ? 1 ? 0 1 

1 ? 0 ? 1 ? 1 

scBS-Seq 

C

A

T

G

T

C

A

G

A

G

C

A

C
G
A

CG
G

C
A

T

C
G
A

T
G
C
G

A

C

T

G

A
T

C

C

G

T
A

G

C

T
A
G
C
T
C

G
A
C
A
T
C

G

A

T
G

A
T
T
C
A
T
A
G

A
T
C
T
A
C

G

T
A

T
A
T
A
C
G
C
C 

1 

0 

0 

2x 

DNA 

CpG 

DNA module 

CpG module 

Fusion module 

c 

a 

Conv 

b 

Variability 

C

G
T
A

G

C

T
A
G

C
T
C

G
A
C
A
T
C

G

A

T
G

A
T
T
C
A
T
A
G

A
T
C
T
A
C

G

T
A

A

C
G
T
C
G
T
G

C
A
T
A

C

G
TTTTAGCTACTCGTACGTAGCT

C
T
A
C
A
G
C
T
A
T

G
C
G

C

T
A
G
C
T
G
A
C
T
G
A

C
T
A
A

T

C
G

A

G

C

T

A

T

C

G
A

G
C
A
T
C

G
T

A

C
G
T

A

C
G
A
T
C

G
T

A

G
C
T

G
C
T

A

C

G
A

C
T

C
G
A

T

G
C

G

C

A

T

C

TA
G
C
T

C
G
A
G
ATAATCATGACT G

A

G

C

T

A
T

C

G
A

G
T
A
G
C
TACTAGAGTCAGTCAGCGTACTGATAGC

T
G

C
G

ACATTCGCGAAGTTCAGACTGGTACCGTACTGTCA A

G

T

C
A

T
C

A
C
T

A
C
T
A

G
C
T
A
C
T
A

G
G

A

T

C

A
T
G
C

A

G

T

Mean methylation levels 

Motif analysis 
Imputation 

●

●

● ● ●● ● ●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●● ● ●

● ● ●

●●●●●●● ●●●● ●●●●● ●

●

●

●

●●●●●● ●●● ●

●

0.00

0.25

0.50

0.75

1.00

86,402,000 86,402,500 86,403,000 86,403,500 86,404,000

Genomic position 

M
et

hy
la

tio
n 

ra
te

 

Observed 
Imputed 

d 

0 0 1 0 

0 1 0 1 

1 0 1 1 

Bidirectional GRU 

Pool 

Fully 
connected 



●

●
●
●

●

●

●

●

●●
●
●

●

●

●

●
●
●

●

●

●●
●●

●

●
●

●
●
●

●

●

●

●●●

●
●
●
●●

●
●

●

●
●
●●

●
●

●

●●
●

●

●●●

●●

●

●

●●

●

●

●
●

●
●●●

●

●

●
●
●●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.75

0.80

0.85

0.90

DeepCpG

DeepCpG CpG

DeepCpG DNA RF
RF CpG

RF DNA

RF Zhang
CpGAvg

WinAvg

AU
C

Model
DeepCpG
DeepCpG CpG
DeepCpG DNA
RF
RF CpG
RF DNA
RF Zhang
CpGAvg
WinAvg

d 

a b c 

0.6

0.7

0.8

0.9

Exon TSS
Promotor

DNase1
p300 CGI

H3K27me3

Gene body

CGI shore All
Intron

H3K36me3

Intergenic

H3K27ac

Non−C
GI promotor

Active
 enhancer

mESC enhancer

H3K4me1
LMR

AU
C

●
●

●
●●

●

●

●

●

●
●●

●

●

●

●●
●

●

●●●

●
●

●

●

●●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.78

0.81

0.84

0.87

0.90

0.93

DeepCpG

RF Zhang RF
CpGAvg

WinAvg

AU
C

●

●●
●

●
●
●●

●
●
●

●

●

●●●●
●
●

●
●●
●
●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●
●●
●●●●
●●●●●●●●
●●●●●
●
●

●
●

●
●●

●

●●
●

●

●
●
●●

●●●●
●

●●
●●
●

●

●●●
●●
●
●
●●
●●●
●●
●●
●●●
●
●●●
●

●

●

●●

●

●

●●
●●

●●

●

●
●

●●●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●●
●●
●

●

●●

●

●
●

●
●

●●●

●

●
●
●
●

●

●

●●
●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

2i HCC HepG2 mESC

0.65

0.70

0.75

0.80

0.85

0.875

0.900

0.925

0.950

0.975

0.80

0.85

0.90

0.86

0.90

0.94

DeepCpG

RF Zhang RF
CpGAvg

WinAvg

DeepCpG

RF Zhang RF
CpGAvg

WinAvg

DeepCpG

RF Zhang RF
CpGAvg

WinAvg

DeepCpG

RF Zhang RF
CpGAvg

WinAvg

AU
C

Model DeepCpG RF Zhang RF CpGAvg WinAvge 

●

●
●
●

●

●

●

●

●●
●
●

●

●

●

●
●
●

●

●

●●
●●

●

●
●

●
●
●

●

●

●

●●●

●
●
●
●●

●
●

●

●
●
●●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.75

0.80

0.85

0.90

DeepCpG

DeepCpG CpG
RF CpG RF

DeepCpG DNA
RF DNA

AU
C

●

● ● ●

●●

●

●
● ●

●

●
●

●●●●

●

●
●

●
●

●

●

●
●

●
●

●
●

●

●●

●● ●

●●●
●
● ●

●

●
● ●

●
●

●
●

●● ●●

●
●

●● ●● ●
●●● ●●● ●●
●●

●

●
● ●●

●● ●● ●● ●● ●●● ●●●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

● ●●
●

●●

●

● ●

●●

●
●

● ●
●

●

●

●● ●
●

●

●●
●

● ●●

●

●

●● ●●

●
●

●● ● ●● ●● ●
●●

●● ●●●
●

●
● ●●● ●● ●● ●● ●●● ● ●●

●

●

●

●●
●

● ●
●

●●

●●

●
●

●●
●

●

● ●●

●●
●

●
●

●

●
●

●

●

●

● ●●

●

● ●●
●

● ●

●

●
●

●
●

●

●●

● ●
●●

●

● ●

●
●●●

●●●●
●●

●●●
●

●

●

●
●

●

●
● ●

●
●

● ●●● ●● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.7

0.8

0.9

1.0

0.25 0.50 0.75
Coverage

AU
C



● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●
●

●●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●1

2

9

11

13

15
16

20

27

28

29

30

32

33

36 39

43
45

46

48

53

56

5760

61

62

63

67

68

70

72

74

75

77

79

83

85

8788

89

91

93

95

97 102

104

108

115

117
118

121

126

−0.2

−0.1

0.0

0.1

0.2

−0.10 −0.05 0.00 0.05 0.10

PC1

PC
2

A

C
T
G
T
C
G

T
C
A
C

G
A
T
T
A
C
T

C
G
A
A
G
C
C

A

T
C

G
T
A
G
T
A

G

C
T

A

G

C
T
A

C
T
A

C
T
C
TCGTGTGCTGCTACGTCGTA

G

C

T
A
T
C

G
C

A
T
T

C
G
A

TGTGTTGGT

G

C
T
A
T

A

C
G
G
T
A
A

C
G
T

AGAGCTCACAGTGTCACTGA
C

G
T
A
C

T

A
G
C

T

G
A
T
G
A
C
A
T
A
T
C
C
A
A

C
A
T
G
A
C
G
A

T

G
C

C

A

T

G

C

T
A

T

G

C
A
C

T
ACG

G
T
A

A

C

G
T

T

A

G
C
T

A
C
G
A

T

C
G
A
G
C
T

A

G
C
T

A
G
C
G

C
A
C
G
A

G

C
A

G
C
G
C

33: Sp3 

C

T

A
G
A
G
T

T
A

G
T

G
T

G
T
A
C
T

A

G
T
G
T
A
G
C

A
T
G

117: Klf7 

C
T

G
C
A
T
G
C
T
A
C
G

C
T
A
A
T
G
C

A
G
G
T
A

G
T

G
A

T
C

30: Ctcf 

G

ATATACAACTTCAGCTAGATCGCTAGCTACGTA
27: Foxa2 

G

C

T
A

G

T

A

G
T
A
G

C

A

TACTGTCAATTGCACGTA
46: Sry 

C
T
G

A

T

G

C

A

T
C
G
T
G
C
C
GG

A

CCGACG
A

T
G
C

62: Zfx 

G

C
AAGCAAGACACGATCGAGCAATCGA

36: Srf 

C

A

G

T
G

T

A

C

G
A
T
C

T

G
A

G

C
A
T
C

ATACATCTGGACT
60: Zfp637 

T
A
C
T

A

G

A
G
C
A
C
G
C
T

C
A
T

C
G
A
T
G

T
A
C
G
C
T

C
89: Egr2 

T

A

C
G
T

C

A

G

T

C
A
G
A
T
C
G
T

C

A

G

T

A
C
G
T
C
A

G
T
C

T

G
T

G
A
C
T

C

G
45: Klf6 

T

C

A
G

T

G

A
C

C

G

A

T
A
C

A
T
G
G

C
G

CGACTGA

C

A

G
T

G

A

T

C

A

G
C
TA
G
T

A

G
T
C
GTCGTGCATCGCT

G

C

A
T
C

A
T
G

C
A
TTTCTCAGAGATGCACGTCAT

T
G
A
T
G
A
G
A
A
TTTACGTCATGTAGTGA

C

G

A

T
C
A
G

C
A
C

ACACGCT
C

G
T
A
G
T

G
T
A
G

C

T
A

G

A

C

T

C
A
T
G

C
T

G
A
G
C
TAGCGTAGCTCTAGATGTCA

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24
25

26

27

28

29

30

31

32

33

34 35

36

37

38

39

40

41

42
43

44

45

46 47

48 49

50

51

52

53

54

55

56

57

5859

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7778

79

80

81

82

83

84

85
86

87
88

89

90

91

92

93

94

95

96

97

98

99 100

101

102

103

104
105

106

107

108

109

110
111

112

113

114
115

116

117
118

119

120

121

122

123

124

125

126

127

−0.2

−0.1

0.0

0.1

0.2

−0.10 −0.05 0.00 0.05 0.10
PC1

PC
2

−0.75
−0.50

−0.25
0.00 0.25 0.50Association Activity ● ● ●0.01 0.02 0.03 Type ● Annotated De novo



0.00

0.01

0.02

0.03

−50 −25 0 25 50

Distance

E
ffe

ct
 s

co
re

All
Active enhancer

CGI
CGI shore

LMR
Promotor

Non−CGI promotor
TSS



All

Active enhancer

CGI

CGI shore

Exon

Gene body

H3K27ac

H3K27me3

H3K4me1

Intergenic

Intron

LMR

mESC enhancer

p300

Promotor

Non−CGI promotor

TSS

0.000 0.025 0.050 0.075 0.100
Variance

Variance True Predicted

0.0

0.2

0.4

All

Active
 enhancer

CGI

CGI shore Exon

Gene body

H3K27ac

H3K27me3

H3K4me1

Intergenic
Intron

LMR

mESC enhancer
p300

Promotor

Non−C
GI promotor

TSS

C
or

re
la

tio
n

Correlation Pearson
Kendall

0.0 0.2 0.4
Correlation

Correlation Pearson
Kendall

LMR

mESC enhancer

Non−CGI promotor

Active enhancer

CGI shore

Intergenic

CGI

Intron

H3K27me3

Exon

All

Gene body

Promotor

H3K27ac

TSS

p300

H3K4me1

0.000 0.025 0.050 0.075 0.100
Variance

Variance True Predicted

G

ATATACAACTTCAGCTAGATCGCTAGCTACGTA
27 

Foxa2 

G

C

T
A

G

T

A

G
T
A
G

C

A

TACTGTCAATTGCACGTA
46 

Hmg20 

C

A

G

T
G

T

A

C

G
A
T
C

T

G
A

G

C
A
T
C

ATACATCTGGACT
60 

Zfp637 

G

C

T
A
G
A
T

C

G
T
A
G

C

T
A
C

T
A
G
T
A
A
TTGACTGACTGACT

88 

C

G

T
A
T

G
A
C
A

C

A
T
A

G

C
T
C

A
G
T
T
G
A
T
G
A
T
AATCAT

28 

G

T

C

T

G

C
A

G

T

C
A
C

G

T
A
T

A
T

ATAATGTACTGAGCTA
97 

C

T
G
A
T
G
A
G
T
A
A

C
T

G
C
T
A

A

T

G

C
A

CA
T
C

A

G

C

T
G

A
T
C

73 

Heterogeneity 
motifs 

Mean methylation 
motifs 

a  b  

d 

c 

p3
00

H3K
27

me3

Prom
oto

r
TSS

CGI
LM

R
Exo

n

CGI s
ho

re

Gen
e b

od
y All

Int
ron

Int
erg

en
ic

H3K
4m

e1

Non
−C

GI p
rom

oto
r

Activ
e e

nh
an

ce
r

mESC en
ha

nc
er

85
21
0
39
122
83
73
102
59
12
65
127
34
1: Zic1
113
126: Zfp161
62: Zfx
33: Sp3
97
28
88
74
27: Foxa2
16
40
104
66
100
61
44
99
54
109
42
47
107
125
56
24
60: Zfp637
29
50
70
72
46: Hmg20b
23
22
69
10
75

−0.5
value

R(
va
r)

−0.4

0.0

0.4

0.8

Co
ns
erv
ati
on

−0.2

−0.1

0.0

0.1

0.2

0.3

T

G

A

C

A

G

T

G

C
A
T
G
CCG

A

C
G
G

A

C

T

G

A
T
C
A

T

C

A

127 

T

A

G
C
G
C
T

A

C
G
A

T

G
C
A

C
G
T

A

C
G
T

C
G
A

C
G
T
C
G
T

C
G
A

C
G

1 
Zic1 

75 
10 
69 
22 
23 
46: Hmg20b 
72 
70 
50 
29 
60: Zfp637 
24 
56 
125 
107 
47 
42 
109 
54 
99 
44 
61 
100 
66 
104 
40 
16 
27: Foxa2 
74 
88 
28 
97 
33: Sp3 
62: Zfx 
126: Zfp161 
113 
1: Zic1 
34 
127 
65 
12 
59 
102 
73 
83 
122 
39 
0 
21 
85  


