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Abstract

Advances in high-throughput sequencing are reshaping how we per-
ceive microbial communities inhabiting the human body, with implica-
tions for therapeutic interventions. Several large-scale datasets derived
from hundreds of human microbiome samples sourced from multiple stud-
ies are now publicly available. However, idiosyncratic data processing
methods between studies introduce systematic differences that confound
comparative analyses. To overcome these challenges, we developed Gut-
Cyc, a compendium of environmental pathway genome databases con-
structed from 418 assembled human microbiome datasets using MetaP-
athways, enabling reproducible functional metagenomic annotation. We
also generated metabolic network reconstructions for each metagenome us-
ing the Pathway Tools software, empowering researchers and clinicians
interested in visualizing and interpreting metabolic pathways encoded by
the human gut microbiome. For the first time, GutCyc provides con-
sistent annotations and metabolic pathway predictions, making possible
comparative community analyses between health and disease states in in-
flammatory bowel disease, Crohn’s disease, and type 2 diabetes. GutCyc
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data products are searchable online, or may be downloaded and explored
locally using MetaPathways and Pathway Tools.

Background & Summary
The myriad collections of microorganisms found on and in the human body are
known as the human microbiome [60]. Changes in microbiome structure and
function have been implicated in numerous disease states including inflamma-
tory bowel disease, cancer, and even cardiovascular disease [34, 11]. Increas-
ingly, researchers are using high-throughput sequencing approaches to study
the genes and genomes of microbiomes and characterize diversity and metabolic
potential in relation to health and disease states [69] opening new opportunities
for prevention and therapeutic intervention at the interface of microbial ecol-
ogy, bioinformatics and medicine. The most densely colonized human habitat is
the distal gut, inhabited by thousands of diverse microorganisms, as differenti-
ated at the strain level. Despite providing essential ecosystem services, includ-
ing nutritional provisioning, detoxification and immunological conditioning, the
metabolic network driving matter and energy transformations by the distal gut
microbiome remains largely unknown. Several large-scale metagenomic datasets
(derived from hundreds of microbiome samples) from the Human Microbiome
Project (HMP) [55], Beijing Genomics Institute (BGI) [58], and Metagenomes
of the Human Intestinal Tract project (MetaHIT) [57] are now available on-line,
creating an opportunity for large-scale metabolic network comparisons.

While the studies cited above provide the sequencing data, they do not
provide the software environment used for generating their annotations. In
contrast to these proprietary pipelines, over the past few years a number of
metagenomic annotation pipelines available to third parties have emerged in-
cluding IMG/M [46], Metagenome Rapid Annotation using Subsystem Tech-
nology (MG-RAST) [68], SmashCommunity [9] and HUMAnN [6]. Differ-
ing pipelines used to process sequence information between studies introduces
biases based on idiosyncratic formatting, and alternative annotations or algo-
rithmic methods. Specifically, support for metabolic pathway annotation varies
significantly among pipelines due to differences in reference database selection
with resulting impact on metabolic network comparisons. The most common
metabolism reference database currently in use is Kyoto Encyclopedia of Genes
and Genomes (KEGG) [26]. Although extant pipelines often provide links to
KEGG module and pathways maps [26] (using KEGG Orthology (KO) or path-
way identifiers) that can be visualized with coverage or gene count information
using programs like KEGG Atlas [50], they do so using often incompatible for-
mats. Such mapping is limited because there is no simple way to query, manip-
ulate, or visualize the underlying implicit metabolic model directly. Moreover,
prediction using KEGG results in amalgamated pathways with limited taxo-
nomic resolution, impeding enrichment and association studies [6].

In responding to the deficiencies of existing tools, we recently developed a
modular annotation and analysis pipeline enabling reproducible research [12]
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called MetaPathways, that guides construction of
Environmental Pathway/Genome Database (ePGDB)s from environmental se-
quence information [37] using Pathway Tools [27] and MetaCyc [32, 13, 14].
Pathway Tools is a production-quality software environment developed at
SRI that supports metabolic inference and flux balance analysis based on the
MetaCyc database of metabolic pathways and enzymes representing all do-
mains of life. Unlike KEGG, MetaCyc emphasizes smaller, evolutionarily
conserved or co-regulated units of metabolism and contains the largest collec-
tion (over 2,400) of experimentally validated metabolic pathways [7]. Navigable
and extensively commented pathway descriptions, literature citations, and en-
zyme properties combined within an ePGDB provide a coherent structure for
exploring and interpreting predicted metabolic networks from the human mi-
crobiome across multiple levels of biological information (DNA, RNA, protein
and metabolites). Over 9,800 Pathway/Genome Database (PGDB)s have been
developed by researchers around the world, and thus ePGDBs represent a data
format for metabolic reconstructions that exhibit a potential for reusability in
further studies.

Here we present GutCyc, a compendium of over 418 ePGDBs constructed
from public shotgun metagenome datasets generated by the HMP [55], the
MetaHIT inflammatory bowel disease study [57], and the BGI diabetes study [58].
Relevant pipeline modules are summarized in Figure 1. GutCyc provides con-
sistent taxonomic and functional annotations, facilitates large-scale and repro-
ducible comparisons between ePGDBs, and directly links into robust software
and database resources for exploring and interpreting metabolic networks. This
metabolic network reconstruction provides a multidimensional view of the mi-
crobiome that invites discovery and collaboration [30].

Methods

Metagenomic Data Sources
We collected 418 assembled human gut shotgun metagenomes from public repos-
itories and supplementary materials sourced from the HMP (American healthy
subjects, n = 148) [55], a MetaHIT (European inflammatory bowel disease sub-
jects, n = 125) [17], and a BGI (Chinese type 2 diabetes, n = 145) study [58].
See Supplementary Table 1 for a detailed listing of accession numbers and file
descriptors.

Data Processing
Microbiome project sample metadata were manually curated to ensure compati-
bility with MetaPathways. ePGDBs were created for each sample by running
the MetaPathways 2.5 pipeline and the Pathway Tools version 17.5, us-
ing the assembled metagenomes described above. The pipeline consists of five
modular steps, including (1) quality control and ORF prediction, (2) homology-
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Figure 1: The MetaPathways pipeline consists of five modular stages includ-
ing (1) Quality control (QC) and ORF prediction (2) Functional and taxonomic
annotation, (3) Analysis (4) ePGDB construction, and (5) Pathway export. In-
puts and programs are depicted on the left with corresponding output directories
and exported files on the right.
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based functional and taxonomic annotation, (3) analyses consisting of tRNA and
lowest common ancestor (LCA) [24] identification, (4) construction of ePGDBs
using Pathway Tools and, finally, (5) pathway export [38, 33] (see Figure 1).
The following paragraphs describe the individual processing steps required to
construct an ePGDB for each sample, starting with assembled contigs in FASTA
format.

Quality Control Contigs from each sample were collected from their respec-
tive repositories and curated locally. The MetaPathways pipeline performs a
number of quality control steps. First, each contig was checked for the presence
of ambiguous base pairs and homopolymer runs, splitting contigs into smaller se-
quences by removing such problematic regions. Next, the contigs were screened
for duplicates. Finally, a length cutoff of 180 base pairs was applied to the
remaining sequences to ensure that very short sequences were removed from
downstream processing steps [39].

ORF Prediction Sequences passing quality control were scanned for ORFs
using MetaProdigal [25], a robust ORF prediction tool for microbial
metagenomes considered to be among the most accurate ORF predictors [65].
Resulting ORF sequences were translated to amino acid sequences using NCBI
genetic code table 11 for bacteria, archaea, and plant plastids [8]. Translated
amino acid sequences shorter than 30 amino acids were removed as these se-
quences approached the so-called functional homology search “twilight zone”,
where it becomes difficult to detect true homologs [61].

Functional Annotation The quality controlled amino acid sequences were
queried against a panel of functionally-annotated protein reference databases in-
cluding KEGG [26] (downloaded 2011-06-18), COG [63] (downloaded 2013-12-
27), MetaCyc [14] (downloaded 2011-07-03), RefSeq [62] (downloaded 2014-
01-18), and SEED [52] (downloaded 2014-01-30). Protein sequence similarity
searches were performed using the program FAST [42] with standard align-
ment result cutoffs (E-value less than 1 × 10−5, bit-score greater than 20, and
alignment length greater than 40 amino acids [61]; and Blast-score ratio (BSR)
greater than 0.4 [59]). The choice of parameter thresholds were selected to max-
imize annotation accuracy, and were guided based on parameter choices used in
previous studies [22, 70, 67].

Taxonomic Annotation Quality-controlled contigs were also searched against
the SILVA [56] (version 115) and Greengene [16] (downloaded 2012-11-06)
ribosomal RNA (rRNA) gene databases using BLAST version 2.2.25, with
the same post-alignment thresholds applied as was previously described for
the functional annotation. BLAST was applied for 16S annotation because
it has greater sensitivity for nucleotide-nucleotide searches than FAST, and
the smaller reference database sizes make the relatively larger computational
requirement justifiable.
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Additionally, predicted ORFs were taxonomically annotated using the LCA
algorithm [24] for taxonomic binning. In brief, the LCA in the NCBI Taxonomy
Database (TaxonDB) [62] was selected based on the previously calculated FAST
hits from the RefSeq database. This effectively sums the number of FAST hits
at the lowest shared position of the TaxonDB. The RefSeq taxonomic names
often contain multiple synonyms or alternative spellings. Therefore, names that
conform to the TaxonDB were selected in preference over unknown synonyms.

tRNA Scan MetaPathways uses tRNAscan-SE version 1.4 [44] to identify
relevant tRNAs from quality-controlled sequences. Resulting tRNA identifica-
tions are appended as additional functional annotations.

ePGDB Creation Functional annotations were parsed and separated into
three files that serve as inputs to Pathway Tools, namely: (1) an anno-
tation file containing gene product information (0.pf), (2) a catalog of con-
tigs and scaffolds (genetic-elements.dat), and (3) a PGDB parameters file
(organism-params.dat). The PathoLogic module [19, 15] in the Pathway
Tools software, was used to build the ePGDB and predict the presence of
metabolic pathways based on functional annotations. Following ePGDB con-
struction, the base pathways (i.e., pathways that are not contained within super-
pathways) were extracted from ePGDBs to generate a summary table of pre-
dicted metabolic pathways for each sample.

Accessibility and Flexibility MetaPathways 2.5 generates data in a con-
sistent file and directory structure. The output for each sample is contained
within a single directory, which in turn is organized into sub-directories con-
taining relevant files (see Figure 1). The MetaPathways 2.5 graphical user in-
terface (GUI) enables interactive exploration of individual sample results along
with comparative queries of multiple samples, and is designed for fast and in-
teractive data visualization and searches via a custom knowledge engine data
structure. Input and output files are available for download from the GutCyc
website (www.gutcyc.org) and may be readily explored in the MetaPathways
GUI or Pathway Tools on Linux, Mac OS X and Windows machines.

Computational Environment Computational processing was performed us-
ing a local cluster of machines in the Hallam laboratory and on the Bugaboo
cluster on the Canadian WestGrid computation resource [5]. The Hallam lab
computers have a configuration profile of 2x2.4 GHz Quad-Core Intel Xeon pro-
cessors with 64 GB 1066 MHz DDR3 RAM. The Bugaboo cluster provides
4,584 cores with 2 GB of RAM per core on average. The average sample took
7-8 hours to process on a single thread, and the span of the processing required
to generate the GutCyc Collection was 135 days.
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Min 1st Quartile Median 3rd Quartile Max
Bases 0.98 54.75 81.35 113.75 370.51
Contigs 2,506 27,788 47,486.5 76,275.75 399,331
ORFs 2,448 61,703.5 95.531 139,690 550,312
Func. Annots. 2,176 57,102.25 86,054.5 123,747.25 425,033
Reactions 1,635 2,385.5 3,438 3,667.75 4,881
Trans. Reactions 12 26 31 34 46
Compounds 1,052 1,678 2,008.5 2,119.5 2,676
Base Pathways 257 350 616 654 832

Table 1: Summary statistics for the GutCyc Collection across 418 sam-
ples. The statistics for the number of bases processed is in units of Megabases.
“Func. Annots.”: functional annotations. “Trans. Reactions” are transport re-
actions. “Compounds” are small molecule metabolites. “Base Pathways” include
all pathways except complex pathways known as Super-Pathways.

Software Availability
MetaPathways 2.5, including integrated third party software, is available on
GitHub, including both software [2] (licensed under the GNU General Public
License, version 3), and a tutorial [3] released under the Creative Commons
Attribution License (allows reuse, distribution, and reproduction given proper
citation). Pathway Tools is available under a free license for academic use,
and may be commercially licensed [4]. MetaPathways outputs were processed
using Pathway Tools version 17.5 under default settings except for disabling
of the PathoLogic taxonomic pruning step (i.e., -no-taxonomic-pruning) as
was described previously [22], and an additional refinement step of running
the Transport Inference Parser [43] to predict transport reactions (i.e., -tip).
FAST is freely available under a (licensed under the GNU General Public Li-
cense, version 3) software license on our GitHub page [1].

Data Records
A list of each sample, provenance, and relevant data processing steps can be
found in Supplementary Table 1. All records are available at the GutCyc
project website (www.gutcyc.org). Each sample’s data records are contained
within a single directory. Within this directory, sub-directories and files are
located as depicted in Figure 1. A summary of the data present in the GutCyc
Collection is presented in Table 1. A full set of summary data for each
ePGDB may be found in Supplementary Table 2.

preprocessed For a sample with an identifier of <sample_ID>, this direc-
tory contains two files: (1) <sample_ID>.fasta, which contains the renamed,
quality-controlled sequences, and (2) <sample_ID>.mapping.txt, which maps
the original sequence names to the new names assigned by MetaPathways.
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Sequences are renamed to <sample_ID>_X where X is the zero-indexed contig
number pertaining to the order in which the contig appears in the input file
(e.g., a contig identified as DLF001_27 is interpreted as the 28th contig listed
in the FASTA file for sample DLF001’s assembly).

orf_prediction This directory contains four files, (1) <sample_ID>.fna which
contains nucleic acid sequences of all predicted ORFs, (2) <sample_ID>.faa
which contains amino acid sequences of all predicted ORFs, (3)
<sample_ID>.qced.faa which contains amino acid sequences of all predicted
ORFs meeting user defined quality thresholds (in this study, a minimum length
of 60 amino acids), and (4) <sample_ID>.gff, a General Feature Format (GFF)
file [18] containing all quality-controlled sequences and information about the
strand (- or +) on which the ORF was predicted. ORFs are named
<sample_ID>_X_Y, where X is the contig number pertaining to the order in
which the contig appears and Y represents the order in which the ORFs were
predicted on the contig.

results This directory contains four sub-directories: (1) annotation_table,
(2) rRNA, (3) tRNA, and (4) pgdb. The annotation_table sub-directory con-
tains (1) statistics files for each functional database used to annotate the ORFs
(<sample_ID>.<DB>_stats_<index>.txt), (2)
<sample_ID>.functional_and_taxonomic_table.txt detailing the length, lo-
cation, strand and annotation (functional and taxonomic) of each ORF, and (3)
a file listing all ORFs and their functional annotations
(<sample_ID>.ORF_annotation_table.txt). The prokaryotic 16S ribosomal
RNA gene is a standard marker gene used for measuring taxonomic diver-
sity [66]. The rRNA sub-directory contains files detailing statistics for each tax-
onomic database used to annotate the ORFs (named as
<sample_ID>.<DB>.rRNA.stats.txt). The tRNA sub-directory contains (1)
<sample_ID>.trna.stats.txt, detailing the type, anticodon, location and strand
of each predicted tRNA and (2)
<sample_ID>.tRNA.fasta containing all predicted tRNA sequences. The pgdb
sub-directory contains a <sample_ID>.pwy.txt file describing metabolic path-
ways predicted in the ePGDB, specifically, each predicted pathway, the ORF
identities involved in each pathway, the enzyme abundance, and the pathway
coverage in a tabular format navigable via the MetaPathways GUI.

genbank This directory contains a file named <sample_ID>.annotated.gff,
a GFF file containing all quality-controlled sequences with their annotations.

ptools This directory contains the three files necessary to build a ePGDB us-
ing Pathway Tools: (1) genetic-elements.dat, (2) organism-params.dat,
and (3) 0.pf which contains all functional annotations to be processed by Path-
way Tools. A sub-directory called flat-files contains flat files describing
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database objects such as compounds, reactions, pathways (each of which is de-
scribed in more detail in [28]) for individual ePGDBs.

run_statistics This directory contains three files: (1)
<sample_ID>.run.stats, the parameters used to process the sample; (2)
<sample_ID>.nuc.stats, the number and length of nucleic acid sequences be-
fore and after quality control filtering; and (3) <sample_ID>.amino.stats, the
number and length of amino acid sequences before and after quality control
filtering.

Technical Validation
GutCyc was derived from third-party sequence data from three publicly-available
human gut microbiome sampling projects with metagenomic assemblies, with
published details on their own technical validation steps: the HMP [55], a
MetaHIT study [17], and a BGI study [58]. The technical validation of third-
party software used in MetaPathways may be found in the corresponding
publications for MetaProdigal [25], BLAST [10], and tRNAscan-SE [44].
GutCyc functional sequence similarity was computed using FAST, an aligner
based on a version of LAST [35], with multi-threading performance improve-
ments and new support for generating BLAST-like E-values, with significant
correlation with BLAST output (R2 = 0.887, P < 0.01) [38]. Validation of
the overall MetaPathways pipeline may be found in previously published re-
ports [22, 23] with specific emphasis on how changes in taxonomic pruning, read
length and metagenomic assembly coverage impact the accuracy and sensitiv-
ity of pathway recovery. In brief, pathway prediction is affected by taxonomic
distance, sequence coverage and sample diversity, nearing an asymptote of max-
imum accuracy for metagenomes with increasing coverage. Additionally, like
any alignment-based analysis, annotation quality is a function of both the level
of errors in the input sequence data and the selection of reference databases.
Summary data generated for each ePGDB as presented in Supplementary Table
2 was reviewed to detect samples with unusual statistics, such as a lack of 16S
gene annotations. The metabolic reconstruction pathways were computation-
ally predicted using the Pathway Tools PathoLogic module [53], which has an
accuracy of 91% [15]).

Usage Notes
Once a set of data such as GutCyc Collection has been crafted into a
format that is both comprehensible to domain experts, and interpretable by
machines, there are myriads of uses that can be explored. For example, com-
paring ePGDBs with sets of microbial PGDBs from the same environment can
aid in identifying “distributed pathways” present in the metagenome metabolic
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reconstruction, but absent from any individual genomic metabolic reconstruc-
tion [22]. The predicted transport proteins can be used to predict trophism
patterns within a community. Furthermore, the Pathway Tools software al-
lows for sophisticated comparative analyses between ePGDBs, at the level of
compounds, reactions, enzymes, and pathways [31]. The MetaFlux [40] mod-
ule of Pathway Tools for performing flux balance analysis (FBA) [51] can
be used with GutCyc ePGDBs to generate quantitative simulations of mi-
crobiome growth and pathway flux. A set of microbiome metabolic models
also facilitates the exploration of the impact of xenobiotics [21], and provides a
computational substrate for systems biology approaches to engineering the gut
microbiome [47]. Figure 2 demonstrates the user interface for MetaPathways
and Pathway Tools, along with example data analysis use cases.

In this section we motivate further two specific use cases for GutCyc. In
the first case, we demonstrate how to use a GutCyc ePGDB to determine
the metabolic path between two small molecules of interest. In the second
case, we use GutCyc to visualize different levels of biological information, e.g.
metabolomics data, in the context of a microbiome metabolic network.

Optimal Metabolite Tracing
The Pathway Tools software provides advanced biochemical querying capa-
bilities for both PGDBs and ePGDBs. One such capability is energy-optimal
metabolite tracing. To summarize, given both a starting and a terminal/target
compound within an ePGDB, Pathway Tools is able to compute the shortest
and most energetically-favorable route through the metabolic reaction network.
While there is no guarantee that, in a complex milieu such as the gut micro-
biome, the syntrophic flux will necessarily follow a short and minimal energy
path, these criteria allow us to narrow down a multiplicity of possible paths to
a single parsimonious candidate path.

In a study by Koeth et al., they demonstrated a causal connection between
the intestinal gut microbiota’s metabolism of red meat and the promotion of
atherosclerosis [36]. In brief, the gut microbiome is capable of transforming ex-
cess L-carnitine into trimethylamine (TMA), which is further processed by the
liver to form the cardiovascular disease-associated metabolite trimethylamine N -
oxide (TMAO). Using this biotransformation as a motivating case, we queried
the GutCyc SRS015217Cyc ePGDB for the biochemical reaction path from
L-carnitine to TMA, which is not provided explicitly by Koeth et al. Utiliz-
ing the Pathway Tools Metabolic Route Search feature, we found an optimal
path between L-carnitine to TMA, using the MetaCyc carnitine degradation II
pathway (PWY-3602, expected in Proteobacteria) along with a betaine reduc-
tase reaction (EC 1.21.4.4; found in Clostridium sticklandii and Eubacterium
acidaminophilum, both species affiliated with the order Clostridiales), mini-
mizing the number of enzymes involved and chemical bond rearrangements.
Pathway Tools found the optimal path in seconds, displayed in Figure 2.

L-carnitine and glycine betaine have known transporter families that facili-
tate their movement across the cell membrane [48], as do TMA and TMAO [49],
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Figure 2: GutCyc ePGDB use cases. In the upper left and upper right insets, a
GutCyc ePGDB is opened in MetaPathways. In the upper left, we display the
Pipeline execution step, and the Process Monitor interfaces. In the upper right, we
display the Summary Table (with exportable sample statistics), and the Pathway
Table (with exportable pathway abundances) interfaces. In the lower for inset images,
a GutCyc ePGDB is opened in Pathway Tools. Clockwise from the upper left,
we display the ePGDB summary statistics, interative metabolic network visualization,
the Pathway View, and the biochemical Reaction View.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2016. ; https://doi.org/10.1101/055574doi: bioRxiv preprint 

https://doi.org/10.1101/055574
http://creativecommons.org/licenses/by-nc/4.0/


1D-chiro-inositol

1-keto-D-chiro-inositol

scyllo-inosose

myo-inositol

scyllo-inositol

3,5,4 -trihydroxycyclohexane-1,2-dione

5-deoxy-D-glucuronate

5-dehydro-2-deoxy-D-gluconate

malonate semialdehyde dihydroxyacetone phosphate

acetyl-CoA

5-dehydro-2-deoxy-D-gluconate 6-phosphate

myo-, chiro- and scillo-Inositol degradation

Myo-inositol 2-
dehydrogenase (EC
1.1.1.18): O_2064_4

[+ 74 isozymes]

5-keto-2-
deoxygluconokinase (EC
2.7.1.92):0_28014_8

5-keto-2-D-gluconate-
6 phosphate aldolase
(EC 4.1.2.28):O_41761_0

Secondary Metabolite Degradation

hydrogen cyanide

taxiphyllin

4-hydroxybenzaldehyde

1D-chiro-inositol

1-keto-D-chiro-inositol
scyllo-inosose

myo-inositol
scyllo-inositol

3,5,4 -trihydroxycyclohexane-1,2-dione

5-deoxy-D-glucuronate

5-dehydro-2-deoxy-D-gluconate

malonate semialdehyde dihydroxyacetone phosphate

acetyl-CoA

5-dehydro-2-deoxy-D-gluconate 6-phosphate pyruvateD-glyceraldehyde
3-phosphate

5-dehydro+deoxy
D-glucuronate

2-dehydro-3-
deoxy-D-gluconate

KDGP

3-dedeoxy- D-glycero-
deoxy-D-glucuronate

2,5-didehydro-
D-gluconate

5-dehydro-
D-gluconate

2-keto-L-gulonate

L-idonate

2-keto-
D-gulonate

D-gluconate

D-gluconate
6-phosphate

D-galactarate D-glucarate

5-dehydro-4-deoxy-D-glucarate

tartronate semialdehyde

D-glycerate

2-phospho-D-glycerateL-canavanine

ureaL-canaline

L-homoserine

D-sorbitol

keto-D-fructose

B-D-fructofuranose

B-D-fructofuranose
6-phophate

neolinustatin

lotaustralin

(2R)-2-hydroxy-2-
methylbutanenitrile

hydrogen cyanide butan-2-one

D-sorbitol
6-phosphate

D-fructose
6-phosphate

B-D-
fructofuranose
6-phosphate

myo-inositol

scyllo-inose

2,4-didehydro-inositol

D-tagaturonte

D-fructuronate

5-dehydro-L-gluconate

Figure 3: The Cellular Overview for the SRS056259Cyc ePGDB, at three
different zoom levels, with compounds highlighted in red if identified from a
mass spectrometry analysis of the gut microbiome [45]. Compounds with no
mass spectrometry highlights appear as grey icons. Reactions with enzyme
data in SRS056259Cyc are drawn in blue. The top left inset shows a fraction
of the full metabolic map. The middle inset shows a zoom-in of the “Secondary
Metabolite Degradation” pathway class. Bottom right inset shows zoom-in on
Pathway P562-PWY, “myo-, chiro-, and scillo-inositol degradation pathway”,
showing four mass-spectrometry identified compounds in red.
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and thus this metabolic route may be a distributed pathway [22]. In fact, no
single PGDB in the BioCyc Collection of over 5,500 microbial genomes (re-
lease 19.0 [14]), has both the carnitine degradation II pathway and the betaine
reductase reaction, which suggests that there is no single microbe capable of
completing this entire metabolic route.

The metabolic route identified may also help generate mechanistic hypothe-
ses from microbiome study observations. Among the findings reported in [36]
in the Supplementary Materials is that all statistically-significant correlations
(positive or negative) found between plasma TMAO levels and species abun-
dance, involved species affiliated wth the order Clostridiales, which is the sub-
suming taxon of the betaine reductase reaction’s taxonomic range, as curated in
MetaCyc. This indicates that Clostridiales are integral to understanding the
regulation of TMA and TMAO concentrations in the gut, which in turn affects
plasma concentrations. This demonstrates the power of ePGDBs in computing
connections between nutritional or pharmaceutical inputs (such as L-carnitine)
to identify potential interactions with known disease biomarkers (as TMAO is
to cardiovascular disease).

High-Throughput Data Visualization
Another capability of Pathway Tools is to visualize the results of high-
throughput experiments mapped onto the Cellular, Genome, and Regulation
Overviews, or as “Omics Pop-Ups” when viewing a particular pathway [54].
Specifically, Pathway Tools provides support for the analysis of mass spec-
trometry data, by automatically mapping a list of monoisotopic masses to
matching entries in MetaCyc, or in specific ePGDBs [29]. As a demonstra-
tion of this capability, we analyzed mass-spectrometry data from a metabolomic
study of humanized mice microbiomes [45]. The dataset contained 867 unique
masses, of which 453 masses were identified using MetaCycby performing stan-
dard adduct monoisotopic mass manipulations [64], followed by monoisotopic
mass search using Pathway Tools. We mapped the identified compounds on the
GutCyc Cellular Overview [41], as seen in Figure 3. This facilitates turning a
massive table of data into a more intuitive construct based on the community
metabolic interaction network, enabling more efficient pattern matching. For
example, using the enrichment analysis tools in Pathway Tools [29], we identified
the pathway class of “Secondary Metabolites Degradation” as enriched for iden-
tified compounds (p = 2.0× 10−2, Fisher Exact Test with Benjamini-Hochberg
multiple testing correction). By visually inspecting the pathways in the class, we
can see that pathway P562-PWY, “myo-, chiro-, and scillo-inositol degradation
pathway”, has four matched compounds from the metabolomics dataset.
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