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Abstract
Admixture analyses attempt to infer if medical-related outcome differences between populations and self-
identified race/ethnic (SIRE) groups have a genetic etiology by ascertaining whether biogeographical ancestry 
(BGA) is associated with outcomes in admixed populations. Narrative reports suggest that socioeconomic status
(SES) covaries with BGA in the Americas. If this is generally the case, SES potentially acts as a confound and 
needs to be taken into account when evaluating the relation between medical outcomes and BGA. To explore 
how systematic BGA-SES associations are, a meta-analysis of American studies was conducted. 41 studies 
yielded a total of 166 datapoints and 76 non-overlapping effect sizes. An analysis of effect directions found a 
high degree of consistency in directions. The N-weighted directions were .97, -.95 and -.94 for European, 
Amerindian and African ancestry, respectively. An analysis of effect sizes found that European BGA was 
positively associated with SES r = .18 [95% CI: .13 to .22, K=27, N=34,233.5], while both Amerindian and 
African BGA were negatively associated at -.15 [-.20 to -.10, K=26, N=20,657.5] and -.11 [-.16 to -.07, K=23, 
N=28,813.5], respectively. There was considerable cross-study variation in effect sizes (mean I2 =92%), but 
there were too few datapoints to permit credible moderator analysis. Implications for future studies are 
discussed.
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1. Introduction

Admixture analysis is a potent tool for the exploration of the etiology of traits and trait differences in context to 
admixed populations. Admixture mapping (AM) is a form of admixture analysis that allows for the detection of 
specific disease and trait-associated genes (Shriner, 2013; Winkler, Nelson, & Smith, 2010). When 
biogeographical ancestry (BGA) groups differ in the frequency of disease or trait causing genetic variants, the 
phenotype of interest will be correlated with the degree of BGA near local regions of the genome in the 
admixed populations and self-identified racial/ethnic (SIRE) groups, a situation which allows for the 
identification of associated loci. Admixture analysis also permits global analyses, in which global BGA is 
correlated with a trait. An association between global BGA and a trait provides suggestive evidence that trait 
differences between parental BGA groups, and consequently between populations with different BGA 
component percentages, have a genetic etiology. Such methods have been utilized to investigate, for example, if
the difference in Type II diabetes prevalence between White and African American SIRE groups has a likely 
genetic basis (Cheng et al. 2012). The finding of an association between global ancestry and a trait is often the 
launching point for AM analyses.
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As used here, BGA refers to ancestry with respect to BGA groups, where these groups are delineated, using 
ancestrally informative molecular markers, according to the relative genetic affinity of the members of reference
samples. These groups have been called ancestral groups, clusters, and ancestral populations (e.g., Shriver and 
Kittles, 2004) and BGA has been referred to as “the heritable component of ‘race’ or heritage” (Frudakis & 
Shriver, 2003). With respect to studies of American populations, the reference BGA groups are typically 
indigenous Europeans, West Africans, and Amerindians, because they are the main source ancestry groups  
(Salzano & Sans, 2014). Here, the polyseme “population” refers to geographically delineated groups (for a list 
of alternative biological definitions, see: Waples & Gaggiotti, 2006). In contrast, SIRE groups are delineated in 
terms of self-identification and represent social identities.

SES inequalities between SIRE groups may lead to spurious associations between ancestry and outcomes and 
thus is a concern when it comes to admixture analyses. For this reason, controls for socioeconomic status (SES) 
are frequently incorporated into analyses, on the assumption that ancestry may covary with SES and that 
differences in SES may induce the medical related outcomes differences. Narrative reports have noted that SES 
covaries with admixture such that Amerindian and African BGA is associated with lower SES related outcomes 
than is European BGA (For example: González Burchard et al., 2005). If this is generally the case, it would be 
advisable for researchers to include, when possible, measures of SES as covariates in analyses so to provide 
lower bounds estimates of the ancestry-outcome associations. However, no meta-analysis has been conducted to
date to establish whether SES outcomes are associated with ancestry in any consistent way. To explore the 
matter, a review was conducted.

Methods

Collecting studies and Data Exclusion

In 2014, phrases such as “admixture African socioeconomic” and “admixture Amerindian education” were 
searched using Google Scholar for years 2003 to 2014. In total, these searches turned up approximately 20,000 
hits in descending order of relevance to the search terms. The first 1,500 abstracts were skimmed. 
Approximately 250 papers were identified as potential sources and read. Over the course of 2015, the search 
was expanded using the PubMed and BIOSIS previews databases.4 At the beginning of 2016, the Google 
Scholar search was repeated for year 2015 and 2016. Many studies did not report effect sizes, or any other 
statistic which was convertible to an effect size. Some studies did not even report directions for relationships. In
cases where an effect size could not be found or calculated, the authors were contacted and the data was 
requested. For 76% of the cases a reply was forthcoming. For 36% of the cases, the authors provided results not 
reported in the original papers. Two of this paper's authors reviewed studies and reached agreement on 
ambiguous cases. Relevant information from each study was recorded.5 For the meta-analysis, we excluded 

4 Searches such as the following were used: (admixture) AND (socioeconomic or education or income or SES or poverty) AND 
(African or European or Amerindian) AND (Antilles OR Latin America OR South America OR Central America OR Caribbean 
OR Anguilla OR Antigua OR Aruba OR Barbuda OR Argentina OR Bahamas OR Barbados OR Belize OR Bolivia OR Brazil OR 
Chile OR Colombia OR Costa Rica OR Dominica OR Dominican Republic OR Ecuador OR El Salvador OR Grenada OR 
Grenadines OR Guadeloupe OR Guatemala OR Guyana OR Haiti OR Honduras OR Jamaica OR Martinique OR Mexico OR 
Montserrat OR Nevis OR Nicaragua OR Panama OR Paraguay OR Peru OR Puerto Rico OR Saint Kitts OR Saint Lucia OR Saint
Vincent OR Suriname OR Surinam OR Trinidad OR Tobago OR Uruguay OR Venezuela).

5   The following pieces of information were recorded for each datapoint: author-year (APA format), type of sample (medical, control, 
combined, etc.), country, first order administrative division within country, specific region such as city, the subpopulation examined 
(African American, Hispanic American, Puerto Rican, etc.), the sample name, a sample ID within each study, sample size, ancestry 
examined (European, Amerindian, African), mean level of admixture (arithmetic mean), standard deviation of admixture, number of 
genetic variants used to estimate admixture, outcome category (e.g. SES, income), outcome literal, type of outcome mentioned in the 
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cases in which the respective mean admixture was at or below 5% or the SD of admixture was at or below 2.5 
because it makes little sense looking at the association between outcomes and admixture when there is little 
variance in the latter.

Descriptive statistics of studies

A total of 41 studies were coded for the meta-analysis yielding a total of 166 datapoints. About 60% of the 
datapoints came from the US. Studies often divided their samples into ethnic groups. Table 1 shows a 
breakdown by country and ethnic group.

Table 1: Independent datapoints by country and ethnic group

Ethnic group Frequency Ethnic group Frequency Ethnic group Frequency

African 
American (US)

11 Multi-ethnic 
(Chile)

2 Afro-descent 
(T&T)

1

Hispanic (US) 10 Multi-ethnic 
(Mexico)

2 Multi-ethnic 
(Argentine)

1

Mexican (US) 6 Multi-ethnic 
(US)

2 Multi-ethnic 
(Colombia)

1

Multi-ethnic 
(Brazil)

6 Mestizo (Chile) 2 Not stated 
(Costa Rica)

1

Puerto Rican 
(PR)

6 Native 
American (US)

2 Puerto Rican 
(US)

1

Not stated 
(Mexico)

3 Not stated 
(Uruguay)

2 White 
American (US)

1

Multi-ethnic 
(Peru)

3 Not stated 
(Colombia) 

2

Searches were conducted for the years 2003 to 2016. For identified papers, references were also searched. For 
this reason, not all included papers were published at or after 2003. Most datapoints were from papers published
in the last few years with the median being 2012. If the trend holds, more data can be expected to be published 
in the next few years. Studies varied widely in the size of their samples. Figure 6 and Supplementary Figure 1 
show, respectively, a histogram of the publication year and a density-histogram of the sample sizes. Many 
studies had medical themes and often included both case and control samples. Table 2 shows the breakdown of 
independent data points by sample type.

Table 2: Independent datapoints by sample type.

Sample type Frequency

case 11

source, outcome levels, the number of levels in ordinal outcomes, the association direction (positive, negative, null, not stated), the p-
value, test used to derive the p-value, the correlation, the conversion method, if the correlation was derived from other statistics, notes 
on the method, details for the conversion, details for author contact attempts (multiple columns).
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case and control 23

control 8

non-medical 23

Studies reported a large variety of specific outcome variables. These outcome variables were coded to broad 
categories. Table 3 shows the breakdown of all outcomes by broad category.

Table 3: Outcomes by category for all datapoints.

Outcome 
category

Frequency Outcome 
category

Frequency

Education 63 Parental SES 6

Income 42 Parental 
education 
education

2

SES 34 Parental 
income

1

nSES 18

Measures were mostly of individual education, income, or a combination of variables. A few datapoints were 
based on the socioeconomic level of the individual's neighborhood. Depending on the model of the proposed 
covariance, this could be a questionable index. For example, a recent study based on the UK Biobank (N≈112k) 
found a modest phenotypic correlation between individual and neighborhood-level SES (0.24) but a strong 
genetic one (.87) (Hill et al., 2016). While neighborhood-level measures are included in the meta-analysis, it is 
advisable that investigators conduct moderator analyses to estimate the effect of using neighborhood versus 
individual indexes in future works. Additionally, several studies reported parental SES. Because most children 
are the biological offspring of both of their parents, their admixture will index the average of their parents. 
These results can then be seen as showing the correlation between the parents' SES and the parents' BGA.  

Methods

Directions and Effect size meta-analysis method

Meta-analyzing the present dataset presented multiple difficulties. The mere direction of effect sizes was more 
frequently reported or inferable from the information provided than the actual effect sizes. While directions 
cannot themselves be used as an effect size measure, they can provide a rough idea of whether the findings are 
in line with a null hypothesis. If the effect directions deviate strongly from those expected by chance, then it is 
likely that the true effect is in that direction. If the effect directions do not deviate from chance levels, then there
may be an effect but sample sizes are too small to reliably detect it, or there may be no effect. These conclusions
only hold given the assumption of no publication or reporting bias. For the reported directions, values were 
scored -1, 0, and 1 for, respectively, negative, null, and positive directions. Within and between samples the 
scores were summed and divided by the total number of reported directions. In this way, a sample that gave 
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consistent directions got a score of either 1 or -1, while those with mixed results got somewhere in between. For
instance, a sample reporting three positive and one negative associations received a score of (3-1)/4=.5.

A random effects meta-analysis was used to analyze the effect size results. Standard errors for the correlations 
were calculated from the sample sizes and the reported correlations.6 Random effects models are appropriate 
when the observations cannot be assumed to have been sampled from a single population (Hunter & Schmidt, 
2004, p. 393). Such a model is appropriate in this case, because the dataset contains information from different 
sub-populations, different countries and based on different outcomes.

Weights and Multiple outcomes and Multiple ancestries x outcomes reported for a sample

To counteract the effect of sampling error in the small studies, two sets of weighted values were calculated. 
Scores were weighted both by the square root of the sample size and by the sample size. Means were weighted 
by the square-root of the sample size so that the large samples did not overwhelm the small ones. An alternative 
approach would have been to weight by p-values, but some studies failed to report this statistics and many did 
not report whether one or two-tail analyses were conducted.

Sometimes associations with multiple outcome measures were reported for a single sample and the same 
ancestry. Were a simple aggregation method employed, samples reporting results for multiple outcome 
categories would count more than those that report fewer. Two recent meta-analyses encountered this problem 
(Tucker-Drob & Bates, 2016; Tate & McDaniel, 2008). The method employed by the first was to use a complex 
weighting approach to avoid double counting. The second used a simpler approach of averaging results within 
samples before aggregating. An approach similar to the second was implemented; namely, median values, 
which are more robust than means to outliers, were taken across outcomes within each sample before meta-
analyzing them. As example, Norden-Krichmar et al. (2014) reported associations between Amerindian ancestry
and both SES and income of -.04 and -.10, respectively. Using a simple analysis, this would have been counted 
as two independent studies. Using within sample aggregation, it was counted as one datapoint with an effect 
size of of -.07. As Tate and McDaniel (2008) note, this method slightly throws off the standard errors, but this 
problem was judged to be non-substantial. 

Some studies reported one or more ancestry × outcome associations for a single sample. Since results were 
decomposed by ancestry component this issue was deemed to not be a concern. When studies report only the 
correlations between outcomes and a single ancestry component, and when ancestries strongly negatively 
correlate, one could attempt to estimate directions/effect sizes. For instance, Bonilla (2015, extra information 
provided by the author) reported that European and Amerindian ancestry correlated at -.82 and -.85 in two 
samples (N's = 148, 164). The correlations between European ancestry and SES were .10 and .14, thus, one 
might infer that the Amerindian × SES correlations were -.10/-.14. In this case, however, they were -.01 and 
-.13; the departure from expectation resulted from the association between African BGA and SES. To avoid 
possible bias, results were not estimated. 

Results

Directions of effects

The aggregated-within-sample directions are shown in Table 4. In general, the directions are positive for 
European ancestry and are in the reversed direction for the other two ancestries. The results are substantially 
stronger when using weighted scores, possibly reflecting the fact that smaller studies tend to give less reliable 
results.

6 The formula for the standard error of a correlation is (Cohen & Cohen, 2003, p. 42): 
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Table 4: Directions of effects by ancestry. Weighted by sample size.

Ancestry mean direction
SQRTweighted 
mean direction

N-Weighted mean 
direction K Total N

African -0.64 -0.80 -.93 37 37417.5

Amerindian -0.80 -0.89 -.95 36 27297.5

European 0.80 0.92  .98 37 38764.5

Distributions of effects

To get an overview of the findings, a density-histogram plot of the effect sizes was made for each ancestry 
component. This is shown in Figure 1. There are two clear outliers for European ancestry at -.6 and -.2. The first
is based on a tiny sample (N=15). The other outlier for European ancestry (Zou et al. sample 6) is also an outlier
for Amerindian ancestry. The lead author (James Zou) was contacted to verify the data. He checked the code 
and data and reported that there were no errors. A dataset was created by excluding the outlying samples and re-
running the analyses. This gave similar and slightly stronger results7 and the between study heterogeneity (I2) 
was somewhat reduced as expected (94%, 90% and 91% to 91%, 88%, 91% for European, Amerindian and 
African ancestry, respectively).

Figure 1: Density-histogram plot for effect sizes by ancestry.

Random effects meta-analysis

The effect sizes for each ancestry was analyzed.8 Figures 2 to 4 show the forest plots.

7 Specifically, the results were .19 [.15 to .23], -.16 [-.20 to -.12] and -.12 [-.17 to -.07] for European, Amerindian and African 
ancestry, respectively.

8 The metafor package for R (Viechtbauer, 2015) was used.
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Figure 2: Forest plot for European ancestry results. Based on random effects model.

 

Figure 3: Forest plot for Amerindian ancestry results. Based on random effects model.

 

Figure 4: Forest plot for African ancestry results. Based on random effects model.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 27, 2016. ; https://doi.org/10.1101/055681doi: bioRxiv preprint 

https://doi.org/10.1101/055681


The meta-analytic effect sizes are .18, -.15, and -.11 for European, Amerindian and African ancestry, 
respectively. European ancestry showes a stronger absolute association than Amerindian and African ancestry, 
despite the positive European ancestry results being driven by the negative Amerindian and African ones. This 
is likely an artifact of publication bias, in the sense that more data points were available for the European 
ancestry analysis. Alternatively, the results could be due to the higher variation in the proportion of European 
ancestry in the subjects. The mean standard deviation of admixture was smaller for the non-European ancestries 
(16.9, 7.6, and 12.5 for European, Amerindian, and African, respectively). Less variation leads to smaller effect 
sizes owing to restriction of range (Hunter & Schmidt, 2004).

Discussion and conclusion

The results of the meta-analysis are consistent with those reported in earlier narrative reviews in that European 
ancestry was statistically associated with better socioeconomic outcomes relative to Amerindian and African 
ancestry. The effect of European ancestry was larger than the effects of Amerindian and African ancestry. A high
level of between-study heterogeneity (mean I2 = 92%) was found. Due to the limited number of datapoints, it is 
difficult to evaluate the cause of this pattern of results. Some possibilities are as follows:

1. Discretization: Many outcome variables were ordinal instead of continuous, even when continuous values 
were available (e.g., income). Correlations assume that the data are normally distributed, so the use of non-
continuous data induces a downwards bias in the results. Corrections were not attempted, although one could 
attempt this (Hunter & Schmidt, 2004). For instance, Ruiz-Linares et al. (2014) reported a correlation of .12 
between European ancestry and education in a large, multi-country sample (total N=7,342). The minimum bias 
for a three level measure is about 11%.9 If corrections were made for this, the value would be about .134.

2. Number of ancestry informative markers: There were large differences in the number of genomic markers 
used to estimate individual BGA. Figure 5 shows a density-histogram of the distribution. Using fewer markers 
results in more measurement error. Ruiz-Lineras (2014) was the only study that reported correlations between 

9 This is the downwards bias if one splits the a continuous variable into three bins with equal size. If the bin sizes are not equal, one 
can get much larger downwards biases. For instance, if the sizes are 5%, 10%, 85%, the downwards bias is about 34%.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 27, 2016. ; https://doi.org/10.1101/055681doi: bioRxiv preprint 

https://doi.org/10.1101/055681


admixtures estimates using different numbers of markers. They noted that a recent study (Scharf et al., 2013) 
had found that using 15 markers resulted in correlations of about .60 with estimates derived from 50k markers. 
Furthermore, using 30 and 152 makers resulted in about r = .70 and r = .85, respectively, with respect to 
estimated admixture based on 50k makers. It is clear that there are diminishing returns to using more markers, 
but also that using more reduces measurement error with respect to “true” ancestry. Ruiz-Lineras et al. 
themselves used only 30 markers, thus yielding a maximal observed score × true score of .70.10 As mentioned 
above, they found a correlation of .12 between European ancestry and socioeconomic outcomes. Were this value
corrected for unreliability in measured ancestry, it would be .171 (and .193 if also correcting for discretization). 
Because studies did not report the correlations needed, it would be difficult to correct for measurement error. 
One option would be to acquire a sufficient number of datapoints from one study to allow for the estimation of a
predictive model. One could then use that model to estimate the measurement error in other studies based on the
number of reported markers used. However, we failed to find a study which had sufficient datapoints, so a 
correction was not attempted.

Figure 5: Density-histogram of the number of genetic markers in each sample.

3. Variance in admixture: The few studies which reported the standard deviations of the ancestry estimates 
showed substantial variation. For instance, Bonilla et al. (2015) found a standard deviation for African ancestry 
of only 7.52 while Menezes et al. (2015) found one of 19.20. As mentioned earlier, this would be expected to 
cause differences in the observed correlations between the studies, all else being equal.

4. Heterogeneous origin: The studies in the meta-analysis came from many countries. It is probable that the 
effect of one's BGA depends on local cultural norms or practices that differ between countries or even regions 
within countries. Cross-country differences could also owe to population substructure. For instance, African 
Americans (in the USA) largely have Northern European ancestry, while Afro-descent groups in Latin America 
largely have Italian and Iberrian ancestry. Historic selection pressures could have resulted in a differential 
association between SES and Northern European versus Iberian and Italian BGA.

5. Sample size: The studies varied wildly in sample size. Results based on small sample sizes are expected to be
less reliable. Figure 6 shows the distribution of the sample sizes.

Figure 6: Density-histogram of sample sizes (log 10).

10 Maximally because this is the value one gets if one assumes that 50k marker measurement has no measurement error. If it does, 
then comparing against it underestimates the amount of measurement error.
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Implications for epidemiological studies

Fairly robust associations between genomic ancestries and SES were found. Given this, to avoid spurious 
effects in regression analyses due to omitted variable bias, it is potentially important to include SES covariates 
in studies of medical outcomes. Further, it is also important to identify the factors mediating the BGA-SES 
associations as these could incrementally explain the BGA-medical outcome associations. Cognitive 
epidemiology studies have shown that measures of human capital can explain a significant portion of medical 
related outcomes within population (Calvin et al., 2011; Deary, 2009; Der, Batty, & Deary, 2009; Gottfredson, 
2004; Wraw, Deary, Gale, & Der, 2015). Because SIRE groups are known to differ in mean levels of phenotypic
cognitive ability (Roth, Bevier, Bobko, Switzer, & Tyler, 2001; Fuerst and Kirkegaard, 2016), it would be 
reasonable to include measures of cognitive ability in admixture analyses. It is possible that SES acts as a proxy 
for cognitive ability and that the latter is a more direct mediator. In this case, ideally, one would want to directly 
control for ability to capture its full effect. Other possible mediators include the cultural aspects of SIRE and 
phenotypic based discrimination, so-called colorism (e.g., M. Hunter, 2007; Telles, 2014). In principle, these 
factors could account for a portion of the BGA-medical outcome associations.  

Untangling the effects of BGA and SIRE

In many of the studies included in this meta-analysis, individual SES outcomes are associated with BGA within 
SIRE groups. Hence, SIRE membership is not mediating the relationship. In other cases, particularly in Latin 
America, the issue is less clear and BGA may be confounded with SIRE. For example, Leite, et al. (2011) found
that European ancestry was positively correlated with SES in Brasillia. This could be because it was positively 
correlated with ancestry net of SIRE or because it was positively correlated with SIRE but not with BGA net of 
SIRE. The analysis by Ruiz-Linares et al. (2014) has helped to clarify the issue. The authors looked at the 
association between genotype, color and SIRE in a multi-country sample from Brazil, Chile, Colombia, Mexico 
and Peru (mean age 20 to 25, country depending). The authors found modest correlations between genomic 
ancestry and SIRE (e.g., 0.48 in the case of both European/White and Amerindian). They found that wealth and 
educational attainment correlated with European ancestry (r = .12 for the full sample). However, when the effect
of BGA was controlled for, education was not associated with SIRE. And wealth was only marginally so (B = 
0.00291, p = 6.1×10-4) and only with regards to the European/White color group. Despite this, net of BGA, 
SIRE was found to be a significant predictor of racially associated phenotypes such as melanin index, hair 
shape, eye color and eye fold. The 1982 Pelotas Birth Cohort study showed similar results (F. Hartwig, personal
communication, March 4, 2016). Table 5 below shows the regression coefficients for socioeconomic outcomes 
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with European ancestry, interviewer-rated color and self-reported color. Samples sizes for each measure are 
shown on the left. As seen, the association between BGA and outcomes was robust to controls for interviewer 
reported color and SIRE. Complete results are shown in the Supplementary File 1. Together, these results 
suggest that the associations between BGA and SES are not largely mediated by cultural identity. Quite 
possibly, cultural identity (net of ancestry) and racial phenotype based discrimination is present in some 
countries and absent or in the reverse direction in other ones.

Table 5. Regression coefficients (standard errors) for SES at 30-31 years of age according to European BGA 
and skin color.

Skin color Predictors Household 
asset index

Income 
(Brazilian 
reais)

Schooling in 
complete years

Interviewer-rated European ancestry P=3.8×10-48 P=3.8×10-18 P=2.4×10-38

  0.299 (0.036) 0.187 (0.035) 0.311 (0.034)
 Skin color P=0.045 P=0.384 P=3.8×10-5

 N=2258, 2386, 2368   White 0 (Ref.) 0 (Ref.) 0 (Ref.)
 N=185, 203, 202   Brown or Mulatto 0.139 (0.088) -0.010 (0.086) 0.052 (0.085)
 N=390, 418, 412   Black 0.076 (0.100) 0.113 (0.098) 0.277 (0.097)
 N=11, 11, 11   Asian (“yellow”) -0.583 (0.291) -0.359 (0.299) -0.795 (0.293)
 N= 10, 12, 12   Native American -0.511 (0.306) -0.205 (0.286) -0.770 (0.281)
Self-reported European ancestry P=3.5×10-48 P=3.7×10-18 P=2.2×10-38

  0.286 (0.034) 0.177 (0.033) 0.287 (0.033)
 Skin color P=0.017 P=0.169 P=1.5×10-5

 N=2138, 2261, 2244   White 0 (Ref.) 0 (Ref.) 0 (Ref.)
 N=161, 171, 170   Brown or Mulatto -0.114 (0.088) -0.053 (0.088) -0.151 (0.086)
 N=462, 496, 489   Black 0.077 (0.090) 0.083 (0.089) 0.213 (0.088)
 N=50, 54, 54   Asian (“yellow”) -0.362 (0.140) -0.221 (0.139) -0.396 (0.136)
 N=43, 48, 48   Native American -0.103 (0.149) 0.162 (0.145) -0.140 (0.142)

Limitations and suggestions for future research

The number of effect sizes used in the present meta-analysis is limited. This is because many studies did not 
report effect sizes and, in some cases, the authors either did not reply to emails or were unable to provide data. 
In the future, it would help if scientists published their results in a manner consistent with standard scientific 
practices (e.g., reporting effects sizes and the specific methods used to compute these). The results significantly 
varied across studies (mean effect size heterogeneity = 92%), which means that there are probably effects size 
moderators. A moderator analyses was not conducted due to the small number of studies in the dataset. We 
suggest that moderator analyses be conducted as relevant data accumulates. Analyses for publication bias were 
also not conducted because the number of effect sizes was too small for a reliable analysis. This question should
be addressed in a larger meta-analysis in the future.

Supplementary material

Supplementary Data File 1, High-quality figures and R analysis code are available at the repository at Open 
Science Framework https://osf.io/ydc3f/files/.
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