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Stochastic models of gene transcription with upstream drives:
exact solution and sample path characterization
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Gene transcription is a highly stochastic and dynamic process. As a result, the mRNA copy num-
ber of a given gene is heterogeneous both between cells and across time. We present a framework
to model gene transcription in populations of cells with time-varying (stochastic or deterministic)
transcription and degradation rates. Such rates can be understood as upstream cellular drives rep-
resenting the effect of different aspects of the cellular environment. We show that the full solution
of the master equation contains two components: a model-specific, upstream effective drive, which
encapsulates the effect of the cellular drives (e.g., entrainment, periodicity or promoter randomness),
and a downstream transcriptional Poissonian part, which is common to all models. Our analytical
framework allows us to treat cell-to-cell and dynamic variability consistently, unifying several ap-
proaches in the literature. We apply the obtained solution to characterize several gene transcription
models of experimental relevance, and to explain the influence on gene transcription of synchrony,
stationarity, ergodicity, as well as the effect of time-scales and other dynamic characteristics of
drives. We also show how the solution can be applied to the analysis of single-cell data, and to

reduce the computational cost of sampling solutions via stochastic simulation.

I. INTRODUCTION

Gene transcription, the cellular mechanism through
which DNA is copied into mRNA transcripts, is a com-
plex, stochastic process [I]. As a result, the number
of mRNA copies for most genes is highly heterogeneous
both within each cell over time, and across cells in a
population [2H4]. Such fundamental randomness is bio-
logically relevant: it underpins the cell-to-cell variability
linked with phenotypic outcomes and cell decisions [5H9].

The full mathematical analysis of gene expression vari-
ability requires the solution of master equations. Given
a gene transcription model, its master equation (ME) is
a differential-difference equation that describes the evo-
lution of P(n,t), the probability of having n mRNA
molecules in a single cell at time t. However, MEs are
problematic to solve, both analytically and numerically,
due to the difficulties associated with discrete stochas-
tic variables—the molecule number n is an integer [10].
Indeed, most existing analytical solutions of the ME are
specific to particular models, typically obtained via the
probability generating function and under stationarity
assumptions [ITHI7]. When analytical solutions are in-
tractable, the first few moments of the distribution are
approximated, usually at stationarity, but error bounds
are difficult to obtain [I8]19]. Alternatively, full stochas-
tic simulations are used, although the computational cost
to sample P(n,t) at each t is often impractical, and many
methods lead to estimation bias in practice [20].

With the emergence of accurate measurements of time-
courses of mRNA counts in single cells [3] 4] 2TH23], the
application of MEs to data analysis faces new challenges.
Mathematically, ME models must be able to describe
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time-dependent gene transcription in single cells within
a population, allowing for a degree of synchrony or cell-
to-cell correlation. However, current stationary solutions
tacitly assume that gene expression is uncorrelated be-
tween cells; hence most current analytical models cannot
account for the dynamic variability due to upstream bi-
ological drives, such as chromatin remodeling [24], tran-
scription factor binding [25], circadian rhythms and cell
cycle [26] 27], external signaling [28], or stimulus-induced
modulation or entrainment [29, [30]. Full solutions of the
ME that capture temporal heterogeneity from the single-
cell to the population level could help unravel how the
dynamics of biological phenomena affect gene transcrip-
tion and regulation [3I]. These examples highlight the
methodological need for solvable models flexible enough
for the analysis of a range of datasets, thus enabling
the formulation of hypotheses in conjunction with ex-
periments.

Here, we consider a simple, yet generic, framework for
the solution of the ME of gene transcription and degrada-
tion for single cells under upstream drives, i.e., when the
transcription and degradation parameters can be time-
dependent functions or stochastic variables. We show
that the exact solution P(n,t) for such a model natu-
rally decouples into two parts: a discrete transcriptional
Poisson component, which is common to all transcrip-
tion models of this kind, and a model-specific continuous
component, which describes the dynamics of the param-
eters reflecting the upstream variation. To obtain the
full P(n,t) one only needs to calculate the probability
density for the model-specific upstream drive, which we
show to correspond to a continuous variable satisfying
a linear random differential equation directly related to
traditional differential rate equations of chemical kinet-
ics. Below we present the properties of the general solu-
tion, including its moments and noise characteristics in
terms of the moments of the upstream component. We
also clarify the different effects of stochastic and deter-


mailto:j.dattani11@imperial.ac.uk
mailto:m.barahona@imperial.ac.uk
https://doi.org/10.1101/055202

bioRxiv preprint doi: https://doi.org/10.1101/055202; this version posted May 24, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

ministic drives by considering the Fano factor across the
population and across time. To illustrate the utility of
our approach, we present analytical and numerical anal-
yses of several models in the literature, which are shown
to correspond to different upstream drives. Finally, we
provide examples of its use for data analysis.

II. THE MASTER EQUATION FOR GENE
TRANSCRIPTION IN POPULATIONS OF CELLS
WITH UPSTREAM DRIVES

Notation and formulation of the problem

To study gene expression in a single cell with time-
dependent upstream drives, we consider the stochastic
process in continuous time ¢, N = {N; € N : t > 0},
where N; is a discrete random variable describing the
number of mRNA molecules in the cell. We look to obtain
the probability mass function, P(n,t) := Pr(N; = n).

The mRNA copy number increases via transcription
events and decreases via degradation events but, impor-
tantly, the transcription and degradation rates can de-
pend on time and can be different for each cell (Fig. [I)).
To account for such variability, we describe transcrip-
tion and degradation rates as stochastic processes M =
{M; € R" : t >0} and L = {L; € Rt : ¢t > 0},
without specifying any functional form except requiring
that M and L do not depend on the number of mRNA
molecules already present. Deterministic time-varying
transcription/degradation rates, with or without cell-to-
cell correlations, are a particular case of this definition.

Following standard notation in the stochastic processes
literature, M; and L; denote the random variables at time
t. To simplify notation, however, we depart from stan-
dard notation and denote the sample paths (i.e., realisa-
tions) of M and L by {u(t)}i>0 and {A(¢)}i>0, respec-
tively, thinking of them as particular functions of time
describing the transcription and degradation rates under
the changing cellular state and environmental conditions
in an ‘example’ cell (Fig. . The sample paths of other
random variables are denoted similarly, e.g., the sample
paths of N; are {v(t)}i>0.

The sample paths {p(t)}i>0 and {A(¢)}i>0 represent
cellular drives encapsulating the variability across time
and across the population consistently. This formulation
unifies several models in the literature, which implicitly
or explicitly assume time-varying transcription and/or
degradation processes [4, [13] [32H36], and can be shown
to correspond to particular types of dynamic upstream
variability. In addition, the framework allows us to spec-
ify cell-to-cell correlations across the population, which
we refer to as the ‘degree of synchrony’. A population
will be perfectly synchronous when the sample paths of
the drives for every cell in the population are identical,
i.e., if M; and L; have zero variance. If, however, tran-
scription and/or degradation rates differ between cells,
M; and L; themselves emerge from a probability den-
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FIG. 1. Single-cell gene transcription under upstream drives.
The transcription of each cell i takes place under partic-
ular cellular drives {p;(t)}+>0 and {Ai(¢)}¢>0, representing
time-varying transcription and degradation rates. Both cel-
lular drives are combined into the upstream effective drive
{xi(t)}+>0, which dictates the long-term probability distri-
bution describing the stochastic gene expression {v;(t)}i>o0
within each cell . When there is cell-to-cell variability in
the population, the cellular drives are described by processes
M and L leading to the upstream effective drive X. The
probability distribution of the population corresponds to the
mixture of the upstream process X and the Poissonian down-
stream transcriptional component, as given by . Increased
synchrony in the population implies decreased ensemble vari-
ability of the random variables My, L;, X, and N;.

sity: the wider the density, the more asynchronous the
cellular drives are (Fig. [).

Our aim is to obtain the probability distribution of
the copy number N; under upstream time-varying cellu-
lar drives M; and L;, themselves containing stochastic
parameters reflecting the cell-to-cell variability. To do
this, we proceed in two steps: first, we solve the syn-
chronous system without cell-to-cell variability; then we
consider the general asynchronous case.

A. Perfectly synchronous population

As a first step to the solution of the general case, con-
sider a population of cells with perfectly synchronous
transcription and degradation rate functions, M =
{p(t) }i>0 and L = {A(t)}i>0; ie., the transcription and
degradation processes are defined by the same sample
path for the whole population and the stochastic pro-
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cesses M and L have zero variance at all times (Fig. .
In the perfectly synchronous case, we have an
immigration-death process with reaction diagram:

0“9 mrNa 2 g, (1)

and its ME is standard:

%P (n, tH{u(T)} repo,4 {)\(T)}Te[o,t])

= pu(t)P(n — L t{[{u(7) }rej0,0, AMT) }refo.n)

+ (n+ D) P(n + 1t {u(7) }reo,0, {AT) Frefo,)

— (u(t) +nA(t) P(n, t{u(7)}rejo,s {)‘(T)}TG[O,t%)V)
2

where  P(n, t{(r)}reio. {M()}refo.g) denotes  the

probability of having n mRNAs at time ¢ for the given his-

tory of the cellular drives {x(7)},cjo,4 and {A(7)}repo.4-
Using the probability generating function

t) = Z 2" P (n, t1{u(7) }rego,, INT) Frep0g) »
n=0

we transform the ME into

e L CR Y it

Without loss of generality, let us first consider an initial
condition with ng mRNA molecules. Using the method
of characteristics, we obtain the solution:

Gz, tlno) = (2 = e A7 4 1] ™ x(OGED(3)

which is given in terms of

¢
x(t) == / pu(r)e” LExEdr g
0

We will refer to the time-varying continuous function x ()
as the effective drive, as it integrates the effect of both
cellular drives.
Notice that the solution can be rewritten as the
product of two probability generating functions:
G(Z, t‘no) = GBin(Za t|n0) GPOi(Z7 t))
corresponding to a binomial and a Poisson distribution,

respectively. Hence, for the perfectly synchronous case,
the solution is given by:

Ny = N{¢|ng + N, with (5)
N{¢|ng ~ Bin (no, e~ Jo A(T)dT) (6)
Ny ~ Poi(x(1)) , (7)

where N/¢|n is a binomial random variable with ng trials
and success probability e~ Jo A a7 and N} is a Poisson
random variable with parameter x(¢). The physical in-
terpretation of this breakdown is that N;/¢ describes the
mRNA transcripts that were initially present in the cell
and still remain at time ¢, whereas N/ describes the num-
ber of mRNAs transcribed since ¢ = 0.

Since N;¢ and N} are independent, it is easy to read
off the first two moments directly:

E [Nt|{lu‘(7)}‘r€[0,t]a {)\(T)}re[o,t} ) Tlo]

= E [N{|no] + E[N?]

=nge” o ADI (1)
Var(Ne[{1(7)}refo,1), {A(7) }refo, g o)

= Var(N;“|ng) + Var(N;)

— nge~ Jo A7) dT (1 _ e Jo A d7> +x(b).

From 7, the distribution is:

P(n, t1{n(r)}ref0,0: A7) brefog o) = Pr(NJ® + N = nlno) = Y Pr(Ni® = klno) Pr(N} = n — k)

2 ()

k=0

_ n—k
A(r)dr i\ x(@) —x(¥)
) (1-¢ ) it ®

If the initial state is itself described by a random variable Ny with its own probability distribution, we apply the
law of total probability to obtain the solution in full generality as (see Appendix :

P(n, t{u(r) }repo.n: {MT

}TE[O t]

ZP n, t{{u(r

)} refo,, {AMT) }refo,4), m0) Pr(No = no)

= ZPr(NtS =n—k)Pr(N/° = k), 9)

where N/ is distributed according to —@,

Pr(Nj¢ = k) is the mixture of the time-dependent bi-
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nomial distribution and the distribution of the initial
condition Nj.

The initial transient ‘burn in’ period. For bio-
logically realistic degradation rates {A(¢) }+>0, the contri-
bution from the initial condition (N;¢) decreases expo-
nentially. Hence as time grows the transcripts present
at ¢ = 0 degrade, and the population is expected to be
composed of mRNAs transcribed after ¢ = 0.

If the initial distribution of Ny is not the stationary
distribution of the ME (or, more generally, not equal to
the attracting distribution of the ME, as defined in Ap-
pendix, there is an initial time-dependence of P(n,t)

lasting over a time scale T (given by fOTw A7) dr = 1),
which corresponds to a ‘burn-in’ transient associated
with the decay of the initial condition. For instance, the
time-dependence described in Ref. [13] for the random
telegraph model (Fig. @ corresponds to this ‘burn-in’
transient.

On the other hand, when the initial distribution of Ny
is the stationary distribution (or the attracting distribu-
tion) of the ME, the component containing the initial
condition (N;¢) and the long-term component (N;) bal-
ance each other at every point in time, maintaining sta-
tionarity (or the attracting distribution), as shown ana-
lytically in Appendix [A]

The long-term behaviour of the solution. In
this work, we focus on the time dependence of P(n,t) in-
duced through non-stationarity of the parameters and/or
correlated behaviour of the cells within the population.
Hence for the remainder of the paper, we neglect the
transient terms. Consequently, for perfectly synchronous
cellular drives, the solution of the ME is a Poisson
random variable with time-dependent rate equal to the
effective upstream drive, x(¢):

[Ne[x(8)] = [N?[x(®)] ~ Poi(x(t)),

with distribution

P(n7t|{u(7—)}7'€[0,t]a {)‘(T)}’TG[O,H)

= P(n,t|x(t)) = %ﬂ(“, (10)

which makes explicit the dependence on the history of the
sample paths {u(7)}rep0,4, {NT)}rejo,4, Which is encap-
sulated in the value of the effective drive x(¢) at time ¢.

Indeed, from it follows that the sample path
{x(t) }+>0 satisfies a first order linear ordinary differential
equation with time-varying coeflicients:

% +A(t) x = u(t), (11)

which is the rate law for a chemical reaction with zeroth-
order production with rate u(t), and first-order degrada-
tion with rate A(t) per mRNA molecule. For biologically

realistic (i.e., positive and finite) cellular drives, x(t) is a
continuous function.

B. The general asynchronous case:
cell-to-cell variability in the cellular drives

Consider now the general case where different sample
paths for the cellular drives are possible, i.e., the cell
population has some degree of asynchrony and M; and
L; have non-zero variance for at least some ¢t > 0. The
transcription and degradation rates are then described
by stochastic processes M and L:

0 2% mRNA 250, (12)

and the collection of all differential equations of the
form is represented formally by the random differ-
ential equatio

% + LtXt = Mt. (].3)

dt

Equations of this form appear in many sciences, and
a large body of classical results allows us to determine
the probability density function of the upstream process,
X; [37H39]. Below, we use such results to obtain fx, (z,t)
for biologically relevant models.

Note that from Eq. and the law of total probabil-
ity, it follows that the probability mass function for the
random variable N; under cellular drives described by
the random processes M and L is given by the Poisson
mizture (or compound) distribution:

P(n,t) = Py, (n,t) = / %’:ﬁ Fe (@t dz,  (14)

where the density fx,(x,t) of the effective drive X; (to
be determined) can be understood as a mizing density.
The notation Py, (n,t) recalls explicitly the dependence
of the solution on the density of X;, but we drop this
reference and use P(n, t) below to simplify notation. The
problem of solving the full ME is thus reduced to finding
the mixing density fx,(z,t). Note that for synchronous
drives, we have fx,(z,t) = d0(x(t) — x), where ¢ is the
Dirac delta function, and reduces to (10)).
Equation also shows that there are two sepa-
rate sources of variability in gene expression, contribut-
ing to the distribution of N;. One source of variabil-
ity is the Poisson nature of transcription and degrada-
tion, common to every model of the form considered
here; the second source is the time-variation or uncer-
tainty in the cellular drives, encapsulated in the upstream
process X; describing the ‘degree of synchrony’ between
cells and/or their variability over time. In this sense,
Eq. (14) connects with the concept of separable ‘intrin-
sic’ and ‘extrinsic’ components of gene expression noise
pioneered by Swain et al. [40H43]. Yet rather than con-
sidering moments, the full distribution P(n,t) is separa-
ble into a model-dependent ‘upstream component’ given

1 We do not use the term stochastic differential equation (SDE),
because SDEs are usually associated with random white noise.
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by fx,(z,t), and a downstream transcriptional ‘Poisson
component’ common to all models of this type.

III. THE EFFECTIVE UPSTREAM DRIVE IN
GENE TRANSCRIPTION MODELS

The generic model of gene transcription and degrada-
tion with time-dependent drives introduced above pro-
vides a unifying framework for several models previously
considered in isolation. In this section, we exemplify the
tools to obtain the density of the effective drive fx, (z,1)
analytically or numerically through relevant examples.

A. Gene transcription under upstream drives with
static randomness

In this first section, we consider models of gene tran-
scription where the upstream drives are deterministic, yet
with random parameters representing cell variability.

1.  Random entrainment to upstream sinusoidal drives:
random phase offset in transcription or degradation rates

Equation can sometimes be solved directly to ob-
tain fx,(z,t) from a transformation of the random vari-
ables M; and L;. We now show two such examples, where
we explore the effect of entrainment of gene transcription
and degradation to an upstream periodic drive [44].

First, consider a model of gene transcription of the
form with transcription rate given by a sinusoidal
function and where each cell has a random phase. This
random entrainment (RE) model is a simple representa-
tion of a cell population with transcription entrained to
an upstream rhythmic signal, yet with a random phase
offset for each cell:

1+ cos(wt 4+ ®)
My =m 2 (15)
Lt = 1.

Here m and w are given constants and ® is a (static)
random variable describing cell-to-cell variability (or un-
certainty). Solving Eq. in this case, we obtain

m (1 + w? 4 cos(wt + @) + wsin(wt + P))

2(1 + w?)
= B+ A sin(wt + %),

X =

where A = m/2v/1+w?, B = m/2 and ®* = & +
arctan(1/w).

Suppose ®* is uniformly distributed on [—r, 7], r < 7.
Inverting the sine with ®* restricted to [—r, ], we obtain

fx (1) = 5 (16)

where k(t) € {0,1,2} is the number of solutions of
sinf = (xr — B)/A for 0 € (wt — r,wt + 7). As the
phase distribution of the drives becomes narrower, the
upstream variability disappears: r - 0 = fx,(z,t) —
§((B 4+ Asinwt) — x). In this limit, all cells follow the
entraining drive exactly, and P(n,t) becomes a Poisson
distribution at all times.

Figure [2 depicts fx, for 7 = 0 (no cell-to-cell phase
variation, (a)) and for r = 7/2, and r = 7 (increasingly
wider uniform distribution of phases, (b) and (c)). The
full distribution P(n,t) is obtained using and (14).

Second, let us consider the same model of entrainment
to an upstream sinusoidal signal with a random offset,
but this time via the degradation rate:

Mt =m,
(17)
= b+ acos(wt + P),
with m, a, b, and w given constants, and ® a (static)
random variable.
Eq. can be solved approximately [44] to give

X; = B+ A sin(wt + ®*),

where A = 2ma+/1+ (w/b)2/[2(b*> + w?) — a?], B =
Aby/1+ (w/b)%/a, and ®* = w/2 — arg[cos(ﬂ/Z -
arctan(b/w) — ®) + isin(w/2 — arctan(b/w) — ®)]. As
before, if ®* is uniform on [—r,r], r < m, the density of
the effective drive takes the same form as above.

2. Upstream Kuramoto promoters with varying degree of
synchronization

As an illustrative computational example, we study
a population of cells whose promoter strengths display
a degree of synchronization across the population. To
model this upstream synchronization, consider the Ku-
ramoto promoter model, where the promoter strength of
each cell 7 depends on an oscillatory phase 0;(t), and cells
are coupled via a Kuramoto model [45H47]. We then have
a model of the form with:

b+ cos (O(¢;Q))

M, =
L= 2 (18)

Lt = 1.
Here m, b are constants and {6;(¢)}_, are the phase vari-

ables for the C cells governed by the globally coupled
Kuramoto model:

db;
o —wl—&-—ZSln (19)

where K is the coupling parameter and the intrinsic fre-
quency of each cell, w;, is drawn from the random dis-
tribution Q ~ N(0,0.05%). The Kuramoto model allows
us to tune the degree of synchrony through the coupling
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FIG. 2. Gene transcription under the random entrainment model with constant degradation rate and transcription rates
entrained to an upstream sinusoidal signal with w = 1. Each cell has a random phase offset ¢ drawn from a distribution. (a) The
synchronous population corresponds to identical phases across the population. In this case, the transcription reflects the time
variability of the upstream drive mixed with the stochasticity due to the downstream Poisson process of transcription. When
the random phases ¢ are uniformly distributed on an interval of range (b) 7 and (c) 27, the population becomes increasingly
asynchronous. For all three cases, we show (top to bottom): sample paths of the effective drive, X; its density fx,(z,t) given
by Eq. ; sample paths of the number of mRNAs; N; and the full solution of the ME P(n,t).

K for small K, the cells do not display synchrony since
they all have a slightly different intrinsic frequency; as K
is increased, the population becomes more synchronized.

This model is a simple representation of nonlinear syn-
chronization processes in cell populations with intrinsic
heterogeneity [4851]. In Figure [5(a), we show how the
sample paths change as the degree of synchrony increases,
and we exemplify the use of for the numerical solu-
tion of the gene expression of this model.

B. Asynchronous transcription under stochastic
multistate promoters

In the previous section, we obtained fx,(z,t) by capi-
talizing on the precise knowledge of the sample paths of
M and L to solve explicitly. In other cases, we
can obtain fx,(z,t) by following the usual procedure
of writing down an evolution equation for the proba-
bility density of an erpanded state that is Markovian,
and then marginalizing. More specifically, let the vec-
tor process Y prescribe the upstream drives, so that
M = M(Y,t) and L = L(Y,t), and consider the ex-
panded state X; := (X;,Y;). Note that since Y is up-
stream, it prescribes X (and not vice versa). We can
then write the evolution equation for the joint probabil-

ity density fx,(z,y,?):

%th (x,y,t) == % [(H(Yat) - A(Y7t)x) th ($7Yat)]
+ ‘CYt [th (1'7 Y, t)] ) (20)

which follows from conservation of probability. In Equa-
tion (20)), the differential operator for X, which follows
from (13]), is the first jump moment [52] conditional upon
Y. =y (and hence upon M; = u(y,t) and L; = A(y,1t));
the second term Ly, [.] is the infinitesimal generator of
the upstream processes. In particular, for continuous
stochastic processes Ly, [.] is of Fokker-Planck type, and
for Markov chains Lvy,[.] is a transition rate matrix.
The desired density fx,(z,t) can then be obtained via
marginalization.

Equation can be employed to analyze the widely
used class of transcription models with asynchronous,
random promoter switching between discrete states,
where each state has different transcription and degra-
dation rates representing different levels of promoter ac-
tivity due to, e.g., transcription factor binding or chro-
matin remodeling [34]. A classic example is the random
telegraph (RT) model, first used by Ko in 1991 [53] to ex-
plain cell-to-cell heterogeneity and bursty transcription
(Fig. [Bp).

In our framework, such random promoter switching
can be understood as an upstream stochastic process
driving transcription as follows. Let us assume that
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the promoter can attain D states s, and each state has
constant transcription rate m, and constant degradation
rate £5. The state of the promoter is described by a ran-
dom process S = {S; € {1,2,...,D} : t > 0}, with
sample paths denoted by {s(t)}:>0, and its evolution is
governed by the D-state Markov chain with transition
rate kg from state r to state s. The state of the pro-
moter S; = s prescribes that M; = ms and L; = /,.
Hence, the sample paths of M and L are a succession
of step functions with heights ms and ¢, respectively,
occurring at exponentially distributed random times.

As described above, we expand the state space of
the cellular drives to include the promoter state X; =
{X¢,S;}. The evolution equation is then given by
D coupled equations:

0

0
0—fxt75t(1:,s,t) = 7% [(H’S - /\S‘T)th,St (I’,S,t)]

+ZkSJfo Sf 7]7 ijstf7Sf ZT,s t)

j=1 j=1
s=1,2,...,D, (21)

which can be thought of as a set of multistate Fokker-
Planck-Kolmogorov equations [52]. Marginalization then
leads to the density of the effective drive:

th.Tt

Zth,St Z,Ss, t (22)

and the full ME solution is obtained from and .

We illustrate this approach more explicitly with two
examples (Fig. : a re-derivation of the known solution
of the standard RT model; and the solution of the 3-
state cyclic model with a refractory state. Results for
other promoter architectures are discussed in [54].

1. The Random Telegraph model (2 states)

Although the RT model has been solved by several
methods [I3], B2, B3], we briefly rederive its solution
within the above framework to clarify its generalisation
to other promoter architectures.

Consider the standard RT model (Fig. [3h), with pro-
moter switching stochastically between the active state
Son = 1, with constant transcription rate m; = m, and
the inactive state sog = 0, where no transcription takes
place, my = 0. The transition rates between the two
states are k19 = kon and kg1 = kog. Without loss of gen-
erality, we assume ¢; = £y = A(t) = 1. The transcription
model is of the form with:

Mt = mSt
23
o (23)
where S = {S; € {0,1} : t > 0} with waiting times

drawn from exponential distributions: 7o ~ exp(1/kon)
and 7on ~ exp(1/kog).

(a) Random telegraph model (2 states)

k
on

(b) Refractory promoter model (3 states)
.,
N

ON - FFQ

FIG. 3. Asynchronous stochastic promoter switching models
correspond to upstream stochastic processes. The promoter
cycles between the discrete states, transitioning stochastically
with rates as indicated: (a) the standard 2-state random tele-
graph (RT) model; (b) the 3-state refractory promoter model.

Let Z; = X;/m, and denote fon(2,t) := fz,.5,(%, Son, t)
and for(2,t) == fz,.s,(2, Som, t), with z € (0,1). Then
the multistate Fokker-Planck-Kolmogorov equations (21))
are:

afoni 0
fon 0 (12 o]~ Ko + b
8fof'f

0
- T 3. [7Zf0ff] + koﬂfon - konfoff’

ot 0z
th = fon + foff

with integral conditions fol fon(z,t)dz =

and fol fort(2,t) dz = P(S; = soft)-
At stationarity, it then follows [55] that

P(St = son)

kon—1(1 —
B(konakoff) ’

Z)k'off71

fz,(2) = (24)

where B(a,b) = I'(a)T'(b)/T'(a + b) is the Beta function.
In other words, at stationarity, the normalised effective
drive is described by a Beta distribution:

Zy ~ Beta (kon, kof) ,  Vt.

Using and , we obtain that the full stationary
solution is the Poisson-Beta mixture:

1 n kon—1 koge—1
(mz) _ zffon (1 _ Z) off
P = mz d
(n) /0 € B (kons ko) -
r (kOn + n) Tr (kon + koff) m"
[ (kon) T (kon+kog+n)I(n+1)

x 1 Fy (kon + 1y kon + ko +n;—m),  (25)
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where | F} (a,b; z) is the confluent hypergeometric func-

tion [56].

2. The Refractory Promoter model (3 states)

In the standard RT model, the waiting times in each
state are exponentially distributed. In recent years, time
course data have shown that the 7. do not conform
to an exponential distribution, leading some authors to
incorporate a second inactive (refractory) state, which
needs to be cycled through before returning to the active
state [30, [57]. The net ‘OFF’ time is then the sum of two
exponentially distributed waiting times.

In this refractory promoter model (Fig. ), the pro-
moter switches through the states s, s1, and sy with
rates k., k1 and ky. Transcription takes place at con-
stant rate m only when the promoter is in the active
state s, and, without loss of generality, we assume a con-
stant degradation rate A(t) = 1 for all states. This model
is of the same form as , and is solved similarly.

Making the change of variables Z; = AX;/m = X;/m
and, using the notation f;(z,t) :== fz, s,(2,t, s;), the mul-
tistate Fokker-Planck-Kolmogorov equations are

Of+ 0
o 0
% = —5-[==hl+ ko= kufy
% = —% [—ng] + klfl - k2f2’

fz, = fe+ f1+ fo

with three integral conditions fol fi(z)dz = P(S = s;).
At stationarity, we find

f2,(2) =Cy My [ag),a(l); 14k — kz;z}

+Cy 22 R [a(f),a(,z);l —ky +/€2;Z} )

1
W e 224 kg — ko — ks £ d)

ith ==
w1 ai 9
1

0P = @2—k +ky—k, +d),

2

where {]{3*, (kl — kg), d:= \/(k'* — kl — k2)2 — 4/€1k2} ¢
Z and , F} (a,b;c; z) is the Gauss hypergeometric func-
tion [56]. The full stationary solution P(n) is then ob-
tained from (14).

For a detailed derivation (including expressions for the
integration constants Cy and C3), see Appendix

C. Asynchronous multistate models with upstream
promoter modulation

Finally, we consider a model of gene transcription
that incorporates features of models described in Sec-
tions [[ITA] and [[ITB} Such a situation is of biological

Fof
(@) [oN] = [orr
Fon
s()

p(m)t AN .l‘
t
u(t) mRNA  A(t)
VW —
6] %]
Asynchronous sinusoidal
promoter strength p(t; ¢)

(b)

Synchronous sinusoidal
promoter strength p(t; @)

Cell 1

E
g

Cell2 —
=

Cell 3

g pa(
g)

FIG. 4. (a) Modulated Random Telegraph (MRT) model:
each cell switches asynchronously between ‘ON’ and ‘OFF’
states, but the magnitude of the ‘ON’ transcription rate is
modulated by the function p(; ¢), a sinusoid representing an
upstream periodic process. The phase ¢ represents the cell-
to-cell variability and leads to the varying degree of synchrony
across the population. (b) Sample paths y;(¢) and solution of
the probability distribution P(n,t) of the MRT model for syn-
chronous (left) and asynchronous (right) modulation. In the
asynchronous case, the upstream drive has a random phase
across the cells with distribution ® ~ A/(0, 10).

interest and appears when individual cells exhibit cor-
related dynamics in response to upstream factors (e.g.,
changing environmental conditions, drives or stimula-
tions), but still maintain asynchrony in internal pro-
cesses, such as transcription factor binding [3T], 58].

To illustrate this concept, we consider the modulated
random telegraph (MRT) model, a combination of the
RE model and the RT model , i.e., the pro-
moter strength is modulated by an upstream sinusoidal
drive with random phase ®, as in the RE model, yet the
promoter switches stochastically between active/inactive
states with rates ky, and kg, as in the RT model. In this
model, the transcription rate is correlated between cells
through the entrainment to the upstream sinusoidal drive
as a simple model for, e.g., circadian gene expression:

1+ cos(wt + @)
me SO )

2 St

where m,w > 0 are constants; ® is the random phase
across the cell population; and S = {S; € {0,1} : t > 0},
with exponential waiting times, describes the stochastic
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promoter switching (Fig. [4h).

The solution of this model follows from the RT prob-
ability density conditioned on the random phase &,
which prescribes the sample path {p(¢; ¢) }1>0 of the pro-
moter strength R. The resulting scaled Beta distribution

xFon =1 (p(t; ¢) — w)kort 1
(kons koft) p(t; @)Fenthore—1

fX,,\‘i’(xatM)) = B

is then marginalized over the phase ® to obtain the den-
sity fx,(z,t) of the effective drive. For instance, if the

phases are normally distributed ® ~ N(0,0?), we have
(see Fig. [4p):

fx (1) = / Fra(@ 110) fa(6) d

B /oo ghon=t (21 + cos(wt + ¢)] — x) Forr =1
0o B(komkoff) (%[1 + Cos(wt + q&)})kon“’koff*l
9% /20

iy g

As 0 — oo, the population becomes asynchronous in the
promoter strength, as well as in the state transitions, and
time dependence wanes (Fig. [ip).

IV. ENSEMBLE NOISE CHARACTERISTICS IN
TIME-VARYING POPULATIONS

In the previous sections, we were concerned with the
full time-dependent probability distribution P(n,t) for
the mRNA copy number N. However, in many cir-
cumstances such detailed information is not required,
and simpler characterizations based on ensemble averages
(e.g., Fano factor, coefficient of variation) are of inter-
est. Simple corollaries from the Poisson mixture expres-
sion allow us to derive expressions for the ensemble
moments and other noise characteristics, as shown below.
We remark that, in this section, all the expectations are
taken over the distribution describing the cell population.

A. Time-dependent ensemble moments over the
distribution of cells

To quantify noise characteristics of gene expression in a
population, the ensemble moments E [Nt’“] ,keN; t>0
are often determined via the probability generating func-
tion [I4, 32, BI] or by integrating the master equa-
tion [19, B4, 60]. However, stationarity is usually as-
sumed and the moments derived are not suitable for
time-varying systems. Here we use corollaries of the Pois-
son mixture expression to derive expressions for the
ensemble moments for time-varying systems under up-
stream drives.

From we have [N;|X; = z] ~ Poi(z); hence

k
E[NF|X, =a] =) a"S(k,r),
r=1

where  S(k.r) =3 (T) (G

7!
i=0 M

are the Stirling numbers of the second kind [61]. The law
of total probability then gives

k
E[NF] = S(k,r)E[X]], (26)
r=1
or, equivalently,
E [V:] S(1,1) 0 0 E[X/]
E [N?] 5(2,1) 5(2,2) 0 E [X7]
E [N}] S(k1) S(k.2) ... S(kk)) \E[X}]

Therefore the ensemble moments of the mRNA copy
number E [N}] can be obtained in terms of the mo-
ments of the effective drive E[X[], and vice versa.
For instance, E[X;] = E[N]; Var(X:;) = Var(V;) —
E [N]; and the skewness 71 (X;) = (E [N}}] — 3Var(N;) —
3E [Ny] Var(Ny) — E [N]*)/(Var(Ny) — E [Ng])3/2.

The expressions complement those used by Swain
et al. in their seminal work on intrinsic/extrinsic
noise [4I], and those by Hilfinger and Paulsson to sep-
arate intrinsic/extrinsic fluctuations [42].

B. Time-dependent ensemble Fano factor:
a measure of synchrony in the population

A commonly used measure of variability in the popu-
lation is the ensemble Fano factor:

Fano(NV;) := Vgr[%), (27)

which is unity for the Poisson distribution. Its use has
been popularized as a measure of the deviation from the
stationary solution of the transcription of an unregulated
gene with constant rates [62] [63], which is Poisson; hence
with Fano(N,) =1, V¢.

For time-varying systems, however, the ensemble Fano
factor conveys how the dynamic variability in single cells
combines at the population level. Indeed, Fano(N;) can
be thought of as a measure of synchrony in the population
at time t. For instance, it follows from Eq. that
the ensemble Fano factor for a population with perfectly
synchronous drives is always equal to one, Fano(N;) =
1, Vt. Even if the upstream drive x(¢) changes in time,
the population remains synchronous and has a Poisson
distribution at all times. On the other hand, under the
assumptions of our model, when Fano(/V;) varies in time
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FIG. 5. Noise characteristics of the Kuramoto promoter model . (a) Numerical simulations for C' = 100 oscillatory cells
and different coupling parameters: K = 0.002,0.1,0.4 (left, middle, right columns). For each coupling, the sample paths of
the upstream effective drive X and mRNA counts N are shown. The mean, variance, and ensemble Fano factor of N were
calculated from the sample paths of N (blue lines) and, more efficiently, from the sample paths of X (black lines). The last
row shows the Kuramoto order parameter r(t) measuring the cell synchrony, signaled by r(t) — 1. (b) Ensemble Fano factor
(averaged over the simulated time courses) against coupling parameter K € (0,0.4]. As K is increased, the oscillators become
synchronized and the ensemble Fano factor decreases towards the Poisson value of unity. (c) Scatter plot of the ensemble Fano
factor against the order parameter r(t) (both averaged over the simulated time courses). As the oscillators become synchronized
((r) — 1), the ensemble Fano factor also approaches 1, signifying that the distribution is Poissonian at all times.

it reflects a change in the degree of synchrony between
cells, as captured by the upstream drive X;. Indeed,
from it follows that:

_ Var(Ny) _ Var(Xy) + E [Xy]
FaroN) = F v = T BIx)
= 1+ Fano(X3).

The greater the synchrony at time ¢, the closer Fano(V;)
is to unity, since the deviation from the Poisson distri-
bution emanates from the ensemble Fano factor of the
upstream drive Xj.

As an example, consider the Kuramoto promoter
model — introduced in Section where the
cells in the population become more synchronized as the
value of the coupling K is increased. Figure[5]shows sim-
ulation results for 100 cells with a range of couplings. The
order parameter r(¢) € [0, 1] measures the phase coher-
ence of the oscillators at time t; as it grows closer to 1, so
grows the degree of synchrony. Using the Kuramoto nu-
merics, we calculate the ensemble Fano factor Fano(N;)
for the transcription model. As seen in Fig. [5[b)-(c), the
more synchronous, the closer the Fano factor is to the
Poisson value: (r(t)) -1 = (Fano(N;)) — 1.

Figure [f also illustrates the computational advantages
of our method. The cost to approximate the time-varying
ensemble moments is drastically reduced by using ,
because transcription and degradation events do not have

to be simulated. The sample paths of the effective drive
xi(t) were used to estimate the time-varying moments:
E [N:] = E[X;] and Var(N;) = Var(X;) + E [X;] (shown
in black). These correspond to the numerical simulation
of ODEs, and are far more efficient than sampling from
realisations v;(t) of the mRNA copy number.

V. VARIABILITY OVER TIME:
STATIONARITY AND ERGODICITY

Our results up to now have not assumed stationarity—
in general the distribution (14) and ensemble mo-
ments depend on time. If the cells in the population
are uncorrelated and M and L are stationary (i.e., their
statistics do not change over time), then fx,(x,t) tends
to a stationary density fx, (z) [38], and the full solution
P(n,t) also tends to a stationary distribution P(n).

Under such assumptions leading to stationarity, any
time dependence in the solution P(n,t) describes the
‘burn-in’ transient from an initial condition towards the
attracting stationary distribution, as discussed in Sec-
tion [TA] An example of such transience in the random
telegraph model appeared in [I3] describing how
the distribution P(n,t) settles from an initial Kronecker
delta distribution P(n,0) = 0,0 to the stationary distri-
bution (see Fig. |§| and Appendix.

If, in addition to stationarity, we assume the cells to be
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FIG. 6. ‘Burn-in’ transient in the random telegraph (RT)
model. (a) Sample paths of the transcription rate M, the
effective upstream drive X, and the number of mRNAs N
for an initial condition P(0,0) = 1 with all cells initialised in
the inactive state [13]. (b) The full solution of the RT model
for this initial probability distribution exhibits an exponential
decay as the system approaches its stationary distribution.
The delta distribution at ¢ = 0 is omitted for scaling purposes.

indistinguishable, the population is ergodic. In this case,
the distribution obtained from a single cell over a time
T, as T — oo, is equivalent to the distribution obtained
from a time snapshot at stationarity of a population of
C cells, as C' — oo:

P(n) = (P(n)) (28)

. "
where P(n):= tlgglo P(n,t) = / i T fx, (z)dx,
1 T
and (P(n)):= lim T/ P(n,t|x(t))dt
0
1 Tx®"

where (.) denotes time-averaging. Under the assump-
tion of ergodicity, the averages computed over single-cell
sample paths can be used to estimate the stationary dis-
tribution of the population.

A. Ergodic systems:
stochastic vs deterministic drives

It has been suggested that stochastic and periodic
drives lead to distinct properties in the noise character-
istics within a cell population [42]. We investigate the
effect of different temporal drives on the full distribu-

tion under ergodicity using —. Note that
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when x(¢) is periodic with period T, the limit in Eq.
is not required. In Figure [7] we show the time-averaged
distribution (P(n)) for a cell under three different up-
stream drives p(t): (i) a continuous sinusoidal form; (ii) a
discontinuous square wave form; (iii) a random telegraph
(RT) form, which can be thought of as the stochastic
analogue of the square wave. In all cases, the drive
{pt) }i>0 € [0,20] with the same period, or expected
period, T. For simplicity, we set A(t) = 1.

(@) upstream drive mRNA counts Time distribution
u(t)‘ v(t) n

Sinusoidal

t t

u(t) v(t)
M \f \ >
(1) ! w(t) !
Random it [
telegraph R
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FIG. 7.  Ergodic transcription models under periodic and
stochastic upstream drives. (a) We consider gene transcrip-
tion under three drives p(t) € [0,20]: a sinusoidal wave with
period T' (yellow); a square wave with period T (red); a ran-
dom telegraph process with expected waiting time 7°/2 in each
state (blue). For such ergodic systems, the distribution com-
puted over time (P(n)) corresponds to the stationary distri-
bution. (b) The distribution (P(n)) = P(n) presents distinct
features as the period T is varied.

As the period T is varied, the similarity between the
distributions under the three upstream drives varies con-
siderably (Fig. . At small T, the distributions under si-
nusoidal and square wave forms are most similar; whereas
at large T, the distributions under square wave and RT
forms become most similar. In general, the distribution
of the RT model has longer tails (i.e., n low and high) as
a consequence of long (random) waiting times that allow
the system to reach equilibrium in the active and inactive
states, although this effect is less pronounced when the
promoter switching is fast relative to the time scales of
transcription and degradation (e.g., T = 1/5). On the
other hand, as T grows, the square wave and RT drives
are slow and the system is able to reach the equilibrium
in both active and inactive states. Hence the probability
distributions of the square wave and RT drives become
similar, with a more prominent bimodality.
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B. The temporal Fano factor: windows of
stationarity in single-cell time course data

The temporal Fano factor (TFF) is defined similarly
to the ensemble version , but is calculated from the
variance and mean of a single time series {v(t)};>0 over
a time window W := (t1,t2):

w(t)?)iew — V() iew
(v(t))tew )

In fact, this is the original definition of the Fano fac-
tor [64], which is used in signal processing to estimate
statistical fluctuations of a count variable over a time
window. Although N; is not a count variable (it decreases
with degradation events), the TFF can be used to detect
windows of stationarity in single-cell time courses.

Figure shows a single-cell sample path {v(t)}i>0
generated by the (leaky) random telegraph model with
constant degradation rate A, and transcription rates
w1 > pog > 0 for the active and inactive promoter
states. The leaky RT model is equivalent to the stan-
dard RT model, and switches between two states with
expectations p1/X and pg/A. In the time windows W
between promoter switching, {v(t)}:ew can be consid-
ered almost at stationarity and described by a Poisson
distribution with parameter pug/A\ (resp. p1/A) in the
inactive (resp. active) state. Hence TFFy, ) (W) ~ 1
across most of the sample path, except over the short
transients Wirans when the system is switching between
states, where TFF(,(¢)} (Wirans) > 1 (Fig. )

Alternatively, this information can be extracted ro-
bustly from the cumaulative Fano factor (cTFF):

cTFF 1)y (t1,1) = TEF 0y ((B158), t2>t (31)

(30)

TFF (W) =

which is computed over a growing window from a fixed
starting time t;. The ¢TFF is a cumulative moving aver-
age giving an integrated description of how the stationary
regimes are attained between switching events indicated
by the step-like structure of the heatmap in Fig. [8.

VI. DISCUSSION

In this paper, we have presented the solution of the
master equation for gene transcription with upstream
dynamical variability, in a setting that allows a unified
treatment of a broad class of models. The framework al-
lows quantitative biologists to go beyond stationary so-
lutions when using inference to analyze noise in single-
cell experiments. As an alternative to computational ap-
proaches where many cells are explicitly simulated to ac-
count for observed variability, our work takes a parsi-
monious approach and uses a simple gene transcription
model of Poissonian type, but considers explicitly the ef-
fect of dynamical and cell-to-cell upstream variability in
the solution of the master equation. The solution ob-
tained can be viewed as combining an upstream com-
ponent (dynamic or static, deterministic or stochastic)

12

t

FIG. 8. The temporal and cumulative Fano factor. (a) A
sample path {v(¢)}:>0 of mRNA counts from the (leaky)
RT model. The time periods when the gene is in the ac-
tive state are shaded. (b) The temporal Fano factor ,
TFF{,4)((t — W, T)), computed over a time window W of
fixed length indicated by the horizontal bars at each ¢t. When
W extends over a stationary section of the sample path, TFF
is close to unity, corresponding to the Poisson distribution
(black dashed line). (c) Heatmap of the cumulative Fano fac-
tor , cTFF (1)1 (t1,t), defined only for ¢ > t1. Note the
marked step pattern corresponding to the switching times,
indicated by dashed lines as a guide to the eye.

with a downstream Poissonian immigration-death pro-
cess. This structure can describe both time-dependent
snapshots of the population as well as the variability over
single-cell time courses in a coherent fashion.

Our procedure solves the general transcription-
degradation model first, and then arrives at its Poisson
mixture form . Since only the upstream process is
model-specific, different models are solved by obtaining
the mixing density fx, of the upstream process. It is
interesting to note that our solution conforms with the
“Poisson representation”, which was proposed by Gar-
diner and Chaturvedi [65] [66] as an ansatz to solutions of
the ME. In their representation, fx, had support on the
complex plane as a means to obtain asymptotic expan-
sions for certain stationary systems [66], and assumptions
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FIG. 9. Efficient sampling of the full distribution P(n,t) for
transcription with upstream cellular drives. We consider up-
stream drives governed by the Kuramoto promoter model
for C' = 10,000 coupled oscillatory cells. Sample paths of N
are simulated directly with the Gillespie algorithm to approx-
imate P(n,t) at time t1 (bottom, blue). Alternatively, sample
paths of X are used to estimate fx,, which is then mixed by
performing the numerical integration to obtain P(n,t)
(top, red). The latter sampling through X is more regular
and far less costly: CPU time via N is &~ 36000 s whereas
CPU time via X is &~ 0.1s.

regarding vanishing boundary conditions were required.
In our case, the Poisson mixture is obtained directly
as a result of transcription-degradation models, and the
mixing density fx,, with support on the positive real line,
has a clear physical interpretation in terms of single-cell
sample paths for a range of time-varying systems.

Our solution confers to us two broad advantages. The
first is pragmatic: Since X; is a continuous random vari-
able satisfying a linear random differential equation, we
can draw upon the rich theory and analytical results for
fx,, even for non-stationary models, or we can use ODE
and PDE solvers as further options to solve the differen-
tial equation for fx,. If simulations are still necessary,
sampling P(n,t|M, L) directly using stochastic simula-
tion algorithms becomes computationally expensive, par-
ticularly if the upstream processes M and L are time-
varying [67]. Instead, we can sample fx,(z,t) directly
and then obtain the full distribution via numerical inte-
gration using (|14). This approach leads to a significant
reduction in computational cost, as shown in Fig. [0

Our approach can be used to analyze noise charac-
teristics in conjunction with biological hypotheses. For
instance, if measurements of additional cellular variables
(e.g., cell cycle) are available, they can be incorporated
as a source of variability for gene regulation, with the
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possibility to test biological hypotheses computationally
against experimental data. Conversely, it is possible to
discount the Poissonian component from data, so as to
fit different promoter models to experimental data and
perform model comparison [54].

The second advantageous feature of our approach is
conceptual. Studying the natural decoupling of the so-
lution into a discrete, Poisson component and a contin-
uous, mixing component, allows us to derive expressions
and properties for both ensemble and temporal moments,
extending the concept of ‘intrinsic’/‘extrinsic’ noise to
dynamic upstream cellular drives. Importantly, all up-
stream variability gets effectively imbricated through the
upstream effective drive X, which can be interpreted in
terms of biochemical differential rate equations. This
analysis clarifies how upstream fluctuations are com-
bined to affect the probability distribution of the mRNA
copy number, providing further intuition of the sources
of noise and their characteristics. Indeed, stripping the
model down to its extrinsic component fx, can provide us
with additional understanding of its structure and time
scales [54]. Further extensions of our solution could lead
to physical interpretations of Gardiner’s complex-valued
“Poisson representation” [65] [66], and deeper understand-
ing of models with and without feedback [68]. These ex-
tensions will be the subject of future work.
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Appendix A: The ‘burn-in’ transient towards
stationarity

In Section [[TA] it was stated that the contribution
from the initial condition N;¢ decreases exponentially for
biophysically realistic degradation rates {A(¢)};>0. As a
result, the transcripts that were present at ¢ = 0 are
expected to degrade in finite time, and the long-term
population is expected to be composed only of mRNA
molecules that were transcribed since ¢t = 0.

Let the initial condition be described by a random vari-
able Ny with a given probability distribution. It follows

from Eqgs —@D that
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P (nvt | {N(T)}TG[O,t]v {)‘(T)}TE[O,t]) = Z P (nvt | {N(T)}TG[O,t]v {)‘(T)}TE[O,t]7 nO) Pr(NO = nO)

=3 Pr(N{ = k|No = ng) Pr(N; = n — k) Pr(No = no)

no k=0

>

0

Pr(Ny

~
Il

NE

Pr(Ny

=~
Il

0

where Nj¢|ng and N; are distributed according to
Eqgs (5)-(7), and Pr(N;¢ = k) is the mixture of the time-
dependent binomial distribution and the distribution
of the initial condition Ny.

1. ‘Burn-in’ transience in the model with constant

transcription and degradation
The decay towards stationarity

To understand the ‘burn-in’ period more explicitly,
consider the simplest example of the gene transcription
model with constant transcription and degradation
rates p and A, and assume that there are initially ng
mRNA transcripts. Given that Ny ~ dg p,, the solution
is given by:

N; = N{|no + N}
N{¢|ng ~ Bin (n, e*/\t) ,
N{ ~ Poi (% (1- e_)‘t)) .
Hence as t — oo, the distribution will tend towards

Poi(u/A), the stationary distribution of the population.
This is a well-known result in the literature [66), [69].

where

(A1)

Starting at stationarity: the time-dependent Ni¢ and Ni
balance each other at all times

It is illustrative to consider the dynamics of this system
when the initial condition is chosen to be the stationary
distribution. In this case, the breakdown of N; into the
time-dependent components N/¢ and N will need to re-
produce the stationary distribution at all times ¢ > 0,
with no ‘burn-in’ period.

To see this, let the initial distribution start at station-
arity, i.e., Ny ~ Poi(u/\) and

(%)

no e_u/)‘

PI(NO = =

nO) no!

n—k) | Y Pr(N;® = k[No = ng) Pr(No = no)

no

n — k) Pr(N{¢ = k),

(

The distribution of N7 is still given by (Al]) and the
contribution of N;¢ is given by

Pr(Nj¢=k)= Y Pr(N/

n():k:

k|No = no) Pr(No = no)

> ne— no —#/)‘
-2 (D)o ()

no=

© r+k (1 — —At\"

= e ()
_(yF ) e gy (L)
- (X) k! g (X) !
- () e
_ (H e*)\t>k 6*§e*>\t

A k!

In other words, N;¢ ~ Poi (
contribution from N; ~ Poi (

£ e, which cancels the
£ 11 — e *]). Therefore

—
N, ~ Poi (X) 7
This example shows that N/¢ and N will combine to
reproduce a stationary distribution at all times ¢ > 0,
when the system starts at stationarity so that there is no
‘burn-in’ transient.

Starting the system at t = —o0

The same is true if the system is not stationary but we
start the system at ¢ = —oo with any initial condition.
Then, for ¢ > 0, the system will be independent of the
initial condition and will be described by N;.

Let us denote the state of the system for ¢ > 0 by
the attracting distribution P.. Although Pr(N; = n)
P.(n,t),¥n € N,Vt > 0, we wish to distinguish P, from
P, because we only have equality of the two distributions
when the system starts at ¢t = —oco. P, can be thought of
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as an inherent property of the system, analogous to the
stable point of a dynamical system that moves in time
(sometimes called a chronotazic system [70]).

If Pr(No = ng) = Pi(ng,0) for all ny in Eq. @, the
contributions from N;¢ and N; balance each other as
they did in the case of stationarity with Ny ~ Poi(u/A),
and we would have P(n,t) = Pi(n,t),Vn € NVt > 0
(recall that the breakdown N; = N/¢ + N; simply re-
solves the existing mRNA molecules into those that were
present at ¢ = 0, and those that were transcribed since
t = 0). Thus we only observe an initial transient period
if the initial distribution starts away from its attract-
ing distribution at ¢ = 0. In all other cases, the follow-
ing mathematical formulations are equivalent: i) assume
that the system was initialised at £ = —oo and consider
only N§, or ii) use the initial distribution Py (n,0) for all
n at t = 0, and consider Nf¢ + N;.

In this work, we focus on the time dependence of
P(n,t) induced through non-stationarity of the parame-
ters, and /or synchronous behaviour of the cells within the
population. Hence, unless otherwise stated, in this work
we assume that the system was initialised at ¢ = —oo and
that the distribution of N is the attracting distribution
P.(n,t) for all ¢ > 0, i.e., we neglect the contribution
from Nje.

2. ‘Burn-in’ transience in the random telegraph
model

A time-dependent solution of the probability generat-
ing function for the random telegraph model appeared

J

z=0

kon) (kon)n re_rt
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in Ref. [I3], although the explicit expression for P(n,t)
was omitted. As discussed above, the RT model repre-
sents asynchronous and stationary behaviour, hence the
time-dependence appears only through convergence to
the stationary distribution from the initial condition. We
include the derivation here for completeness and to com-
plement Fig. [6]

Consider the RT model depicted in Fig. [3p. Assuming
that every cell is initialised in the inactive state with ng =
0 mRNA molecules, the probability generating function
for the cell population is [13]:

G(Z7 t) = Fy (Za t)q)s(za t)
Mkone_(k01\+koff)t

B (kon + koff)(l - kon - k'off)

(1 = 2)Fhs(2,t)Pps(z,t)

where Fys(z,t) == 1 Fy [—kon, 1 — kon — kog; pe”t(1 — 2)],
(I)S(Z,t) = 1F1 [kon7 kon + Kof; _M(l - Z)]7 Fns(z7t) =
LFy [kofty 1+ kon + kogr; pe™t(1 — 2)], and ®@,4(z,t) =
1y [1 = ko, 2 — kon — kor; —p(1 — 2)]. Here | F (a,b; 2)
is the confluent hypergeometric function [56].

N

Using the general Leibniz rule for differentiation, and
omitting other details of the differentiation, we obtain

v [—kon 4+ 7,1 —kon — kot + 73 ,ue*t]

n ” _
B 'fl' ,Z <7“) 1- OH - koff) (kon + koff)n—r

ko Iun+1 e~ (Kontkogr)t

(=D (=kog)r (1 —

X 1 Fy [kon + 1 — 1 kon + kot + 1 — 13 —p)

koff)nfreirt

¥ Ton + biot) (1 = Fiom — o] Z< ><

x 1 Fy [koﬂ‘ +7r, 14+ kon + kog + 13 ue_t] Fi L
konune_(kon"l‘koff n — 1
a (k0n+koﬁ)(1_ on_kof‘f an( r

x 1 Fy [koﬁ—i—r,l—f—kon—i—koﬁr—i—r;ue t] 1By ko +n—1, 1 — kon —

where (a)m, == ala+1)...
function [56].

(a +m — 1) is Pochhammer’s

As¢ — 0,4 F; [a,b;¢] — 1. Hence ast — oo, P(n,t) —

1+k0n+koﬁ) ( kon_

koff)n—r

_koff+n_T32_kon_koﬂ+n_r;_u]

rt

(=1)"(=kost)r (1 — Kot )n—1-r €~
1 + kon + koff)r<2 - kon - koﬁ‘)nflfr

koff'i_n_r;_ﬂ]v

(

P(n), and we recover the known stationary solution:

P(n) _ ﬂ (kon)n

— I kon akon ko y T .
n! (kon+koff)7z ! 1[ T - Ror 4 /1']
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Appendix B: The stationary solution for the
refractory promoter model (3 cyclic promoter states)

As explained in Section the stationary solution
of the 3-state cyclic model describing a refractory pro-
moter is obtained by solving the set of equations:

L 1-DLE) = k() +hafas)  (BY)
LA = hAG FRAE) (B2
L eh@] = hhE) thAaG)  (B3)

to obtain an expression for fz = f. + f1 + fo.

Note that the transition matrix [ks,] containing the ki-
netic constants on the right-hand side of Eqs — is
singular and hence A = 0 is an eigenvalue. Furthermore,
by Gershgorin’s circle theorem the non-zero eigenvalues
of [ksr] have negative real parts, so a stationary solution
always exists, i.e., the probabilities m; = [ fi(x)dz of
being in state .S; evolve to an equilibrium state given by
the eigenvector 7 associated with the eigenvalue A = 0.
Note that # must be normalised so that the elements
sum to 1. It can easily be shown that

B _ I{ilek*
= /0 fi(z)dz = ki(koks + ki1ke + kiko)

Now, integrating Eqs (B1))-(B3|) and using Eq. (B4]) we
obtain the boundary values fi(1) = f2(1) = 0 and

f+(0) = 0. Also, summing Egs (B1)-(B3)) and integrating

gives

(B4)

—2f1(2) = 2f2(2) + (1 = 2) f+(2) = C, (B5)

where C is a constant. Eq. is true for all z € [0, 1],
so we can substitute in z = 0 or z = 1 and use the fact
that f1(1) =0 and f1(1) =0, or f.(0) =0, to show that
C = 0. Hence

f2() = Fi(2) + o) + () = L1o(2),

so we need only solve Egs (B1))-(B3) for f.(z), the
marginal probability density corresponding to the active

state. Using and substituting into (B1)-(B3), we

then obtain the following equation for fi(z):

(B6)

0=2*(1-2)f(2) (B7)
2[(=3 4k +ko+h)z+1—k —ko] f(2) (B8)
+ [(—1—|—k1—|—k’2 —klkg—klk*)Z—Fkle} f*(Z) (Bg)

Set f(z) = z°u(z), where ¢ is a constant that we can
choose, to transform into

0=2T2(1 - 2)u"(2)
+ 2P [(=34+ K —2¢)z + 1 — kg — ko + 2] u/(2)
+2° {(—1+/C—l€—|—(—2+l€—c)c)z
+k1]€2 — (/{1 + kQ)C + 02] ’LL(Z)
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where K := ki + ko + k. and K = kika + k1K, + kok..
From here, we set the last term on the right hand side to
zero by choosing ¢ = ky or ¢ = ky. We can then divide
through by zt! to obtain an equation in the form of the
hypergeometric equation [56]. For example, for ¢ = k;
we obtain

0=2(1-2)u"(2)
+ [(—3 - kl + kg + k*)Z + 1 + kl — kg] ’U,/(Z)
+ [—1 — k1 + ko + ki — k‘gk‘*} u(z)

When none of \/(k’l — ko — ki)? — 4dkok., k1 — ko, or ki
are integers, we can write down the solution [56]:

uw(z) = Cy 5 F) [aﬁr), W14k — ko }
+ CQ Z_k1+k2 2F1 [a(f),a(f); 1-— kl + kg; Z}
where (7 and C5 are constants of integration,

5 Fy [a,b;¢; 2] is the Gauss hypergeometric function [56],
and

1
ag:l)75(2+k17]4327k*i\/(k*—k1—k2)2*4k1k2>

1
QEE) = 5 (2-]@1 +k2 _k* + \/(k* _kl _k2)2 _4k1k2) :

The solutions for the other cases are similar and are also
given in [56]. Hence f.(z) = z*u(z) is given by
ful2) = €1 22 o By [0 a1 4k = g 2]

+Cy 22, F, [a(f),a(f);l — k1 +/€2§Z} :

The same expression for f.(z) is obtained if we choose
¢ = ko instead, so finally we can write down the general
solution for fz(z) = f.(2)/z:

fz(2)

=C4 Zkl_le |:G,$), @, i1+ ky — ko :|

+ Cs sz_IQFl [a(f)7 @, 11— k1 + ko ]
=y 71— )t
X o F} [a,s_l)—i—kj*—1,CL(_1)+/€*—1;1+/€1—/€2;Z]
O, Zk271(1_ )k,ﬁ1
x Fl{ t ks <2)+k*—1;1—k1+k2;z}.

(B10)

Here, C7 and C5 are normalising constants that ensure
the integral constraints

/Olf*(z)dz:m§
/01 fz(z)dz = /01 fu(2)/zdz=1
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are satisfied. These constants are conveniently obtained
from a Mellin transform identity (see Ref. [T1], p. 152):

Dy k) (1R =) T (14— o)

CTTEITE) () (i)
Cy = (k1 — ko) T (1 +k2 — a(f)) r (1 + ko — a@)

D(k)T(k2) T (1 - af)>

r (1 —a(_2)> 7

17

where T'(.) is the Gamma function [56]. Eq. (B10) is
useful for comparisons with the 2-state random telegraph
model.
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