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ABSTRACT

Microbial communities inhabiting the human body exhibit
significant variability across different individuals and tis-
sues, and are suggested to play an important role in health
and disease. High-throughput sequencing offers unprece-
dented possibilities to profile microbial community compo-
sition, but limitations of existing taxonomic classification
methods (including incompleteness of existing microbial ref-
erence databases) limits the ability to accurately compare
microbial communities across different samples. In this pa-
per, we present a method able to overcome these limitations
by circumventing the classification step and directly using
the sequencing data to compare microbial communities. The
proposed method provides a powerful reference-free way to
assess differences in microbial abundances across samples.
This method, called EMDeBruijn, condenses the sequencing
data into a de Bruijn graph. The Earth Mover’s Distance
(EMD) is then used to measure similarities and differences
of the microbial communities associated with the individual
graphs. We apply this method to RNA-Seq data sets from
a coronary artery calcification (CAC) study and shown that
EMDeBruijn is able to differentiate between case and con-
trol CAC samples while utilizing all the candidate microbial
reads. We compare these results to current reference-based
methods, which are shown to have a limited capacity to dis-
criminate between case and control samples. We conclude
that this reference-free approach is a viable choice in com-
parative metatranscriptomic studies.
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1. INTRODUCTION

The human microbiome, sometimes [17] referred to as “the
forgotten organ,” contains a significantly larger number of
genes than predicted in the human genome [6] and an in-
creasing number of studies investigate its role in health and
disease [9]. Traditional cultured-based approaches to micro-
bial community profiling are limited in their ability to fully
capture the composition of the host microbiome. However,
high-throughput sequencing is a promising approach better
able to characterize human microbiome function and com-
position. Such characterization is essential in determining
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the role microbiota play in disease development, especially
when comparing microbiomes of healthy and disease sub-
jects. Recently, an increasing number of sequencing studies
offer enormous possibilities to study microbiome function-
ality and composition across different individuals and dis-
eases. Current approaches use existing reference databases
to classify and identify microbial communities present in
the individual host, and then compare these classifications.
However, existing databases are far from complete, and rely
only on a limited compendium of reference genomes, thereby
limiting the ability to accurately determine microbial com-
positions. This further confounds cross-subject microbiome
comparisons. Ideally, one would be able to use all the micro-
bial reads to determine patterns of diversity in health and
disease, not just those that classify to existing databases.

In this paper, we use a reference-free comparison method
on meta-transcriptomics data to characterize microbial com-
positions across healthy and disease samples. We use pub-
licly available RNA-Seq datasets from a coronary artery cal-
cification study [23] of eight cases and eight controls (matched
for gender, age and ancestry) to detect microbial communi-
ties and perform species independent comparisons. Reads
that failed to map to the human genome are used as non-
host sequencing reads to detect the presence of microbes.
To capture both differences in microbiota abundances and
composition we propose a reference-free approach (EMDe-
Bruijn) able to characterize individual metagenomic samples
based on an associated de Bruijn graph (that is, a certain
directed graph on k-mers). This approach provides a pow-
erful, species independent way to assess microbial diversity
across individuals and subjects. Incompleteness of exist-
ing microbial databases becomes a non issue as sequencing
information is translated directly into a de Bruijn graph.
Properties of the de Bruijn graphs are then used to compare
microbiome composition across individuals. Briefly, this new
metric measures the minimal cost of transforming one sam-
ple’s associated de Bruijn graph into another one to mea-
sure the similarity of the microbial communities between
two samples. This reduces to using the Earth Mover’s Dis-
tance (EMD), and we utilize a recent implementation of the
EMD that takes advantage of the underlying graph struc-
ture. We call our method EMDeBruijn. Code implementing
this method is available at
https://github.com /dkoslicki/EMDeBruijn.

The ability to determine the association of the microbial
communities with different types of diseases may have im-
plications for disease diagnoses and prevention. Detection
of any disease-promoting effects of microbiota for the differ-
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ent types of diseases may suggest the necessity to routinely
incorporate the meta-omics analysis in the current genetics-
based studies of the diseases [21]. Additionally, accurate
characterization of the personal microbiome and ability to
compare it across individuals and diseases opens new possi-
bilities to investigate host-microbiome interactions.

2. METHOD

2.1 Overview

Words of length k on a given alphabet o7, also known as
k-mers, are used extensively in genomics problems. While
reads from next-generation sequencing technologies may be
short, the dimensionality of all, say, 6-mers on the alphabet
o = {A,C,G, T} is much smaller than the dimensional-
ity of all strings of length ~ 100nt on /. Furthermore,
the counts or frequencies of all k-mers in a given dataset
can give an analytically tractable “signature” associated to
a dataset. Many k-mer based metagenomic classification
methods use a variety of metrics when comparing such count
or frequency vectors [12,20,26]. Many metrics are used to
compare these vectors, and there has been no consensus as
to which metric/metrics are best suited for the task. A fur-
ther problem arises due to the fact that when attempting
to analyze metagenomic data, samples are typically classi-
fied via some approach (either k-mer based [4,12,13,20,26]
or non-k-mer based [15]), and then further analysis (clus-
tering, PCoA, etc.) is performed using a variety of metrics
on the vectors of relative species abundances. It has been
shown [11] that the selection of the metric (typical exam-
ples include Euclidean distance, Jensen-Shannon divergence,
Bray-Curtis, weighted /unweighted UniFrac metrics) signifi-
cantly affects downstream analysis (such as determining en-
terotypes across the human body).

Comparing samples by using a metric on the vector of
classified relative abundances has a number of drawbacks.
Beyond misclassifications and unclassified portions of the
sample (which can comprise a very large percentage of a
given sample), this approach is constrained by the complete-
ness and correctness of the training database utilized. It is
well-known that current bacterial databases suffer from mis-
labeled bacterial sequences and in general only represent a
very small percentage of predicted bacterial species.

We present an approach that aims to resolve two of these
issues: first, we develop a reference-free distance metric be-
tween metagenomic samples that is able to accurately char-
acterize the similarities/differences between samples that
bypasses the need to first classify the samples. Second, this
metric takes advantage of the de Bruijn graph structure of
k-mer frequency vectors and can be shown mathematically
to be a natural choice when comparing k-mer frequency vec-
tors.

The usage of de Bruijn graphs in bioinformatics is prac-
tically ubiquitous. Some methods have been developed to
utilize de Bruijn graphs for taxonomic profiling, but still rely
on a known database of organisms [3, pg. 11] and so are not
entirely reference free. Other problems, such as genome as-
sembly, rely almost exclusively on properties of de Bruijn
graphs (7,14, 27] or overlap graphs. However, there exist
many aspects of de Bruijn graphs that have yet to be ex-
ploited.

One such aspect is the fact that de Bruijn graphs allow
for the development of a rather natural metric on k-mers.
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Figure 1: Graph of B3({0,1}).

The metric we propose to use is the Earth Mover’s Distance
(also known as the first Mallows distance, first Wasserstein
distance, etc) between k-mer frequency vectors on the de
Bruijn graph of order k on the alphabet {A4,C,G,T}.

2.2 Earth Mover’s Distance on
de Bruijn graphs (EMDeBruijn)

We describe here in detail the reference-free method we
utilize to measure the differences between individual meta-
transcriptomic samples, called EMDeBruijn, and first set
some notation. Let &/ be an alphabet of finitely many sym-
bols. Typically & = {A,C,G,T}. For w € &, let |w|
denote the length of w (or equivalently, the total occurrence
of each symbol of &7 in w). For k € N, let «7* denote the
set of all words w with |w| = k. Let &* = Up>0o" be
the set of all finite length words on /. Write the letters of
w = wiws ... wy for lw| = k. For w,v € &*, let occy,(w) =
and freq, (w) be the number of occurrences and frequency
of occurrence respectively of v in w with overlaps. l.e.

occy(w) = {j 1 wjwjs1 - Wjp -1 = v} (1)
_occy(w)
.freqv(w) - |'LU|—|U‘+1 (2)

By fregqw(w) we mean the vector (fregy(w)),cnr. We
are now in a position to define the de Bruijn graph and the
EMDeBruijn metric.

Definition 1. (de Bruijn graph) Denote By (/) to be the
graph with vertex set V = & and edge set

E:{(Ul,UQ) €V><V|v%...1),i:vf...vi,l}

Note that this means an arrow is drawn between two vertices
if the suffix of the first vertex matches the prefix of the
second vertex. We now consider the undirected graph.

Definition 2. (Undirected de Bruijn graph) Let B (<) to
be the graph with vertex set V = o/* and edge set

E:{(Ul,’UQ) eV xVvy...vp =0}...05_; or

1 1 2 2
V1 ...0p_1 = Vo 'Uk}
The graph of Bs({0,1}) is given in figure 1, and a graph of
B3({0,1}) is given in figure 2. Next, we need to define a
flow (also called coupling) between k-mer frequency vectors.
A visualization of a flow is given in figure 3.
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Figure 2: Graph of B3({0,1}).

Definition 3. (Flow/Coupling) For w,v € &/* and k €
N, a flow (or coupling) of fregw(w), freqs(v) is a matrix
v € R %" guch that freqe(w) = > coon v(,+) and
freai(v) = >, csx7(y). Let I'(w,v) denote the set of
all couplings of w and v.

We are now in a position to define the metric that will
comprise out method. For the following, recall that for con-
nected graphs such as these, the graph distance between two
vertices is the shortest path in that graph between the two
vertices.

Definition 4. (EMDeBruijn) Let d;, be the graph distance
associated to By (7). Then

EMDy(w,v) = min

~yel(w,v)

> A y)r(xy)

x,yeak

Since the set of couplings I'(w,v) depends only on the fre-
quencies of k-mers in w and v, definition 4 can take as in-
puts the k-mer frequency vectors of two samples consisting
of multiple sequences. Hence, the metric in definition 4 mea-
sures the minimal cost (in terms of distance) of transforming
one sample’s k-mer frequency vector into the other sample’s
k-mer frequency vector where transformations are restricted
to moves along the de Bruijn graph.

To compute the EMDeBruijn metric in definition 4, we use
the FastEMD [18,19] implementation of the Earth Mover’s
Distance since the graph metric is naturally thresholded to
the diameter of the de Bruijn graph. This reduces to using
a min-cost-flow algorithm to solve the optimization problem
in definition 4. When counting k-mers, we always include
the original sequence, as well as its complement. Again, the
advantage of definition 4 is twofold: first, it bypasses the
need to first classify a sample, and secondly, it takes ad-
vantage of the natural de Bruijn graph structure of k-mers
(instead of treating k-mers as independent of each other).
The current implementation of EMDeBruijn has a runtime
which is quadratic in the number of k-mers (and so exponen-
tial in the k-mer size). Further algorithmic improvements
to reduce this computational complexity are currently being
developed, but at the moment we restrict the number of k-
mers to be less than or equal to 4,096 and hence consider
k = 6 (resulting in a total running time of approximately 55
CPU minutes). A heuristic algorithm that allows for faster
execution time and increased k-mer size (at the expense of
non-optimal results) is currently being developed.

3. RESULTS

3.1 Blood microbiome profiling across CAC
and non-CAC patients

We study the microbiome composition and abundance lev-
els of the microbial communities present in the blood across
coronary artery calcification (CAC) patients and controls.
The framework of the study is summarized in figure 4. Pub-
licly available RNA-Seq data was obtained from a CAC
study [23]. The data consisted of the peripheral blood Illu-
mina RNA-Seq samples from eight cases and eight controls
matched for gender, age and ancestry. Peripheral blood was
collected using the PAXgene RNA tubes and the PAXgene
Blood RNA Kit IVD. Sequencing was performed on Illumina
GAIIx sequencers generating paired end sequencing 2X76bp.
First we extract non-host reads from each sample by map-
ping reads onto the human genome. An average of 68% of
the reads of each sample aligned to the human hgl9 reference
genome via tophat2 (v2.0.4) [10] with the default settings.
Additionally, tophat2 was supplied with the gene annota-
tions to improve the quality of the mapping. Non-host reads
(reads failing to map to the human reference genome) are
used as a candidate microbial reads to detect the presence
of microbial communities and compare them across host in-
dividuals and subjects. Microbial reads are expected to be a
small portion of the non-host reads due to intensive immune
system response able to deactivate the majority of bacteria,
fungi, viruses and parasites in the blood. Besides the micro-
bial reads, non-host reads contain low-quality and/or low
complexity reads as well as reads from repetitive elements,
circular RNAs (circRNAs), gene fusion events, trans-splicing
events, recombined B and T cell receptor (BCR and TCR)
loci [16]. Reads containing larger number of sequencing er-
rors are more likely to be ignored by the current mapping
algorithms. We perform additional Megablast [1] alignment
of the non-host reads against the human reference to exclude
any reads ignored by the alignment tools.

The filtered set of non-host reads is used to determine
the composition of the blood microbiome. We use a novel
reference-independent approach able to perform a species
independent comparison of the microbial communities, and
refer to this method as EMDeBruijn. This method uses
directly the non-host reads and condenses them into a de
Bruijn graph (whose vertices are k-mers). We then use the
Earth Mover’s Distance (EMD) metric on this graph to mea-
sure the differences between the samples based on the puta-
tive microbial communities.

Additionally, we examine any potential experimental con-
tamination (contamination by the microorganisms introduced
during the sequencing experiment). We use additional RNA-
Seq samples from the The Cancer Genome Atlas (TCGA)
[25] to confirm our finding of a microbial presence in blood
samples, and examine the possibility of experimental con-
tamination.

3.2 Blood microbiome contains known refer-
ence microbial genomes and rRNA genes

We confirmed a microbial presence in both the control
and case samples by using standard community profiling
techniques. For whole meta-transcriptome classification, we
used MetaPhlAn [22] version 1.7.7 with bowtie2 [8] version
2.2.3 to classify the non-host reads. Using the default set-
tings, we are able to successfully classify an average of 0.06%
of the non-host reads (~ 24K reads per sample).

We further confirm this result by extracting the 16S ribo-
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Figure 3: Visualization of the EMDeBruijn Distance. a) Pictorial representation of 2-mer frequencies for two hypothetical
samples, S1 and S2. b) The 2-mer frequencies overlaid the de Bruijn graph B2(«7). c) Representation of the flow used to
compute EMD;(S1, S2); dark arrows denote mass moved from the initial node to the terminal node. d) Result of applying the

flow to the 2-mer frequencies of S;.

somal sequences present in the non-host reads. We selected
the non-host reads having an exact match to at least one
of 22 “universal” 16S rRNA primers [24]. On average, 145K
reads were extracted per sample. Extracted reads were then
classified by the Ribosomal Database Project’s (RDP) clas-
sifier [26] using version 2.8 and the default settings. On
average, only 1% of the reads were classified to the genus
level.

Next we evaluate microbial community variability across
the CAC patients and controls. The classified blood micro-
bial communities were observed to vary across the samples,
however no disease-specific patterns were observed (Figures
5 and 6). The clear discrepancy between the MetaPhlAn
and the 16S rRNA approach (RDP’s NBC) indicates the
disadvantage of using these approaches, suggesting that a
reference-free approach is required to account for all the or-
ganisms, including ones not present in any of the databases.

To confirm the blood taxonomic composition in the CAC
study and to examine any hypothetical contamination we
use seven whole blood RNA-Seq samples from the TCGA
collected from the Acute Myeloid Leukemia (LAML) pa-

tients (see Appendix section A.2). A total of approximately
18% and 47% of the genera in the CAC samples were also ob-
served in the LAML samples using MetaPhlAn and RDP’s
NBC respectively. Furthermore, these shared genera con-
tributed an average of approximately 37% and 51% of the
relative abundance in the CAC samples as measured by
MetaPhlAn and RDP’s NBC respectively. The presence of
similar genera of bacteria across different studies and ex-
perimental protocols corroborates the claim that a bacterial
presence is genuinely being observed in the given samples
(and is not due to sequencing artifacts or contamination).

To compare the CAC patients to the controls, we cre-
ated a PCoA plot using the Jensen-Shannon divergence on
the genera level reconstructions for both the MetaPhlAn
and RDP reconstructions. The results are given in figure 6.
Neither MetaPhlAn nor RDP’s NBC are able to effectively
distinguish between case and control samples. Other dis-
tance metrics were also employed (results not shown) with
the same qualitative outcome.

To quantify how well MetaPhlAn and RDP’s NBC dis-
tinguished between cases and controls, we performed a hi-
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Figure 4: Framework of the study. (a) We analyze cohort of eight cases and eight controls matched for gender, age and
ancestry. (b) Sequencing was performed on Illumina GAIIx sequencers generating paired end sequencing 2X76bp. (c) Non-
host reads(reads failing to map to the human reference genome) from each sample were extracted by mapping reads onto the
human genome. Non-host reads are used as a candidate microbial reads to detect the presence of microbial communities and
compare them across host individuals and diseases. (d) Non-host reads are used to determine the composition of the blood
microbiome. We use a novel reference-independent approach (EMDeBruijn) able to perform a species independent comparison
of the microbial communities. EMDeBruijn condenses the reads into the de Bruijn graph. The vertices of the de Bruijn graph
are k-mers produced from the sequencing reads. Earth Mover’s Distance (EMD) metric is used to measure the differences
between the samples based on the proprieties of the graph.
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Figure 5: Relative abundances of blood microbial communities across all subjects. Non-host reads were classified at the genus

level.

erarchical clustering using the Jensen-Shannon divergence
on the genus level reconstructions of the two methods. We
took the top two resulting clusters (which consisted predom-
inantly of either case samples or control samples). Treating
these as classifiers, we obtained the classification measures
contained in table 1. Dendrograms and heatmaps of these
results are also contained in the appendix. We performed a

similar analysis using UPGMA trees (results in the appendix
section A.4).

Clearly, available microbial reference databases allow one
to classify only a small portion of non-host reads, thus bi-
asing any further analysis of the microbiome composition.
We propose a reference-free approach that is able to use all
the putative microbial reads to characterize the microbial
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Figure 7: PCoA plot using the EMDeBruijn metric. Note the clustering of the control samples.

communities and compare them across subjects.

3.3 Reference-free comparison of microbial com-
munities across CAC and non-CAC patients

Reference-based microbiome profiling is limited to dis-
cover the microbial taxa present in the available reference
databases, which are known to be far from complete. This
limits the ability to accurately profile microbial communities
and perform cross-individual microbiome comparisons. Pro-
filing performed by reference-based methods (Section 3.2)
are inconsistent, and have limited ability to discriminate
between healthy from disease samples. We argue that com-
paring the taxonomic classifications performed both by
MetaPhlAn and RDP have a limited possibility to discrim-
inate the samples into a health and disease group. We
propose an alternative approach able to overcome the in-
completeness of existing microbial databases by directly us-
ing the sequencing information condensed into a de Bruijn
graph. Applying the proposed EMDeBruijn method (Sec-
tion 2) for the k-mer size of k = 6, we obtain a metric which
is applied to discriminate between healthy and disease sam-
ples. The EMDeBruijn metric as defined in definition 4 is

used to produce a PCoA plot (Figure 7). This method is
able to clearly group the control CAC samples, suggesting a
possible disease promoting effect of the microbial communi-
ties yet to be classified.

As with the reference-based techniques, we performed a
hierarchical clustering using the EMDeBruijn metric. Af-
ter performing the clustering, we took the top two clus-
ters (which consisted predominantly of either case samples
or control samples). This effectively partitioned the data,
which we then treated as a classifier. We then obtained the
classification measures contained in table 1. Dendrograms
and heatmaps of these results are also contained in the ap-
pendix (see figure 13). We performed a similar analysis us-
ing UPGMA clustering, the results of which were identical
to the hierarchical clustering. These results are contained in
the appendix section A.4. In all, this demonstrates that the
case and control sample are most effectively distinguished
when using the EMDeBruijn metric.

Whether the reads driving the differences between the
health and disease are microbial is an open question. To
address this question, we perform the species independent
comparison of the microbial communities across the sam-
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| EMDeBruijn | MetaPhlAn | RDP’s NBC

Accuracy .6875 .5625 .5625
Sensitivity .875 125 1

Specificity .5 1 125
Precision .636 1 533

Table 1: Classification results for the hierarchical clustering
derived from the three classification methods. These mea-
sures result from selecting the top/largest two clusters.

ples based on the 16S ribosomal sequences extracted from
the non-host reads. Ribosomal sequences are specific to mi-
crobial organism allowing to confidently extract the reads
corresponding to the microbial communities. Results on the
16S reads (see figure 7) suggest similar discrimination of the
samples.

As evidence that the EMDeBruijn metric is a more use-
ful k-mer based metric than other commonly utilized met-
rics (such as the Jensen-Shannon or Kullback-Leibler diver-
gence), we created PCoA plots using a number of these
metrics directly on the non-host 6-mer counts and 10-mer
counts. As shown in Appendix section A.1, figure 8, and
section A.4, none of these methods clusters as well as the
EMDeBruijn metric. Additionally, we check the classifica-
tion power of using k-mer frequencies alone on the CAC vs
non-CAC samples. We observe similar frequencies of 6-mers
in both healthy and disease groups. The two 6-mers with
frequencies higher in the control group than the case group
were CCCCCC and GGGGGG (Appendix 14).

To investigate the effect of the human reads on the ability
to differentiate between the healthy and disease samples, we
applied our method for all the sequencing reads. We ob-
serve similar discrimination into health and disease suggest-
ing that adding human sequences provides no improvement
(see Appendix section A.3).

One of the current limitations of this method is the ab-
sence of a straightforward approach to extract the taxa driv-
ing the difference between the samples. One way to over-
come this limitations is to extract the sequences contribut-
ing to the differences between the samples and match those
against the hypervariable taxa-specific gene families. Hyper-
variable regions from gene families are previously identified
to be as nearly universal, allowing one to differentiate be-
tween species and taxa [5]. However, a large number of
sequences are observed to contribute to the differences be-
tween the CAC and non-CAC samples. Further investiga-
tion is required to quantify the contribution of different taxa
to the observed case and control clustering.

4. DISCUSSION

In summary, meta-transcriptomics profiling was used to
determine the composition of the blood microbiome across
coronary artery calcification (CAC) patients and controls in
an effort to determine the relationship between the blood
microbiome and CAC disease.

First, we seek to determine the microbial composition of
the blood across CAC and control patients. We use non-host
RNA-Seq reads to perform the taxonomic classification us-
ing existing computational methods. Both MetaPhlAn and
RDP’s NBC were able to discover various microbial commu-
nities across the health and control samples. However nei-

ther of these methods were able to find any disease-specific
patterns in the microbiome nor were able to discriminate
the samples into disease and healthy groups. Furthermore,
the genera level classification provided by both methods
shows large discrepancies. This reveals the limitations of
these methods, namely relying on the known microbiome
databases to classify the metatranscriptomics samples. One
way to overcome this limitation is to directly use the se-
quencing data to determine patterns of diversity in health
and disease, thereby avoiding the bias introduced by the
existing databases.

We then proposed a novel EMDeBruijn approach which
provides a powerful reference-independent way to assess mi-
crobial diversity across the samples. It allows one to con-
dense the sequencing data into a de Bruijn graph. We use
Earth Mover’s Distance (EMD) to measure the similarities
of the microbial communities via their associated de Bruijn
graphs. The ability to account for all the candidate micro-
bial reads allows our method to captures information rele-
vant to the disease and differentiates between the case and
control CAC samples. All this suggests that a reference-free
approaches is a preferable choice in comparative metatran-
scriptomics studies.

In de Bruijn-based approaches one of the most signifi-
cant parameters is the k-mer size. Longer k-mer size is
usually preferable for studies performing genome assembly,
as this provides the possibility to bridge repetitive genomic
regions. In this study we do not aim to assemble the mi-
crobial genomes and instead measure the similarities and
differences of the microbial communities across different con-
ditions. While the full set of k-mers is present when using
k = 6, the variability of bacterial sequences results in k-
mer frequency profiles whose difference can be detected by
EMDeBruijn. It is reasonable to assume that any contri-
bution of unmapped human-related sequences to the k-mer
frequency profiles is relatively constant across the samples
(especially when using shorter k-mer sizes).

Altogether, this study of microbial communities suggests
an important role of the microbiome in CAC disease and in-
dicates the presence of the disease-specific microbial commu-
nity structure in the CAC patients. Establishing the causal
relationship between the microbiome and CAC disease is yet
to be studied and requires additional inquiry.
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APPENDIX
A. SUPPLEMENTARY MATERIAL

This appendix contain additional material supporting the
main text.

A.1 Other k-mer based metrics

We demonstrate here that the EMDeBruijn metric is more
effective at extracting relevant information than more tradi-
tional metrics applied directly on the k-mer counts. To that
end, we formed the 6mer counts for each of the non-host
CAC data sets. We then created PCoA plots correspond-
ing to a variety of commonly utilized metrics. The results
are shown in figure 8. Note that none of these metrics give
nearly as clear a clustering of the control samples as the
EMDeBruijn metric does.

To verify that this is lack of clear clustering is not due
to the relatively small k-mer size of k = 6, we repeated the
same process as before, but this time for £ = 10. As seen
in figure 9, the increased k-mer size only marginally quali-
tatively improves the clustering. This can be quantitatively
confirmed, as seen in Table 3, where it is shown that the
classification metrics when k& = 10 are still worse than when
using k = 6 and EMDeBruijn.

A.2 Comparison to LAML and colorectal data

To confirm the blood taxonomic composition in the CAC
study and to examine any hypothetical contamination we
use seven whole blood RNA-Seq samples from the TCGA
collected from the Acute Myeloid Leukemia (LAML) pa-
tients. The LAML data was obtained from 173 RNA-Seq
primary blood derived cancer samples available from the The
Cancer Genome Atlas (TCGA) from CGHUB at the USC.
We randomly selected 7 samples to determine their micro-
bial content. The same procedure detailed in section 3.2 was
utilized to extract non-mapped reads and classify them via
MetaPhlAn and further extract 16S reads and classify them
via RDP’s NBC. An average of 75% of the reads aligned to
the human genome, and of these, 0.5% were classified by
MetaPhlAn and 7.7% of the extracted 16S rRNA sequences
were classified down to the genus level using RDP’s NBC.
As we are concerned with the shared common genera, we re-
stricted our attention to only those genera whose abundance
in either the CAC or LAML data was greater than 5% when
summed over all samples. Included in figure 10 are Venn di-
agrams representing the overlap between the classified gen-
era between these LAML samples and the CAC samples.
A total of approximately 18% and 47% of the genera in the
CAC samples were also observed in the LAML samples using
MetaPhlAn and RDP’s NBC respectively. The presence of
similar genera of bacteria across these different studies sup-
ports the claim that a bacterial presence is genuinely being
observed in the given samples.

Another important observation is that using RNA-Seq al-
lows for the sequencing of non-host genomic material. To
demonstrate this, we also performed the same analysis pro-
cedure detailed in section 3.2 on 9 whole genome shotgun
primary colorectal adenocarcinoma samples, along with 9
whole genome shotgun controls samples [2]. Analyzing this
data revealed no presence of any known microbial communi-
ties. This suggests that RNA-Seq may be the technology of
choice for profiling microbial communities in human tissues
when there is an expected minor microbial presence.

MetaPhIAn Shared Genera

RDP Shared Genera

Figure 10: Number of genera shared between LAML and
CAC data sets.
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Figure 8: PCoA plots corresponding to four different metrics applied directly to the 6-mer counts.

A.3 Utilizing host and non-host reads

To investigate the effect of the human reads on the ability
to differentiate between the healthy and disease samples, we
utilized the EMDeBruijn method on all the raw sequencing
data. Figure 11 shows the resulting PCoA plot. Note the
similar clustering of the control samples as in figure 7. This
indicates that the addition of the mapped reads does not
seem to significantly influence the case/control clustering as
seen in figure 7.

A.4 Verification of clustering accuracy

Having already supported the claim that MetaPhlAn and
RDP’s NBC do not distinguish between case and control
samples as effectively as EMDeBruijn by using hierarchi-
cal clustering (see table 1 and section 3.2), we further con-
firm this by using UPGMA clustering as well. Hence, we
built UPGMA trees by using the Jensen-Shannon diver-
gence on the genus level reconstructions of RDP’s NBC and
MetaPhlAn. We also used the EMDeBruijn metric to form a
UPGMA tree as well. We took the top two clusters (which
consisted predominantly of either case samples or control
samples) and treated them as a classifier. We obtained the
classification metrics contained in table 2. Visualizations of
the UPGMA clustering is contained in figure 12.

Furthermore, we formed UPGMA trees for the reference-

EMDeBruijn
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1 # Control
0.04} —~+ case
0.02¢ . *

Oy .l -j:

-0.02¢ . +
-0.04 +

0085 01 0 0.1 02
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Figure 11: PCoA plot using the EMDeBruiujn metric on all
the CAC sequences (both host and non-host).


https://doi.org/10.1101/055020
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/055020; this version posted May 24, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
12 aCC-BY-NC 4.0 International license.

Kullback-Leibler divergence
0.17

e Control

Jr Case

0.05} +

PC2
o
[ ]
%

*
s

-0.05¢ +
-0.1 : : : :
-0.2 -0.1 0 0.1 0.2
PC1
2?( 109 L1 norm
e Control
1.5t Jr Jr Case
1,
O
Q 0.5¢
0 : e +-+
. ol ++
-0.5¢
-1 | IPY | )
-2 -1 0 1 2
PC1 % 10°
| EMDeBruijn | MetaPhlAn | RDP’s NBC
Accuracy .6875 .5625 .5625
Sensitivity .875 125 1
Specificity .5 1 125
Precision .636 1 .533

Table 2: Binary classification results for the UPGMA trees
derived from the two classification methods and EMDe-
Bruijn.

free metrics as well. To demonstrate that a smaller k-mer
size for EMDeBruijn is still more effective than using a larger
k-mer size for the other methods, we used the k-mer size of
k = 6 for EMDeBruijn, and k£ = 10 for the Jensen-Shannon
divergence, Kullback-Leibler divergence, L1 norm, and L2
norm. The results are contained in table 3 and clearly indi-
cate the advantage of EMDeBruijn.

The hierarchical clustering dendrograms associated to the
three methods (mentioned in section 3.2 in the main text)
are give in figure 13. See the associated table 1. Observe
that in figure 13, EMDeBruijn partitions the samples into
three clusters, each of which consists predominantly of case
or control samples. Taking the three largest such clusters, we
obtain the classification metrics contained in table 4. Note

PC2

Jensen—-Shannon divergence

0.02/
Jr e Control
0.015} —+ case

0.01¢

0.005¢

-0.005¢ =

-0.01¢ JF
-0.015 ‘ S — ‘
-0.04 -0.02 0 0.02 0.04
PC1
7 L2 norm
15X 10
e Control

+ Case

Accuracy .6875 5 5| .5 | .625
Sensitivity .875 5 51 .5 .75
Specificity .5 5 51 .5 5
Precision .636 5 5| .5 .6

Table 3: Binary classification results for the UPGMA trees
derived from the five reference-free metrics. For k-mer size,
k = 6 was used for EMDeBruijn, and k = 10 was used
for the other methods. KL=Kullback-Leibler, JS=Jensen-
Shannon.

the significant improvement over table 1.
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Figure 12: UPGMA trees based on the Jensen-Shannon
divergence of the genus level classification for MetaPhlAn
and RDP’s NBC, as well as the UPGMA tree based on the

0.25

0.3

EMDeBruijn distance metric on the non-host reads.

Figure 13: Dendrograms created via hierarchical clustering
using the Jensen-Shannon divergence of the genus level clas-
sification for MetaPhlAn and RDP’s NBC, as well as the
dendrogram created via hierarchical clustering based on the
EMDeBruijn distance metric on the non-host reads. All dis-
tance matrices have been standardized.
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| EMDeBruijn | MetaPhlAn | RDP’s NBC

Accuracy .8125 b .562
Sensitivity .625 125 .875
Specificity 1 1 .25
Precision 1 1 .538

Table 4: Classification results for the hierarchical clustering
derived from the three classification methods. These mea-
sures result from taking the three largest clusters.

A x10° Mean 6mer frequencies
T T T T T T T I
—e—Control
—<—Case
3.5F
3 [ —

N
[3,]
T
=3
1

-
(8]

Kmer Frequency
N
g
|

]

e e . i i da

0 1000 1500 2000 2500 3000 3500 4000 4500
Kmer

TNy

Figure 14: 6-mers frequency plot.
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