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Abstract40

Biogeography has traditionally focused on the spatial distribution and abundance of41

species. Both are driven by the way species interact with one another, but also by the way42

these interactions vary across time and space. Here, we call for an integrated approach,43

adopting the view that community structure is best represented as a network of ecological44

interactions, and show how it translates to biogeography questions. We propose that the45

ecological niche should encompass the effect of the environment on species distribution46

(the Grinnellian dimension of the niche) and on the ecological interactions among them47

(the Eltonian dimension). Starting from this concept, we develop a quantitative theory to48

explain turnover of interactions in space and time – i.e. a novel approach to interaction49

distribution modelling. We apply this framework to host–parasite interactions across Eu-50

rope and find that two aspects of the environment (temperature and precipitation) exert51

a strong imprint on species co-occurrence, but not on species interactions. Even where52

species co-occur, interaction proves to be stochastic rather than deterministic, adding to53

variation in realized network structure. We also find that a large majority of host-parasite54

pairs are never found together, thus precluding any inferences regarding their probability55

to interact. This first attempt to explain variation of network structure at large spa-56

tial scales opens new perspectives at the interface of species distribution modelling and57

community ecology.58
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Introduction59

Community ecology is the study of the interactions that determine the distribution and60

abundance of organisms (Krebs, 2009). Despite a general consensus on this definition61

(Scheiner & Willig, 2007), research on variation in community structure has mostly fo-62

cused on the spatial and temporal turnover of species composition (Anderson et al., 2011),63

neglecting variation in the way species interact with each other despite accumulating em-64

pirical evidence that this is a major source of diversity (Poisot et al., 2015b). Given this65

omission, it is perhaps not surprising that biogeographers are still struggling to establish66

whether interactions actually impact the distribution of species at large spatial scales67

(Wisz et al., 2012; Kissling et al., 2012): treating interactions as fixed events neglects a68

large part of the complexity of empirical communities, and will most likely deliver under-69

whelming results. Recent attempts at accounting for interactions in species distribution70

models (Pollock et al., 2014; Pellissier et al., 2013) have brought some methodological71

advances, but are not sufficient for two reasons. First, these techniques are still based72

on a ‘species-based’ approach to communities, where interactions are merely treated as73

fixed covariates affecting distribution. Second, they failed to provide a conceptual step74

forward, both in their treatment of interactions and in the quality of the predictions they75

make.76

Network approaches offer a convenient representation of communities because they77

simultaneously account for species composition and their interactions. Species are repre-78

sented as nodes, so that networks already encompass all the information used by current79

approaches; in addition, interactions are represented by links, so that networks provide80

additional, higher-order information on community structure. To date, studies of net-81

work diversity have mostly been concerned with the distribution of interactions within82

locations, and less so with variation among locations (Dunne, 2006; Bascompte & Jor-83

dano, 2007; Ings et al., 2009; Kéfi et al., 2012). There is, however, ample evidence that84
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interaction networks vary in space and time (Laliberté & Tylianakis, 2010; Poisot et al.,85

2012; Albouy et al., 2014; Poisot et al., 2016b; Trøjelsgaard et al., 2015), even though86

there is no common framework with which to generalize these results. Metacommunity87

theory provides explanations for variation in the distribution of the nodes (Gravel et al.,88

2011; Pillai et al., 2011), but there is no such explanation to the variation of node and89

link occurrences. Consequently, we urgently need a conceptual framework to formalize90

these observations, as it is the only way towards fulfilling the goal of community ecol-91

ogy: providing cogent predictions about, and understanding of, the structure of ecological92

communities.93

Given the historically different approaches to modelling the distributions of species vs.94

interactions, there is a clear need to bring the two together. Here, we offer an integrated95

approach to do so, adopting the view that community structure is best represented as96

a network of ecological interactions. Based on this idea, we propose a new description97

of the basic concept of the ecological niche that integrates the effect of the environment98

on species distribution and on the ecological interactions among them. Building on this99

concept, we develop a quantitative theory to explain turnover of interactions in space and100

time. We first present the conceptual framework, and then formalize it mathematically,101

using a probabilistic model to represent the sampling of the regional pool of interactions.102

At the level of species pairs, the statistical approach could be conceived as an interaction103

distribution model. At the community level, the approach provides a likelihood-based104

method to compare different hypotheses of network turnover. As an illustrative example,105

we apply this novel framework to a large data set on host–parasite interactions across106

Europe and find that two aspects of the environment (temperature and precipitation)107

exert a strong imprint on species co-occurrence, but not on species interactions. The108

network structure changes systematically across the latitudinal gradient, with a peak of109

connectance at intermediate latitudes.110
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The two dimensions of community structure111

The problem of community assembly is often formulated as how are species sampled from112

a regional pool to constitute a local community (Götzenberger et al., 2012)? This question113

could be rewritten to address the problem of network assembly, as how do samples from114

a regional pool of interactions constitute a local interaction network? An illustration of115

this problem for a food web is provided in Fig. 1. The regional pool of interactions,116

the metaweb, represents potential interactions among all species that could be found in a117

given area. In this particular case, there are 275 nodes, and 1173 links among the plants118

(52 nodes), herbivores (96 nodes), and parasitoids (127 nodes) from Northern Europe. An119

instance of a local community is also illustrated, with 45 nodes and 93 interactions. Only120

55.0% of all potential interactions (plant-herbivore or herbivore parasitoid combinations)121

are realized locally, revealing the stochastic nature of ecological interactions. Our objec-122

tive here is to provide a conceptual framework to explain the sampling of the regional123

pool of interactions, along with a quantitative method to predict it. The problem could124

be formalized sequentially by understanding first why only a fraction of the species co-125

occur locally and second why these species do or do not interact.126

There are multiple causes of spatial turnover of species co-occurrence. The first and127

most-studied driver is the effect of variation in the abiotic environment on species perfor-128

mance. Combined with specific responses in demography, it generates variation among129

sites by selecting the locally fittest species (Leibold et al., 2004). Stochasticity plays130

an additional role, either because colonization and extinction events (Hanski, 1999) are131

inherently unpredictable or because strong non-linear feedbacks in community dynamics132

generate alternative transients and equilibria (Chase, 2007; Vellend et al., 2014). Analyses133

of community turnover are usually performed with data represented in a table with rows134

corresponding to sites (or measurements) and columns to species. Metrics of beta diver-135

sity quantify the variance of this community data (Legendre et al., 2005). Traditional136
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approaches rely on measures of dissimilarity among communities, such as the Jaccard or137

Bray–Curtis indices. More recent approaches decompose total variation of the commu-138

nity data into species and site contributions to beta diversity (Legendre & De Cáceres,139

2013), and further partition it into dissimilarity due to changes in species richness and140

dissimilarity due to actual species turnover (Baselga, 2010). Even though these methods141

compare whole lists of species among sites or measurements, they remain fundamentally142

”species-based”, since they report variation within columns. None of them explicitly143

considers variation of associations (i.e., of pairs or higher-order motifs – Stouffer et al.144

2007).145

Similarly, we are now getting a better understanding of interaction turnover. As men-146

tioned above, in the network approach to community structure, species and interactions147

are represented by nodes and links, respectively. Associations can also be represented148

by matrices in which entries represent the occurrence or intensity of interactions among149

species (rows and columns). Network complexity is then computed as the number of150

interactions (in the case of binary networks) or interaction diversity (in the case of quan-151

titative networks, Bersier et al. 2002). Variability in community structure consequently152

arises from the turnover of species composition, along with turnover of interactions among153

pairs of species. The occurrence and intensity of interactions could vary because of the154

environment, species abundance, and higher-order interactions (Poisot et al., 2015b).155

Variation in community composition can be independent of variation of ecological inter-156

actions, suggesting that species and interaction distribution may well respond to different157

drivers (Poisot et al., 2012).158

The ”niche” is by far the dominant concept invoked to explain species distributions159

and community assembly, from the local to the global scale. Following Hutchinson 1957,160

the niche is viewed as the set of environmental conditions allowing a population to estab-161

lish and persist (see also Holt 2009). Community turnover arises as a result of successive162
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replacement of species along an environmental gradient, in agreement with the Gleasonian163

view of communities (Gleason, 1926). The concept is straightforward to put into prac-164

tice with species distribution models, as it maps naturally on available distributional and165

environmental data. Consequently, a vast array of statistical tools have been developed166

to implement it (e.g. BIOMOD Thuiller 2003, MaxEnt Phillips et al. 2006). It is how-167

ever much harder to account for ecological interactions within this approach (Townsend168

et al., 2011). As such, these interactions are often viewed as externalities constraining169

or expanding the range of environmental conditions required for a species to maintain a170

viable population (Pulliam, 2000; Soberón, 2007).171

Interestingly, the ecological network literature also has its own ”niche model” to po-172

sition a species in a community (Williams & Martinez, 2000). The niche of a species in173

this context represents the multidimensional space of all of its interactions. Each species174

is characterized by a niche position, an optimum and a range over three to five different175

niche axes (Williams & Martinez, 2000; Eklöf et al., 2013). The niche model of food176

web structure and its variants have successfully explained the complexity of a variety177

of networks, from food webs to plant–pollinator systems (Allesina et al., 2008; Williams178

et al., 2010; Eklöf et al., 2013). This conceptual framework is, however, limited to local179

communities, and does not provide any explanation for the turnover of network structure180

along environmental gradients.181

The integrated niche182

Despite several attempts to update the concept of the ecological niche, ecologists have not183

moved far beyond the ”n-dimensional hypervolume” defined by Hutchinson. Despite its184

intuitive interpretation and easy translation into species distribution models (Boulangeat185

et al., 2012; Blonder et al., 2014), the concept has been frequently criticized (Hardin, 1960;186
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Peters, 1991; Silvertown, 2004), and several attempts have been made to expand and187

improve it (Pulliam, 2000; Chase & Leibold, 2003; Soberón, 2007; Holt, 2009; McInerny188

& Etienne, 2012b).189

Part of the problem surrounding the niche concept has been clarified with the dis-190

tinction between Eltonian and Grinnellian definitions (Chase & Leibold, 2003). The191

Grinnellian dimension of the niche is the set of environmental conditions required for a192

species to maintain a population in a location. The Grinnellian niche is intuitive to ap-193

ply, and constitutes the conceptual backbone of species distribution models. The Eltonian194

niche, on the other hand, is the effect of a species on its environment. While this aspect195

of the niche is well known by community ecologists, it is trickier to turn into predictive196

models. Nonetheless, the development of the niche model of food web structure (Williams197

& Martinez, 2000) and its parameterization using functional traits (Gravel et al., 2013;198

Bartomeus et al., 2016) made it more operational.199

These perspectives are rather orthogonal to each other, and this has resulted in con-200

siderable confusion in the literature (McInerny & Etienne, 2012a). Chase & Leibold 2003201

attempted to reconcile with the following definition: ”[The niche is] the joint description202

of the environmental conditions that allow a species to satisfy its minimum requirements so203

that the birth rate of a local population is equal to or greater than its death rate along with204

the set of per capita effects of that species on these environmental conditions”. Their rep-205

resentation merges zero-net-growth isoclines delimiting the Grinnellian niche (”when does206

the population persists?”) with impact vectors delimiting the Eltonian niche (”what is the207

per-capita impact?”). While this representation has been very influential in local-scale208

community ecology (the resource-ratio theory of coexistence, Tilman 1982), it remains209

impractical at larger spatial scales because of the difficulties in measuring it. The absence210

of any mathematical representation of the niche that can be easily fit to ecological data211

may explain why biogeographers are still struggling to develop species distribution mod-212
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els that also consider ecological interactions. Thus, a more integrative description of the213

niche will be key to understand spatial and temporal turnover in community structure.214

We propose to integrate the two perspectives of the niche using a visual representa-215

tion of both components (Fig. 2). The underlying rationale is that, in addition to the216

environmental constraints on demographic performance (Fig.2 top panel), any organism217

requires resources to meet its metabolic demands and to sustain reproduction (Fig. 2218

nodes in network of bottom panel). Abiotic environmental axes are any non-consumable219

factors affecting the demographic performance of an organism. Alternatively, the resource220

axes are traits of the resources that allow interactions with the consumer. The niche can221

therefore be viewed as the set of abiotic environmental variables (the Grinnellian compo-222

nent) along with the set of traits (the Eltonian component) that allow a population to223

establish and to persist at a location. Accordingly, each species can be characterized by224

an optimal position along both the environmental (x-axis) and the trait (y-axis) plane.225

The integrated niche is then the hypervolume where interactions can occur and sustain226

a population.227

This approach radically changes the representation of the niche, putting species dis-228

tributions and ecological interactions into the same formalism. Moreover, it allows the229

limits of the niche axes to be independent of each other (as in the example in Fig. 2),230

or to interact. For instance, the optimal prey size for predatory fishes could decline with231

increasing temperature (Gibert & DeLong, 2014), which would make diet boundaries232

functions of the environment. Alternatively, we could also consider that the growth rate233

of the predator changes with the size of its prey items, thereby altering the environmental234

boundaries.235
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A probabilistic representation of interaction networks236

in space237

We now formalize the integrated niche with a probabilistic approach to interactions and238

distributions. In particular, we seek to represent the probability that an interaction239

between species i and j occurs at location y. We define Lijy as a stochastic variable, and240

focus on the probability that this event occurs, P (Lijy). We note that the occurrence of241

an interaction is dependent on the co-occurrence of species i and j. This argument might242

seem trivial at first, but the explicit consideration of this condition in the probabilistic243

representation of ecological interactions will prove instrumental to understanding their244

variation. We define Xiy as a stochastic variable representing the occurrence of species245

i at location y. The quantity we seek to understand is the probability of a joint event,246

conditional on the set of environmental conditions Ey:247

P(Xiy, Xjy, Lijy|Ey) (1)

Or simply said, the probability of observing both species i and j plus an interac-248

tion between i and j given the conditions Ey at location y. This probability could be249

decomposed into two parts using the product rule of probabilities:250

P (Xiy, Xjy, Lijy|Ey) = P (Xiy, Xjy|Ey)P (Lijy|Xiy, Xjy, Ey) (2)

The first term on the right-hand side of the equation is the probability of observing251

the two species co-occurring at location y. It corresponds to the Grinnellian dimension of252

the niche. The second term represents the probability that an interaction occurs between253

species i and j, given that they are co-occurring. This predicate can be refined using254

information on trait distribution and trait matching rules ((Bartomeus et al., 2016)).255
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Above, we referred to this entity as the ”metaweb” and it corresponds to the Eltonian256

dimension of the niche. Below, we will see how this formalism can be directly fit to257

empirical data. But before turning to an application, we will discuss the interpretation258

of different variants of these two terms.259

Variants of co-occurrence260

There are several variants to the co-occurrence probability, representing different hy-261

potheses concerning temporal and spatial variation in network structure (see the explicit262

formulations in Table 1). The simplest model relates the probability of co-occurrence263

directly to the environment, P (Xiy, Xjy|Ey). In this situation, there are no underlying264

assumptions about the ecological processes responsible for co-occurrence. It could arise265

because interactions constrain distribution (Pollock et al., 2014; Cazelles et al., 2016) or,266

alternatively, because of environmental requirements shared between i and j. In the for-267

mer case, species are not independent of each other and the conditional occurrence must268

be accounted for explicitly, P (Xiy, Xjy|Ey) = P (Xiy|Ey, Xjy)P (Xjy|Ey). In the latter269

case, species are independent, and only the marginal occurrence must be accounted for,270

P (Xijy|Ey) = P (Xiy|Ey)P (Xjy|Ey).271

The co-occurrence probability itself could depend on ecological interactions. This272

should be viewed as the realized component of the niche (i.e. the distribution when273

accounting for species interactions). Direct pairwise interactions such as competition,274

facilitation, and predation have long been studied for their impact on co-distribution275

(e.g. Diamond 1975; Connor & Simberloff 1979; Gotelli 2000). Second- and higher-order276

interactions (e.g. trophic cascades) could also affect co-occurrence. Co-occurrence of277

multiple species embedded in ecological networks is a topic of its own, however, and is278

influenced by both network topology and species richness (Cazelles et al., 2016). Not279

only direct interactions influence co-occurrence, but indirect interactions do as well (e.g.280
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plant species sharing an herbivore, or herbivores sharing parasitoids, could repel each281

other in space Holt & Lawton 1993). The impact of direct interactions and first-order282

indirect interactions on co-occurrence tends to vanish with increasing species richness in283

the community. Further, co-occurrence is also influenced by the covariance of interacting284

species to an environmental gradient (Cazelles et al., 2015). Because of the complexity285

of relating co-occurrence to the structure of interaction networks, we will focus here on286

the variation of interactions and not on their distribution, and leave this specific issue for287

the Perspectives section and future research.288

Variants of the metaweb289

There are also variants of the metaweb. First, most documented metawebs have thus290

far considered ecological interactions to be deterministic, rather than probabilistic (e.g.291

Havens 1992; Wood et al. 2015). Species are assumed to interact whenever they are found292

together in a location, independent of their local abundance and the local environment.293

In other words, P (Lijy|Xijy = 1) = 1 and P (Lijy|Xijy = 0) = 0. This approach might be294

a reasonable approximation if the spatial or temporal scale of sampling and inference is295

so large that the probability of observing at least one interaction converges to unity. In296

this scenario, network variation arises solely from species distributions.297

Second, ecological interactions could also vary with the environment, so that P (Lijy|Ey).298

Although it is rare to see a conditional representation of pairwise ecological interactions,299

experimental studies have frequently revealed interactions to be sensitive to the environ-300

ment. For instance, (McKinnon et al., 2010) showed that predation risks of shorebirds301

vary at the continental scale, decreasing from the south to the north. It is also common302

to see increasing top-down control with temperature (e.g. Shurin et al. 2012; Gray et al.303

2015). Effects of the environment on interactions also propagate up the community and304

influence network structure (Tylianakis et al., 2007; Woodward et al., 2010; Petchey et al.,305
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2010).306

Application: continental-scale variation of host-parasite307

community structure308

We now turn to an illustration of our framework with the analysis of an empirical dataset309

of host–parasite networks sampled throughout the south–north environmental gradient310

in continental Europe. The focal system consists of local food webs of willows (genus311

Salix), their galling insects, and the natural enemies (parasitoids and inquilines) of these312

gallers. Targeting this system, we ask: i) how much does network structure vary across313

the gradient, and ii) what is the primary driver of network turnover across the gradient?314

Data315

Communities of willows, gallers, and parasitoids are species-rich and widely distributed,316

with pronounced variation in community composition across space. The genus Salix in-317

cludes over 400 species, most of which are shrubs or small trees (Argus, 1997), and is318

common in most habitats across the Northern Hemisphere (Skvortsov, 1999). Willows319

support a highly diverse community of herbivorous insects, with one of the main her-320

bivore groups being gall- inducing sawflies (Hymenoptera: Tenthredinidae: Nematinae:321

Euurina (Kopelke, 1999)). Gall formation is induced by sawfly females during oviposi-322

tion, and includes marked manipulation of host-plant chemistry by the galler (Nyman &323

Julkunen-Tiitto, 2000). The enemy community of the gallers includes nearly 100 species324

belonging to 17 insect families of four orders (Kopelke, 2003). These encompass two325

main types: inquiline larvae (Coleoptera, Lepidoptera, Diptera, and Hymenoptera) feed326

primarily on gall tissue, but typically kill the galler larva in the process, while parasitoid327

larvae (representing many families in Hymenoptera) kill the galler larvae by direct feed-328
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ing (Kopelke, 2003). In terms of associations between the trophic levels, phylogeny-based329

comparative studies have demonstrated that galls represent ”extended phenotypes” of330

the gallers, meaning that gall form, location, and chemistry is determined mainly by the331

galling insects and not by their host plants (Nyman & Julkunen-Tiitto, 2000). Because332

galler parasitoids have to penetrate a protective wall of modified plant tissue in order to333

gain access to their victims, gall morphology has been inferred to strongly affect the asso-334

ciations between parasitoids and hosts (Nyman et al., 2007). Thus, the set of parasitoids335

attacking each host is presumably constrained by the form, size, and thickness of its gall.336

Local realizations of the willow–galler–parasitoid network were reconstructed from337

community samples collected between 1982 and 2010. During this period, willow galls338

were collected at 370 sites across Central and Northern Europe. Sampling was conducted339

in the summer months of June and/or July, i.e., during the later stages of larval de-340

velopment. Galler species were identified on the basis of willow host species and gall341

morphology, as these are distinct for each sawfly species. At each site, galls were ran-342

domly collected from numerous willow individuals in an area of about 0.1–0.3 km2. Some343

sites were visited more than once, with a total of 641 site visits across the 370 sites.344

GPS coordinates were recorded for each location; for our analyses, current annual mean345

temperature and precipitation were obtained from WorldClim using the R package raster346

(Hijmans, 2015). While other covariates could have also been considered, these two vari-347

ables are likely representative of the most important axes of the European climate, and are348

also more easily interpretable than reduced variables obtained, for example, by principal349

component analysis.350

The methods used for rearing parasitoids from the galls have been previously de-351

scribed by Kopelke 2003. In brief, galls were opened to score the presence of galler352

or parasitoid/inquiline larvae. Parasitoid larvae were classified to preliminary morphos-353

pecies, and the identity of each morphospecies was determined by connecting them to354
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adults emerging after hibernation. The galls were reared by storing single galls in small355

glass tubes (Kopelke, 1985). Hibernation of galls containing parasitoids took place either356

within the glass tubes or between blotting paper in flowerpots filled with clay granulate or357

a mixture of peat dust and sand. These pots were stored over the winter in a roof garden358

and/or in a climatic chamber. In most cases, the matching of larval morphospecies with359

adult individuals emerging from the rearings allowed the identification of the parasitoids360

to the species level. Nonetheless, in some cases, individuals could only be identified to361

one of the (super)families Braconidae, Ichneumonidae, and Chalcidoidea. This was par-362

ticularly the case when only remains of faeces, vacant cocoons of parasitoids, and/or363

dead host larvae were found, as was the case when parasitoids had already emerged from364

the gall. As a result, the largest taxon in the data set, ”Chalcidoidea indeterminate”,365

represents a superfamily of very small parasitoids that are hard to distinguish.366

In total, 146,622 galls from 52 Salix taxa were collected for dissection and rearing.367

These galls represented 96 galler species, and yielded 42,133 individually-identified par-368

asitoids. Of these, 25,170 (60%) could be identified to the species level. Overall, 127369

parasitoid and inquiline taxa were distinguished in the material. Data on host associa-370

tions within subsets of this material have been previously reported by (Kopelke, 1999)371

and (Nyman et al., 2007). The current study represents the first analysis of the full data372

set from a spatial perspective.373

Analysis374

Computing the probability of observing an interaction involves fitting a set of binomial375

models and collecting their estimated probabilities. For the sake of illustration, we con-376

sidered second-order generalized linear models – although more flexible fitting algorithms377

(e.g. GAM or Random Forest) could equally well be used, as long as the algorithm378

can estimate the probability for each observation. The data consist of a simple (albeit379
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large and full of zeros) table with the observation of each species, Xiy and Xjy, their380

co-occurrence, Xijy, the observation of an interaction Lijy, and environmental co-variates381

Ey. Thus, there is one row per pair of species per site. We considered that an absence382

of a record of an interaction between co-occurring species at a site means a true absence383

(see below for a discussion on this issue).384

We compared three models for the co-occurrence probability. The first one directly385

models the co-occurrence probability conditional on the local environment, P (Xiy, Xjy|Ey)386

(models are listed at Table 1 and 2). Hence, this model makes no assumptions about the387

mechanisms driving co- occurrence for any given environment, and instead uses the in-388

formation directly available in the data. It thereby indirectly accounts for the effect of389

interactions on co-occurrence, if there are any. The second model considers independent390

occurrence of species. In this case, we independently fit P (Xiy|Ey) and P (Xjy|Ey), and391

we then take their product to derive the probability of co-occurrence. This model should392

be viewed as a null hypothesis with respect to the first model, since a comparison be-393

tween the respective models will reveal if there is significant spatial association of the two394

species beyond a joint response to the shared environment (Cazelles et al., 2016). Finally,395

the third model assumes that the probability of co-occurrence is independent of the en-396

vironment and thus constant throughout the landscape. In other words, P (Xiy, Xjy) is397

obtained by simply counting the number of observed co-occurrences divided by the total398

number of observations. Thus, the comparison between the first and third model allows399

us to test the hypothesis that co-occurrence is conditional on the environment. Whenever400

the environment was included as a covariate in the GLM, we considered a second-order401

polynomial response for both temperature and precipitation in order to account for op-402

tima in environmental conditions. There are consequently five parameters for the first403

model when fitting a given pair of species, 10 parameters for the second, and only one for404

the third model.405
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Following the same logic, we compared three models of the interaction probability. The406

first model conditions the interaction probability on the local environmental variables,407

P (Lijy|Xiy, Xjy, Ey). Consequently, the model was fit to the subset of the data where the408

two species co-occur. The second model fits the interaction probability independently of409

the local environmental variables, P (Lijy|Xiy, Xjy). It corresponds to the number of times410

the two species were observed to interact when co-occurring, divided by the number of411

times that they co-occurred. The third model is an extreme case performed only to test412

the hypothesis that if two species are found to interact at least once, then they should413

interact whenever they co-occur, P (Lijy|Xiy, Xjy) = 1. While not necessarily realistic,414

this model tests an assumption commonly invoked in the representation of local networks415

from the knowledge of a deterministic metaweb. There are consequently five parameters416

for the first model, a single parameter for the second model and no parameter to evaluate417

for the third model (where the interaction probability is fixed by the hypothesis).418

We fit the different models to each pair of species and recorded the predicted prob-419

abilities. The joint probability P (Lijy, Xiy, Xjy) was then computed from Eq. 2, and420

the likelihood of each observation was computed as L(θijy|Dijy) = P (Lij, Xiy, Xjy) if an421

interaction was observed, and as L(θijy|Dijy) = 1 − P (Lijy, Xiy, Xjy) if no interaction422

was observed. The log-likelihood was summed over the entire dataset to compare the423

different models by AIC. Not surprisingly, there was a very large number of species pairs424

for which this model could not be computed, as they simply never co-occurred. For these425

pairs, we have no information of the interaction probability, and they were consequently426

removed from the analysis. The log-likelihood reported across the entire dataset was427

summed over all pairs of species observed to co- occur at least once. Interactions between428

the first (Salix) and second (gallers) trophic layers and those between the second and429

third (parasitoids) were considered separately. Finally, we used the full model (in which430

both co-occurrence and the interaction are conditional on the environment) to interpolate431
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species distributions and interaction probabilities across the entire European continent.432

We reconstructed the expected network for each location in a 1 X 1 km grid and computed433

the probabilistic connectance following (Poisot et al., 2016a).434

All of the data are openly available in the database mangal (Poisot et al., 2015a) and435

all R scripts for running the analysis, are provided in the Supplementary Material.436

Results437

Despite the extensive sampling, many pairs of species were observed to co- occur only a438

few times. This made it difficult to evaluate interaction probabilities with any reasonable439

confidence interval. Thus, we start with an example of a single pair of species selected440

because of its high number of co- occurrences (Nij = 38): the leaf folder Phyllocolpa441

prussica and the parasidoid Chrysocharis elongata. These two fairly abundant species442

were observed Ni = 49 and Nj = 121 times, respectively, across the 370 sites, and443

they were found to interact with a marginal probability P (Lij) = 0.55, which means444

they interacted at 21 different locations. Here, a comparison of model fit (Table 1)445

reveals that conditioning the interaction probability on local environmental conditions446

adds no explanatory power beyond a model assuming the same probability of interaction447

anywhere in space (Model 1 vs Model 2). Moreover, when the two species co-occur, the448

occurrence of the interaction was insensitive to the environment (Model 2 vs Model 3).449

Alternatively, climatic variables significantly impacted co-occurrence (Model 3 vs Model450

4). The neutral model performed worse than the non-random co- occurrence model451

(Model 3 vs Model 6). The full model revealed that the greatest interaction probability452

occurred at intermediate temperature and precipitation, simply because this is where453

the two species most frequently co-occur (Fig. 3). The probabilities of co-occurrence454

and interaction can be represented in space, where we found that the highest interaction455

probability occurred in Central Europe (Fig. 4).456
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We evaluated each model for all pairs of species in order to better understand the large-457

scale drivers of network turnover. The results were highly consistent among trophic layers458

(Salix–gallers and gallers–parasitoids; Table 2). Across all pairs of species, the conditional459

representation of interactions performed better than the marginal one (Model 1 vs Model460

2); that is, interactions did not occur systematically whenever the two species were found461

co-occurring. Hence, in addition to species turnover, the stochastic nature of interactions462

contributes to network variability. In total, we recorded 1,173 pairs of interactions, only463

290 of which occurred more than five times. Out of these 290 interactions, 143 were464

systematically detected whenever the two species co-occurred. In the instances when465

species co- occurred, the two environmental variables considered proved relatively poor466

predictors of their interactions (Model 2 vs Model 3). Not surprisingly, for both types of467

interactions (Salix–galler and galler–parasitoid), the log- likelihood increased when the468

environment was considered. However, the extra number of parameters exceeded the gain469

in log-likelihood and inflated AIC. Therefore, the most parsimonious model excluded the470

effect of the environment. On the basis of log-likelihood only, co-occurrence was non-471

neutral for both Salix–galler and galler–parasitoid interactions. Thus, according to AIC,472

the best model was the one of non-random co-occurrence (Model 3 vs Model 6) for both473

types of interactions.474

The approach we present not only has implications for understanding the biogeogra-475

phy of pairwise interactions and interaction networks, but also for evaluating the quality476

of metawebs. We investigated the reliability of the estimated metaweb across the entire477

dataset wtih summary statistics of species co-occurrence. As mentioned above, across478

the 17,184 potential pairs of species, only 1,173 pairs interacted in at least a single lo-479

cation, yielding a connectance of 0.068. However, only 4,459 pairs of species were found480

co- occurring at least once across all locations. There are consequently 12,725 gaps of481

information in the metaweb (74.1% - see Fig. 5). As we cannot know whether the non-482
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co-occurring species would indeed interact if found together, a more appropriate estimate483

of connectance would be C = 1173/4459 = 0.263. This result reveals that the evaluation484

of the sampling quality of ecological networks is a problem on its own and well worth485

further attention.486

Once we had selected the best model based on AIC (Model 3, Table 2), we used487

it to reconstruct the expected species richness, along with the most likely network for488

each location. Using this approach, we mapped the expected distribution of network489

properties across Europe (Fig. 6). For simplicity, we chose to consider connectance490

as our descriptor of network configuration, as this metric can be easily computed from491

probabilistic networks (Poisot et al., 2016a) and is also a good proxy for many other492

network properties (Poisot & Gravel, 2014). Overall, we found a peak in Salix, gallers and493

parasitoid diversity in Northern Europe. The expected number of interactions roughly494

followed the distribution of species richness, but accumulated at a rate different from495

species numbers. Connectance likewise peaked in Northern Europe (Fig. 6).496

Interpretation497

We have proposed that the representation of community structure and its variation in498

space and time is best captured by the formalism of ecological networks, as both the499

distribution of species and their interspecific interactions can then be accounted for. We500

consequently revised the niche concept in order to integrate its abiotic and biotic com-501

ponents that vary over time and space. This integrated niche was represented visually502

with an ordination of species into an environmental space and a trait space. The fun-503

damental niche of a species is represented as the set of environmental conditions and504

resources that allow a species to establish in a location, thereby integrating the Eltonian505

and the Grinnellian components of the niche. We then translated the concept mathe-506
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matically by investigating the probability of the joint occurrences of species and their507

interaction, which should be interpreted as an interaction distribution model. We used508

this approach to characterize the turnover of the structure of ecological interactions in a509

species-rich tri-trophic network across Western Europe, finding that the primary driver510

of network variation is the turnover in species composition. To our knowledge, this is the511

first continental-wide analysis of the drivers of network structure from empirical data on512

the occurrence of interactions (see Baiser et al. 2012; Albouy et al. 2014; Poisot et al.513

2016b).514

Applying the framework to our large data set on host–parasite interactions across515

Europe revealed key features in the interaction between Salix taxa, their herbivores,516

and the natural enemies of these herbivores. Consistent with a general increase in the517

diversity of Salix towards boreal areas (Cronk et al., 2015), overall species richness of518

the networks increased towards the north. The distribution of Salix species richness519

largely matched those of gallers and parasitoids. These observations within Europe are520

also matched by the ones found at a global scale for Salix (Argus, 1997; Cronk et al.,521

2015; Wu et al., 2015) and sawflies (Kouki et al., 1994; Kouki, 1999). Species richness522

in a common groupd of parasitic wasps, the Ichneumonidae, was originally presumed to523

show a similar ”reversed latitudinal gradient”, but this observation has been recently524

challenged by findings of rather high ichneumonid diversity in the tropics (Veijalainen525

et al., 2013). Nevertheless, ichneumonid subfamilies specifically associated with sawflies526

(Ctenopelmatinae, Tryphoninae) are clearly less diverse in the south.527

Exactly what processes are responsible for the distribution of species richness at dif-528

ferent trophic levels is yet to be established (but see e.g. Roininen et al. 2005; Nyman529

et al. 2010; Leppänen et al. 2014), but as a net outcome of different latitudinal trends530

across trophic levels, the distribution of co- occurrence and therefore of potential in-531

teractions differed between the first and second layers of feeding links. The correlation532
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between expected Salix and gallers richness was 0.73, while it was 0.58 between gallers533

and their parasitoids. Therefore, the ratio of herbivores to Salix species is essentially534

constant across Europe, while each herbivore species is potentially attacked by a and a535

lower trophic level at the same site was clearly affected by the richer enemy community536

at higher latitudes. Consequently, overall connectance peaks in Northern Europe (Fig.537

6).538

In terms of species interacting with each other, our analysis suggests that the environ-539

ment leaves a detectable imprint on species co-occurrence, but only a slight mark on the540

occurrence of realized links among species in a specific place: the probability of finding541

a given combination of species at a higher and a lower trophic level at the same site was542

clearly affected by the environment, whereas the probability of observing an interaction543

between the two was not detectably so. This applies to the example species Phyllocolpa544

prussica and Chrysocharis elongata (Figs 2 and 3), but also to all species pairs more545

generally. For the example species pair, the full model revealed that the interaction prob-546

ability peaks at intermediate temperature and precipitation, simply because this is where547

the two species co-occur most often. This does not imply that species will always interact548

when they meet – although this is a basic assumption in most documented metawebs to549

date (e.g. Havens 1992; Wood et al. 2015). Rather, an interaction is a stochastic process550

whose probability is also influenced by the probability with which species co-occur. What551

we cannot reliably know is how this stochasticity splits into two sampling processes – i.e.,552

the extent to which a species at the higher trophic level runs into a species at the lower553

level co-occurring at the site, and the extent to which this interaction is detected by an554

observer collecting a finite sample. Future work will be required to document the relative555

importance of these two sources of uncertainty in the occurrence of interactions.556
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Perspectives557

Evidence that the structure of ecological networks does vary across habitats (e.g. Tylianakis558

et al. 2007), over environmental gradients Lurgi et al. 2012 and in time (Trøjelsgaard et al.,559

2015) is accumulating rapidly. It is not clear, however, to what extent the turnover of560

network structure is driven by a systematic change in species composition or of pair-561

wise interactions (Poisot et al., 2012, 2015b). Our model comparison of host-parasite562

interactions revealed that most of the turnover is driven by species-specific responses to563

the environment, impacting species richness, and that co-occurrence was mostly neutral.564

Further, the occurrence of interactions among host and parasite is highly stochastic even565

when both are present, and not predictable by the variables considered by us. We know566

that interactions vary with the environment in other systems, for instance, herbivory567

(Shurin et al., 2012) and predation (McKinnon et al., 2010; Legagneux et al., 2014) are568

often found to increase with temperature, resulting in spatial variation of trophic cascades569

(Gray et al., 2015). What remains unclear, however, is the extent to which such variation570

is driven by a turnover of species composition along gradients, or a turnover of the in-571

teractions. Here we found that interactions vary substantially but non-predictably along572

the annual temperature and the precipitation gradient. Clearly, the lack of detectable573

signal may be due to our choice of covariates. Indeed, a previous study on a similar574

system identified habitat characteristics as the primary drivers of interactions (Nyman575

et al., 2015). New investigations with other systems will thus be required to challenge this576

result. Under all circumstances, documenting the relationship between the environment577

and the occurrence of interactions at continental scales is critical for understanding how578

large-scale variation of trophic regulation influences community dynamics and ecosystem579

functioning (Harfoot et al., 2014).580

We restricted our framework to the effect of co-occurrence on ecological interactions,581

neglecting the inverse of the problem. We did not investigate in depth the drivers of co-582

23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 26, 2016. ; https://doi.org/10.1101/055558doi: bioRxiv preprint 

https://doi.org/10.1101/055558
http://creativecommons.org/licenses/by-nc-nd/4.0/


occurrence and simply took it for granted from the data. Co-occurrence was indeed many583

times significantly different from the expectation of independent species distributions. It584

thus begs the question of whether, once environmental effects on species-specific distribu-585

tion have been accounted for, interactions come with significant effects on co-occurrence?586

We could rephrase this problem by asking whether the fundamental niche differs from the587

realized niche, and how this applies to our framework. For example, we have considered588

above simply the co-occurrence probability, P (Xiy, Xjy|Ey), which could be expanded as589

P (Xiy|Xjy, Ey)P (Xjy|Ey). After some re-arrangement of Eq. 2, the marginal occurrence590

probability, P (Xjy|Ey), could be considered as a species distribution model taking into591

account the interaction between these species. This derivation would however critically592

depend on a strong a priori expectation of the conditional probability of observing a593

species given the distribution of the other species. This assumption seems reasonable for594

some situations, such as a parasitoid species that requires a host to develop. On the other595

hand, we found that the strength of this association is often rather weak if not neutral596

(for instance, with the example pair analyzed at Table 1). The lack of an association597

could simply arise when the parasitoid is generalist enough that it is not obligated to598

track the distribution of any single/given host (Cazelles et al., 2015).599

At present, there is only indirect support for the hypothesis that interacting species are600

conditionally distributed but this possibility should be the topic of more specific hypothe-601

sis testing. The impact of ecological interactions on the distribution of co-occurrence has602

been the topic of many publications since Diamond 1975 seminal study on competition603

and ”checkerboard” distribution, but pairwise approaches have only recently received at-604

tention (Veech, 2013). Whether two interacting species are more closely associated in605

space remains unclear, since most approaches based on null models consider community-606

level metrics (e.g. Gotelli 2000), such as the C-score, thereby making it hard to evaluate607

if specific interactions do indeed affect co-occurrence. The expansion of the framework608
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we describe to account for the difference between the realized and the fundamental niche609

will therefore require further investigation of the impact of interactions on co-occurrence.610

Ecological networks are known to be extremely sparse, i.e. they have far more absences611

than presences of interactions. Absences of interactions, however, can come from different612

sources. The fact that unequal sampling at the local scale can affect our understanding613

of network structure is well documented (Martinez et al., 1999). In a spatial context,614

however, some interactions may be undocumented simply because the species involved615

have never been observed to co-occur. Although these cases are reported as a lack of616

interactions, in actuality we cannot make any reliable inference from them: since the617

species have never been observed together, it remains possible that they would interact618

if they did. A fundamentally different category of absences of interactions are then those619

reported after multiple observations of species co-occurence. Thus, to gain confidence620

that the probability of an interaction is low, extensive sampling (that is, several records621

of co- occurence) is needed. Generally, our confidence that the interaction is indeed622

impossible will increase with the number of observations of the species pair. Seeing that623

this is essentially a Bernoulli process (the probability that the species will interact given624

their presence), the breadth of the confidence interval is expected to saturate after a fixed625

number of observations, which can be set as a threshold above which a species pair has626

finally been observed ”often enough”. This will allow us to deal with both confirmed627

absences of interactions and mere absence of evidence.628

Conclusion629

Our representation of spatial variation of community structure presents a new approach630

for the study of the biogeography of ecological networks. We see the following key chal-631

lenges and opportunities ahead in this exciting area of research:632
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1. New generation of network data. Investigating spatial variation of network633

structure will require high quality and highly replicated network data. We have investi-634

gated one the most comprehensive spatial network datasets we are aware of and nonethe-635

less found immense gaps of knowledge in its resolution. Species richness accumulates636

much faster than observations of ecological interactions (Poisot et al., 2012). Each pair637

of species must be observed several times in order to obtain reliable estimates of their638

interaction probability.639

2. Estimation of the reliability of interactions. We need quantitative tools640

to estimate the confidence intervals around inferred interaction probabilities, as well as641

estimators? of the frequency of false absences. Bayesian methods are promising to that642

end because we could use information on the target species (e.g. if they are known as643

specialists or generalists) to provide prior estimates of the interaction probability.644

3. From interaction probabilities to a distribution of network properties.645

Metrics are available to analyze the structure of probabilistic networks (Poisot et al.,646

2016a). These metrics are useful as first approximation, but they assume independence647

among interactions. This might not be the case in nature because of the role of co-648

occurrence and shared environmental requirements. We also need to better understand649

the distribution of network properties arising from probabilistic interactions.650

4. Investigation of the environmental-dependence of ecological interactions.651

There is evidence that interactions can vary in space, but this problem has not been652

investigated in a systematic fashion. The paucity of currently available data precludes an653

extensive analysis of this question at present.654

5. Effects of ecological interactions on co-occurrence. We have intentionally655

omitted the feedback of ecological interactions on co-occurrence in this framework. As656

abundance can impact the occurrence of interactions, and conversely since interactions657

impact abundance (Canard et al., 2014), we could reasonably expect that interactions658
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will also influence co-occurrence. Theory in this regard does exist for simple three-species659

modules (Cazelles et al., 2015), but its extension to entire co-occurrence networks will660

prove critical in the future, especially given the interest in using co- occurrence to infer661

ecological interactions (Morales-Castilla et al., 2015; Morueta-Holme et al., 2016).662
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Cazelles, K., Araújo, M.B., Mouquet, N. & Gravel, D. (2016) A theory for species co-703

occurrence in interaction networks. Theoretical Ecology 9, 39–48.704

Cazelles, K., Mouquet, N., Mouillot, D. & Gravel, D. (2015) On the integration of biotic705

interaction and environmental constraints at the biogeographical scale. Ecography pp.706

n/a–n/a.707

Chase, J. & Leibold, M. (2003) Ecological niches. Chicago University Press, Chicago.708

Chase, J.M. (2007) Drought mediates the importance of stochastic community assembly.709

Proceedings of the National Academy of Sciences of the United States of America 104,710

17430–4.711

Connor, E. & Simberloff, D. (1979) The assembly of species communities: chance or712

competition? Ecology 60, 1132–1140.713

29

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 26, 2016. ; https://doi.org/10.1101/055558doi: bioRxiv preprint 

https://doi.org/10.1101/055558
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cronk, Q., Ruzzier, E., Belyaeva, I. & Percy, D. (2015) Salix transect of Europe: lati-714

tudinal patterns in willow diversity from Greece to arctic Norway. Biodiversity Data715

Journal 3.716

Diamond, J. (1975) Assembly of species communities. Ecology and evolution of communi-717

ties (eds. M. Cody & J. Diamond), pp. 342–444, Harvard University Press, Cambridge.718

Dunne, J.A. (2006) The network structure of food webs. Ecological networks: Linking719

structure and dynamics (eds. M. Pascual & J.A. Dunne), pp. 27–86, Oxford University720

Press, Oxford.721
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Pizo, M.A., Rader, R., Rodrigo, A., Tylianakis, J.M., Vázquez, D.P. & Allesina, S.724

(2013) The dimensionality of ecological networks. Ecology letters 16, 577–583.725

Gibert, J.P. & DeLong, J.P. (2014) Temperature alters food web body-size structure.726

Biology Letters 10.727

Gleason, H. (1926) The individualistic concept of the plant association. Bulletin of the728

Torrey Botanical Club 53, 7–26.729

Gotelli, N.J. (2000) Null Model Analysis of Species Co-Occurrence Patterns. Ecology 81,730

2606.731

Götzenberger, L., de Bello, F., Br̊athen, K.A., Davison, J., Dubuis, A., Guisan, A., Lepš,732
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composition of Ichneumonidae (Hymenoptera) from western Amazonia: insights into902

diversity of tropical parasitoid wasps. Insect Conservation and Diversity 6, 28–37.903

Vellend, M., Srivastava, D.S., Anderson, K.M., Brown, C.D., Jankowski, J.E., Kleyn-904

hans, E.J., Kraft, N.J.B., Letaw, A.D., Macdonald, A.A.M., Maclean, J.E., Myers-905

Smith, I.H., Norris, A.R. & Xue, X. (2014) Assessing the relative importance of neutral906

stochasticity in ecological communities. Oikos 123, 1420–1430.907

Williams, R. & Martinez, N. (2000) Simple rules yield complex food webs. Nature 404,908

180–183.909

Williams, R.J., Anandanadesan, A. & Purves, D. (2010) The probabilistic niche model910

reveals the niche structure and role of body size in a complex food web. PloS One 5,911

e12092.912

Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J., Damgaard, C.F., Dor-913

mann, C.F., Forchhammer, M.C., Grytnes, J.A., Guisan, A., Heikkinen, R.K., Høye,914
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Table 1: Summary of model comparison for the interaction between the leaf folder Phyllocolpa prussica) and the parasitoid
Chrysocharis elongata

# Metaweb model Co-occurrence model LL npars AIC
1 P (Lijy) P (Xiy, Xjy|Ey) -71.1 6 154.2
2 P (Lijy|Xiy, Xjy) P (Xiy, Xjy|Ey) -65.7 6 143.4
3 P (Lijy|Xiy, Xjy, Ey) P (Xiy, Xjy|Ey) -65.6 10 151.3
4 P (Lijy|Xiy, Xjy, Ey) P (Xiy, Xjy) -84.5 6 183
5 P (Lijy|Xiy, Xjy, Ey) P (Xiy)P (Xjy) -80.7 7 173.4
6 P (Lijy|Xiy, Xjy, Ey) P (Xiy|Ey)P (Xjy|Ey) -68.8 15 167.6
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Table 2: Summary of model comparison for the interaction across all pairs of salix, gallers and parasitoids.

Interaction # Metaweb model Co-occurrence model LL npars AIC
Salix-Galler 1 P (Lijy) P (Xiy, Xjy|Ey) -6022.1 7548 27140.3

2 P (Lijy|Xiy, Xjy) P (Xiy, Xjy|Ey) -5547.9 7548 26191.8
3 P (Lijy|Xiy, Xjy, Ey) P (Xiy, Xjy|Ey) -5364.0 12580 35888.0
4 P (Lijy|Xiy, Xjy, Ey) P (Xiy, Xjy) -5998.4 8806 30287.2
5 P (Lijy|Xiy, Xjy, Ey) P (Xiy)(Xjy) -6636.1 7548 27092.7
6 P (Lijy|Xiy, Xjy, Ey) P (Xiy|Ey)P (Xjy|Ey) -6002.9 18870 49745.7

Galler-Parasitoid 1 P (Lijy) P (Xiy, Xjy|Ey) -22068.1 19206 82548.2
2 P (Lijy|Xiy, Xjy) P (Xiy, Xjy|Ey) -19504.8 19206 77421.6
3 P (Lijy|Xiy, Xjy, Ey) P (Xiy, Xjy|Ey) -20217.0 32010 104454.1
4 P (Lijy|Xiy, Xjy, Ey) P (Xiy, Xjy) -19591.3 22407 77594.5
5 P (Lijy|Xiy, Xjy, Ey) P (Xiy)P (Xjy) -22491.5 19206 89796.9
6 P (Lijy|Xiy, Xjy, Ey) P (Xiy|Ey)P (Xjy|Ey) -18936.9 48015 133903.7
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Figure legends928

Figure 1929

Non-random sampling of the metaweb. Network assembly can be viewed as a sam-930

pling process of the regional pool of potential interactions. Species (indicated by colored931

nodes) are sampled first, and among the species found in the local network, only some932

interactions (indicated by blue links) occur. We characterize these sampling processes933

with the quantitative framework proposed in this paper. As a concrete illustration of934

metaweb sampling, we here show a local interaction network among Salix (left/green),935

gallers (center/red), and parasitoids (red/blue). The metaweb was constructed by aggre-936

gating interactions observed across 370 local networks.937

Figure 2938

Visual representation of the integrated niche. In biogeography, the niche is consid-939

ered the set of environmental conditions where the intrinsic growth rate r is positive (Holt,940

2009). The horizontal axis represents an environmental gradient impacting the growth of941

the focal species (in red). The location of each species along this gradient represents their942

optimum, and the vertical dotted lines represent the limits of the Grinnellian niche of the943

focal species. In food web ecology, the Eltonian niche represents the location of a species944

in the food web, as determined by its niche position (n) and its niche optimum (c). The945

vertical axis represents a niche gradient, for example a trait such as body size. The loca-946

tion of each species along this gradient represents their niche position. The focal species947

will feed only on prey species occupying niche locations within a given interval around the948

optimum, represented by the horizontal lines. The integrated Grinnellian and Eltonian949

niche corresponds to the square in the middle where an interaction is possible owing to950

a match of traits and spatial distribution. According to our probabilistic framework, the951
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central square represents the area where the joint probability of observing co-occurrence952

and interactions is positive.953

Figure 3954

Probabilistic representation of the interaction probability between a leaf folder955

(Phyllocolpa prussica) and a parasitoid (Chrysocharis elongata) across gradi-956

ents of annual average temperature and annual precipitation. The representation957

is based on predictions from Model 3 (see Table 1). In the left panel, open circles repre-958

sent the absence of both species, whereas closed circles represent co- occurrence and plus959

signs the occurrence of only one of the two species. In the other two panels, open circles960

represent co-occurrence but an absence of interaction and closed circles the occurrence of961

an interaction.962

Figure 4963

Probabilistic representation of the interaction probability between a leaf folder964

(Phyllocolpa prussica) and a parasitoid (Chrysocharis elongata) across Eu-965

rope. The maps are generated from probabilities predicted by the model illustrated966

inFig. 3.967

Figure 5968

Representation of the Salix-galler and galler-parasitoid metawebs. Black cells969

indicate species pairs for which at least one interaction was recorded, white cells indicate970

absence of recorded interactions and grey cells show pairs of species never detected at971

the same site (and hence species pairs for which we have no information on whether they972

would interact should they co-occur).973
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Figure 6974

Mapping the distribution of species richness, the number of links and con-975

nectance across Europe. The representation is based on predictions from Model 3976

(see Table 2). Species richness is obtained by summation of individual occurrence prob-977

abilities, and link density by summation of interaction probabilities.978
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Figure 1979
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Figure 2980
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Figure 3981
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Figure 4982
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Figure 5983
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Figure 6984
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