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Abstract  

Theories of prospective memory (PM) posit that it can be subserved either by working memory 

(WM) or episodic memory (EM). Testing and refining these multiprocess theories of PM requires 

a way of tracking participants’ reliance on WM versus EM. Here we use multi-voxel pattern 

analysis (MVPA) to derive a trial-by-trial measure of WM use in prospective memory. We 

manipulated strategy demands by varying the degree of proactive interference (which hurts EM) 

and the memory load required to perform the secondary task (which hurts WM).  Our MVPA 

measures showed 1) greater WM use and 2) a trial-by-trial correlation between WM use and PM 

behavior for the condition in which participants were pushed to rely more on WM. Finally, we 

also showed that MVPA measures of WM use are not redundant with other behavioral 

measures: in the condition in which participants were pushed more to rely on WM, using neural 

and behavioral measures together led to better prediction of PM accuracy than either type of 

measure on its own. 

Keywords: prospective memory, working memory, episodic memory, fMRI, MVPA 

 

Significance Statement 

To accomplish our goals, we must remember them, and this can be challenging when our 

cognitive resources are in demand. Multiple strategies can support prospective remembering – 

people can use working memory to actively maintain the goal, or they can store the goal in 

episodic memory and retrieve it later when needed. Here we measured participants’ use of 

working memory on a trial-by-trial basis using functional MRI. Our neural measure of working 

memory varied according to task conditions that were designed to manipulate strategy use, and 

it led to better prediction of trial-by-trial prospective memory accuracy than could be achieved 

based purely on behavioral measures. These data provide the strongest connection to date 

between neural data and prospective memory behavior.  
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INTRODUCTION 

Prospective memory (PM) refers to our ability to remember to do things in the future. Theories 

of PM (Cohen and O'Reilly, 1996; McDaniel and Einstein, 2000) posit that two strategies can be 

used: Participants can use working memory (WM) to actively monitor the environment for an 

appropriate time or event (Koechlin and Hyafil, 2007; Gilbert, 2011) or they can store the 

intention in episodic memory (EM) and hope that it is automatically retrieved when the time 

comes to act on that intention (McDaniel and Einstein, 2007b; Beck et al., 2014; for related 

ideas about dual systems involved in PM and control see Cohen and O’Reilly, 1996 and Braver, 

2012).  PM is typically studied using a dual-task paradigm in which a PM task is embedded in 

another cognitive task that requires vigilance and frequent behavioral decisions (the “ongoing 

task”). The PM task requires a response after a particular event (the PM “target”) or after a 

certain amount of time has elapsed.  

 This multiprocess view of PM (Cohen and O’Reilly, 1996; McDaniel and Einstein, 2000) 

raises important questions about when people will rely on one memory strategy vs. the other, 

and how this strategy choice will affect performance. The current framing of the theory posits an 

adaptive view of the memory system in which there is a bias to minimize the cognitive demands 

of the PM task, thereby reducing interference costs from strategic monitoring (Smith, 2003; 

Einstein et al., 2005; Hicks et al., 2005). Thus an automatic retrieval strategy (relying on EM) is 

favored whenever possible so as not to overly burden ongoing processing. However, the theory 

also specifies some circumstances when sustained, strategic monitoring (relying on WM) should 

be used, for example in “non-focal” tasks in which identification of a PM target requires attention 

to features that are not relevant to ongoing processing demands (Einstein et al., 2005; Scullin et 

al., 2010). 

 To date, the primary approach to tracking use of strategic monitoring has been to measure 

RT costs on the ongoing task, with the logic being that greater monitoring for the PM target will 

lead to slower RTs on the ongoing task (Smith, 2003; Einstein et al., 2005; Smith, 2010; 
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Einstein and McDaniel, 2010; Scullin et al., 2010). Neural data has also been used to improve 

identification of strategy use. fMRI studies of PM have linked strategic monitoring in PM tasks to 

sustained activity in frontoparietal control networks including anterior regions of the prefrontal 

cortex (e.g., Reynolds, 2009; McDaniel et al., 2013). In another study, Gilbert (2011) used multi-

voxel pattern analysis (MVPA; Lewis-Peacock and Norman, 2014b) of fMRI to successfully 

decode the contents of WM. However, with all of the above studies, the neural measures of WM 

engagement that were used were not sensitive enough to predict PM accuracy on a trial-by-trial 

basis. 

 One goal of our study was to use a more sensitive, time-varying measure of WM 

engagement (MVPA decoding of PM target processing) in an effort to improve trial-by-trial 

predictions of PM behavior beyond what is possible by observing behavior alone. The other goal 

was to gain a richer understanding of the factors that shape PM strategy use. We designed a 

non-focal PM experiment that manipulated proactive interference and WM load, using stimuli in 

an ongoing task (letter strings) that were completely non-overlapping with stimuli in a PM task 

(faces and scenes). One condition was designed to bias participants to use strategic monitoring 

(WMbias; high proactive interference + low memory load), and another was designed to bias 

participants to rely on automatic retrieval (EMbias; low proactive interference + high memory 

load). Using this paradigm, we found that strategic monitoring (measured using MVPA) was 

both higher overall and more tightly linked to behavior in the WMbias condition than the EMbias 

condition; we also found that our MVPA measure of strategic monitoring improved our ability to 

predict PM performance from trial to trial, beyond what is possible based on behavior alone. 

 
 
MATERIALS AND METHODS 

Participants 

Twenty-five participants (14 female; ages 18 to 34, mean = 23.2; all right-handed) were 

recruited for this study using online scheduling software provided by the Department of 
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Psychology at Princeton University. Participants were compensated with $20 per hour for their 

participation in the two-hour experiment. Written informed consent was obtained in a manner 

approved by the Princeton Institutional Review Board. 

 

[ insert Fig. 1 here ] 

 

Behavioral Paradigm 

We developed a task to examine how participants strategically use episodic memory (EM) 

versus working memory (WM) to remember goals in a dual-task prospective memory (PM) 

experiment. Participants were shown a series of words while pictures of faces and scenes were 

presented in the background (Fig. 1a). Participants performed an ongoing task (OG; making 

lexical decisions about strings of letters) while monitoring for a picture target (a particular face or 

a particular scene) to reappear. Whereas many studies (see McDaniel and Einstein, 2007a) 

have used letter stimuli for both the OG task and the PM task, we used pictures (faces and 

scenes) in the PM task and letters in the OG task (making this a “non-focal” PM task; Einstein et 

al., 2005; McDaniel et al., 2013). We did this because thoughts about faces and scenes are 

easily trackable with fMRI (Lewis-Peacock & Norman, 2014b); as such, using faces and scenes 

maximizes our ability to use fMRI to track the maintenance of PM targets in WM.  Each “target 

trial” (in which participants performed both the OG task and the PM task) began with the 

introduction of a picture target for 2 sec, followed by a 2-sec blank screen, followed by a 

variable-length sequence of 2-sec memory probes, each containing two pictures and a string of 

letters. In a random one-third of trials, the target introduction screen at the beginning of the trial 

was blank, indicating to participants that they could ignore all subsequent pictures for the 

remainder of that trial and focus solely on the OG task (we call these “no-target” trials). 

Participants were required to make repeated lexical judgments about the letter strings until the 

picture target reappeared (between 2 sec and 42 sec after its introduction). In the OG task, a 
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lexical judgment for a given probe required an n-back comparison (n = 1 or 2) of lexical status: 

i.e., does the current probe have the same lexical status (word or non-word) as the 1-back or 2-

back probe? For example, in the 1-back condition, the letter string “apple” (a word) on one 

probe followed by the letter string “boat” (also a word) on the next probe word require a same 

response for the OG task. If, instead of “boat” appearing on the second probe, the letter string 

“glorb” (a nonword) appeared, the appropriate response on the OG task would be different. The 

proportion of same/different responses required was balanced across the experiment. 

Participants made lexical judgments by pushing a button with the index finger (same response) 

or middle finger (different response) of their right hands on a four-button response box. 

Participants had a 1.9 sec deadline within which to register their responses. For the PM task, 

participants could identify the picture target when it reappeared by pushing a third button with 

their pinky finger. Participants were instructed to ignore the OG task on such probes, but they 

were not prevented from responding to both tasks on any probe (e.g., they could make an OG 

task response first and then make a PM response, or vice versa, before the response deadline). 

The PM target reappeared once per trial, and its reappearance marked the end of the trial.  

 Visual feedback was provided after every response. In the OG task, white letter strings 

immediately turned green if the participant responded correctly, and they turned red if the 

participant responded incorrectly. In the PM task, if a participant false-alarmed to a distractor 

picture during a probe (i.e., they incorrectly endorsed a distractor picture as the target picture) 

the border of the screen turned red for the duration of that probe, but then the trial continued 

without disruption. When a participant correctly identified a picture target (which only appeared 

on the final probe of each trial), the border of the screen turned green for the duration of that 

probe. After this, a screen appeared that indicated whether the participant correctly identified 

the PM target (black screen with green text stating “You got it!”), or failed to identify the target 

(yellow screen with red text stating “Oops, you missed it…”). This screen was omitted and the 

screen remained black on no-target trials. There was a brief 6-sec rest period between each trial 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2016. ; https://doi.org/10.1101/055004doi: bioRxiv preprint 

https://doi.org/10.1101/055004
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

to allow for the hemodynamic signal to return to baseline. At the end of each block of trials, 

participants were shown their average response accuracy for both the OG task and the PM task 

on that block. 

 The logic of our experiment was motivated by the multiprocess framework of PM (Cohen 

and O’Reilly 1996; McDaniel and Einstein, 2000) and the dual mechanisms of control framework 

(Braver, 2012), which suggest that there are multiple processes than can support prospective 

remembering: strategic/attention-demanding processes, and also relatively automatic 

processes. In our PM task, we reasoned that a participant would be able to identify the picture 

target by either maintaining an active representation (in WM) of the target and strategically 

monitoring for its reappearance throughout the trial, or spontaneously retrieve (from EM) the 

identity of the target at the moment that it reappeared. To manipulate participants’ strategy use, 

we varied the WM load associated with the OG task and the degree of proactive interference 

associated with the PM targets across trials. Specifically, there are two trial conditions that we 

refer to as “EMbias” (high working memory load + low proactive interference) and “WMbias” (low 

working memory load + high proactive interference). EMbias trials were designed to bias 

participants to use retrieval from EM for prospective remembering. We reasoned that, when a 

trial involved a higher WM load for the OG task (2-back lexical judgments), participants would 

be less likely to maintain the picture target in WM, relying instead on retrieval from EM. On 

these trials, we also used a large set of trial-unique, heterogenous pictures to reduce the 

amount of proactive interference amongst the target and distractor pictures. WMbias trials were 

designed to bias participants to use WM to maintain the picture target and to actively monitor for 

its reappearance. We reasoned that high proactive interference (resulting from the repetition of 

a small, homogenous set of pictures that repeated within and across trials; Wickens et al., 1963) 

would interfere with EM retrieval, and that a lower WM load on the ongoing task (Meier and 

Zimmermann, 2015; 1-back lexical judgments) would encourage a WM strategy for prospective 

remembering in these trials.  
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 The experiment was divided into six 15-trial blocks of trials, alternating between blocks of 

WMbias and EMbias trials. The trial condition used for the first block was randomly assigned to 

each participant and counter-balanced across participants. Each block consisted of 12 “real 

trials” (with exactly one trial of each length, ranging from 10 to 21 probes per trial, inclusive) and 

three “catch trials” (ranging in length between one and nine probes per trial, with the selection of 

trial lengths balanced across blocks). Only data from real trials were used for analysis; the catch 

trials were used to balance cognitive demands throughout the entire trial, i.e., to prevent 

participants from ignoring the pictures in the first nine probes before engaging in the PM task. 

There were five trials in each block for each target category (face-target, scene-target, and no-

target trials), consisting of four real trials and one catch trial per category per block. Ignoring 

catch trials, there was a total of eight target trials and four no-target trials in each block. The 

trials were configured such that there were an equal number of probes in each block (62 probes 

from real trials, and 15 probes from catch trials). Each target category was presented in all of 

the 12 real-trial lengths and in three of the possible catch-trial lengths in both WMbias and EMbias 

conditions, resulting in a total of 90 trials (72 real trials, 18 catch trials) across the entire 

experiment. The trials were arranged in this way to reduce participants’ ability to predict the 

length of any given trial; no participant reported an ability to predict trial length, or knowledge of 

any structure or pattern of trial lengths across the experiment. 

 

Stimulus Details 

A large collection of face and scene images was gathered through various online and in-house 

sources. A subset of these stimuli were chosen for this experiment. Words for the lexical 

comparison task consisted of nouns, verbs, and adjectives selected from an online 

psycholinguistic database 

(http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm) with 

concreteness, imageability, and verbal frequency within one standard deviation of the mean of 
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the entire database. Pseudo-words consisted of single-syllable, pronounceable letter strings. To 

manipulate proactive interference amongst picture targets, we varied the type and quantity of 

pictures used in each trial condition.  

 In the WMbias condition, we used a small set of eight homogenous face images (adult 

white males) and eight homogenous scene images (indoor living rooms) that repeated within 

and across trials. In the EMbias condition, we used a large set of heterogenous faces (789 total; 

321 female) and scenes (223 total; 82 indoor) that were trial-unique. The assignment of stimuli 

to the targets and distractors in each trial was done randomly for each participant. 

 

fMRI Data Collection 

The experiment was presented using Psychophysics Toolbox Version 3 in Matlab running on a 

Mac Pro. First, we ran a brief scout localizer scan (15 s) to verify that head position was within 

the designated field of view and to derive automatic AC-PC alignment parameters for 

subsequent scans. Next, we used a MPRAGE sequence to acquire high-resolution T1-weighted 

images (TR = 2300 ms, TE = 3.08 ms, 0.9 mm3 isotropic voxels, 9 m 0 s acquisition time) while 

the participants practiced one block of trials in both WMbias and EMbias conditions prior to 

functional scanning. The experiment was divided into six 15-trial blocks of trials (with each block 

lasting 10 min 3 sec). Total functional scanning time for the experiment was 60 m 18 s. All 

blocks were preceded by 20 s of dummy pulses to achieve a steady state of tissue 

magnetization. Between blocks, participants were given a break during which the experimenter 

checked that the participant was comfortable and alert. Whole-brain images were acquired with 

a 3T Siemens Skyra MRI scanner. For functional scans, we used a gradient-echo, echo-planar 

sequence (TR = 2000 ms, TE = 34 ms), with automatic shimming enabled, to acquire T2*-

weighted data sensitive to the BOLD signal within a 64 × 64 matrix (196mm FoV, 34 axial slices, 

3 mm3 isotropic voxels, AC-PC aligned) using integrated parallel acquisition techniques (iPAT) 

with both retrospective and prospective acquisition motion correction (PACE) enabled. 
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fMRI Preprocessing 

Preprocessing of the functional data was done with the AFNI (Cox, 1996) software package 

using the following preprocessing steps (in order): (1) correction for slice time acquisition with 

3dTshift, (2) rotation of oblique data to cardinal direction with 3dWarp, (3) resample to a 3 mm3 

gridset with 3dresample, and (4) realign to the first volume of the Phase 1 data using rigid body 

alignment with 3dvolreg. Anatomical data were aligned to the first volume of the functional data 

with align_epi_anat.py. A whole-brain voxel mask was created for each participant by combining 

the results of 3dAutomask (dilation = 1) across all six functional runs.  

 

Multi-Voxel Pattern Analysis: Overview 

Our goal in analyzing the fMRI data was to sensitively measure processing associated with the 

PM task. To accomplish this goal, we used multi-voxel pattern analysis (MVPA; Haynes and 

Rees, 2006; Norman et al., 2006; Lewis-Peacock and Norman, 2014b) to decode face and 

scene processing (associated with PM task) and lexical decision processing (associated with 

the OG task) at every time point throughout the trials. The use of category classifiers to track 

memory maintenance and retrieval has become a standard approach in the memory literature 

(see Rissman and Wagner, 2012, for a review). We use the approach here to decode the 

contents of WM, by identifying the degree to which the category of the PM target (a face or a 

scene) is actively represented prior to its actual reappearance. Neural evidence of such activity 

could arise from a combination of maintenance of the target (e.g. a particular face) in WM and 

the processing of distractor pictures from the target’s category (non-target faces) during the 

trials. Importantly, either source of target-related neural evidence would indicate the use of a 

WM-dependent strategic monitoring strategy – reactive control relying on EM retrieval should 

not produce target-related activity prior to the reappearance of the PM target. 
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Multi-Voxel Pattern Analysis: Details 

fMRI pattern classifiers were trained, separately for each participant, from a subset of all trials 

and then used to decode independent data from held-out trials (i.e., using k-fold cross 

validation: training on k−1 blocks of data and testing on the kth block and then rotating and 

repeating until all blocks had been tested.) Both EMbias and WMbias trails were combined for 

classifier training. Specifically, classifiers were trained on individual brain scans (acquired at 2-

sec intervals) from the probe period of each trial, plus data from the 6-sec rest intervals between 

trials, in the training set. Training scans were labeled according to the category of the picture 

target from that trial: either face, scene, or no-target. Scans from the inter-trial intervals were 

labeled as rest. Note that visual input was identical in all three trial conditions (participants were 

viewing letter strings in the middle of the screen flanked above/below by faces and scenes). The 

purpose of including the no-target condition in classifier training was to provide additional 

“negative examples” for the face and scene target classifiers (i.e., trials where faces and scenes 

were onscreen but participants were not actively monitoring for face or scene targets). As is 

standard practice in MVPA (Lewis-Peacock and Norman, 2014b) all trial regressors were shifted 

forward in time by 6 sec to account for hemodynamic lag of the BOLD signal (typically estimated 

as 4-8 sec to peak after event onset). In each training block, there were 58 scans each for face, 

scene, and no-target categories, and 45 scans for the rest category, for a total of 290 scans for 

task categories and 225 scans for the rest category in each training set. We used the trained 

classifier in each fold of the cross-validation procedure to decode the moment-to-moment 

cognitive state throughout the held-out block of test data. For each individual 2-sec scan within 

a test block, the four classifiers (face, scene, no-target, and rest) each produced an estimate 

(from 0 to 1) of the degree of neural evidence for the condition they were trained to detect. 

 All pattern classification analyses were performed using the Princeton MVPA Toolbox in 

Matlab (downloadable from http://www.pni.princeton.edu/mvpa), using L2-penalized logistic 

regression. The L2 regularization term biases the algorithm to find a solution that minimizes the 
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sum of the squared feature weights. Logistic regression uses a parameter (λ) that determines 

the impact of the regularization term. To set the penalty λ, we explored how changing the 

penalty affected our ability to classify the data (using the cross-validation procedure described 

above). We found that the function relating λ to cross-validation accuracy was relatively flat 

across a wide range of λ values (spanning from 0.001 to 1,000). We selected a λ value in the 

middle of this range (λ = 50) and used it for all of our classifier analyses. 

 

Voxel Selection 

To select brain regions to feed into the pattern classifiers, we ran a mass-univariate GLM 

analysis of all functional data using AFNI’s 3dDeconvolve to identify brain regions that were 

more strongly engaged during probes (i.e., stimulus displays after the target introduction but 

prior to its reappearance) on target trials vs. no-target trials. This analysis reveals voxels 

sensitive to the presence of the PM task on top of the OG task. All trial events were modeled 

with boxcar regressors of appropriate lengths: target (2 sec), probes (2 sec per probe), PM 

probes (the final probe of the trial in which the target reappears; 2 sec) and feedback (2 sec). A 

third-order polynomial was used for the null hypothesis, and all basis functions for trial events 

were normalized to have an amplitude of one. A contrast of probes from target trials > probes 

from no-target trials was used to calculate percent-signal-change in BOLD data for a second-

level group analysis. Participant results in native space were transformed into atlas space and 

resampled to 4mm3 isotropic voxels using AFNI’s @auto_tlrc and then spatially blurred with a 

8mm FWHM kernel using 3dmerge. The normalized group data were analyzed using 3dttest++, 

and the results were extracted using a cluster radius of four voxels with a minimum cluster size 

of 40 voxels, and thresholded at the individual voxel level using AFNI’s false discovery rate 

(FDR) algorithm with q = .05. Finally, this group-level ROI was backward-transformed into each 

participant’s native space and intersected with that participant’s whole-brain mask to create 

subject-specific ROIs. The mean number of voxels retained in this “PM-sensitive” mask was 
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11,686 (SD = 1,122) (Fig. 2a). Finally, a feature selection ANOVA was applied to the 

preprocessed fMRI data within the PM-sensitive mask to select those voxels whose activity 

varied significantly (p < .05) between the four categories over the course of the experiment. 

Feature selection was performed separately for each iteration of the cross-validation classifier 

training algorithm to avoid any circularity in the analysis (Kriegeskorte et al., 2009). The pattern 

of activity across these feature-selected voxels was used as the input to the pattern classifiers 

and the data were analyzed in each participant’s native space. 

 

Relating Classifier Evidence to Prospective Remembering 

The primary goal of our analysis was to evaluate the relationship between neural classifier 

evidence for PM monitoring during the trial (prior to target reappearance) to PM accuracy at the 

end of each trial. We first extracted (separately for each trial in every subject) the levels of face 

and scene classifier evidence at each time point throughout the trials, and use these data rather 

than classifier accuracy (whether the correct category had the highest likelihood estimate) for all 

subsequent analyses (see Lewis-Peacock et al., 2012; Lewis-Peacock and Norman, 2014a). 

Classifier evidence provides a more sensitive measure of neural processing (and in particular 

dual-task processing) compared to classifier accuracy because it does not require forced-choice 

selection of a single “best match” category. To aggregate data across trials that were of varying 

lengths, we aligned data to the beginning of each trial. Note that the minimum trial length used 

for analysis contained 10 2-sec probes. Accounting for the target introduction (2 sec) and the 

brief delay prior to the probes (2 sec), the earliest that the target reappeared in any trial was 2 + 

2 + 10*2 = 24 sec. Each trial’s data therefore consisted of 11 brain scans (22-sec, unshifted for 

haemodynamic lag) aligned to the start of the trial and ending prior to the reappearance of the 

target. 

 On a target trial, target classifier output alone does not show how sensitive the classifier is 

to the attentional demands of the PM task. High target activation (e.g., “face” on a face-target 
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trial) could reflect a highly differentiated attentional state in which target is high and distractor 

(“scene”) is low, or it could reflect a totally undifferentiated state in which both target and 

distractor are high. Therefore, to track neural processing specifically related to the PM task, we 

calculated a difference score by subtracting the distractor category evidence from the target 

category evidence at each time point. Finally, we averaged these difference scores during the 

PM delay period (t = 12 to 22 secs), which started after the evoked neural response to the target 

introduction had subsided, and ended before the target reappeared on any of the trials. This 

method provides a unique neural estimate of PM processing for each trial. 

 

Statistical Procedures for Assessing Reliability 

When analyzing behavioral data (without respect to neural data) and neural data (without 

respect to behavioral data) we used standard random-effects statistics (paired t-tests, with 

subjects as a random effect) to assess the reliability of our results across participants. For our 

analyses relating neural data to behavior (i.e., PM performance), we combined individual trial 

data from each participant into a single “supersubject” and subsequently performed all statistical 

analyses on these amalgamated data (Detre et al., 2013; Kim et al., 2014; Lewis-Peacock and 

Norman, 2014a), using bootstrap procedures (Efron, 1979) to assess population-level reliability 

of the results (see details below). We used this approach, chosen a priori, instead of the 

conventional random-effects approach (used elsewhere in the paper) in which the average 

results from each subject are used for group-level hypothesis testing. The reason for using the 

supersubject approach here is that, despite a large amount of imaging data per subject, the total 

number of behavioral outcomes for each subject was relatively low, making it difficult to reliably 

estimate the relationship between neural data and behavioral outcomes within individual 

subjects. Note that each trial lasted between 24 and 46 sec, depending on the number of 

probes on that trial, but there was only one PM behavioral outcome (hit or miss) on each trial 

regardless of its length. 
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 In this experiment, each participant (N=25) contributed 12 trials per category/condition 

combination (e.g., face-target and WMbias condition) for a total of 300 trials per combination. To 

assess population-level reliability of the results (i.e., whether or not they driven by a small 

subset of participants) from each of our analyses, we also ran a bootstrap test in which we 

resampled data from participants with replacement and re-computed the analyses for this 

resampled data (Efron, 1979). The population-level reliability of the results was reflected in the 

proportion of bootstrap samples in which the effect of interest was present. 

 

RESULTS 

Behavioral Results  

Prospective Memory Task 

We assessed the impact of trial condition (WMbias vs. EMbias) and target type (face vs. scene) on 

both accuracy and RT in the prospective memory task (PM task).  With regard to PM accuracy: 

the hit rate was reliably higher for scene-target trials (p<.01 in both trial conditions), but we 

nonetheless combined data from both face-target and scene-target trials to increase our 

statistical power for subsequent analyses. PM accuracy was marginally higher for WMbias trials 

compared to EMbias trials (71.3% vs. 66.0%, t(24)=1.96, p=.061). There was no interaction 

between trial condition and target type (F(1,24)=.017, p=.898). The false-alarm rate to non-

target items was very close to floor across all trials, although the rate was slightly higher in 

WMbias trials than EMbias trials (0.6% vs. 0.2%; t(24)=3.98, p<.001). Because of this very low 

false alarm rate, we also calculated PM accuracy using the A’ signal detection metric, which 

considers both hits and false alarms (Stanislaw and Todorov, 1999). Consistent with the raw hit 

rates, the A’ signal detection analysis showed a non-significant trend for higher accuracy in 

WMbias trials (0.926) compared to EMbias trials (.914), t(24)=1.71, p=.100. With regard to PM 

target detection RTs: mean target detection RTs did not differ significantly between EMbias trials 

(1.16 sec) and WMbias trials (1.19 sec), t(24) = 1.33, p=.197. No speed-accuracy tradeoff (i.e., a 
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positive correlation between accuracy and RT) was observed in either condition (WMbias: r(23) = 

-.52, p=.008; EMbias: r(23)= -.08, p=.714).  

 

Ongoing Task  

We assessed the impact of trial condition (WMbias vs. EMbias) and target type (target vs. no-

target) on both RT and accuracy in the ongoing lexical-judgment task (OG task). There was no 

main effect of trial condition on OG task RTs (F(1,24)=2.27, p=.15), but participants did respond 

more slowly on target trials compared to no-target trials (F(1,24)=63.7, p<.001). As noted in the 

Introduction, this slowing of responses in the OG task — a dual-task interference cost that we 

will refer to as “PM cost” — has been interpreted as a behavioral marker for the use of a WM 

strategy (i.e., that working memory resources were deployed for strategic monitoring of the PM 

target; McDaniel and Einstein, 2000). We predicted that PM costs would be higher on WMbias 

trials, and this prediction was upheld. There were PM costs in both trial conditions, but PM costs 

were significantly larger in WMbias trials (F(1,24)=18, p<.001; Fig. 1b). This same result holds 

when restricting analyses to the PM delay period (t = 12 to 22 secs) that was used to extract 

neural measurements of PM task processing and OG task processing on each trial (F(1,24) = 

16.8, p<.001). With regard to OG task accuracy: participants responded more accurately in 

WMbias trials compared to EMbias trials (.804 vs. .686; F(1,24)=56.1, p<.001), and also more 

accurately on no-target trials compared to target trials (.772 vs. .717; F(1,24)=28.94, p<.001), 

but there was no significant interaction of trial condition and target type (F(1,24)=0.47, p=.5). 

These differences in accuracy are consistent with the assumption that the OG task was more 

demanding in WMbias trials compared to EMbias trials (1-back vs. 2-back); similarly, the greater 

number of errors in the dual-task (target) condition than the single-task (no-target condition) is 

consistent with the greater demands of the former.  

 

Individual Differences in PM Performance 
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PM accuracy and PM cost (i.e., dual-task interference RT costs: OG RT on target trials minus 

OG RT on non-target trials) both reflect the outcome of strategy choices, and specifically, 

working memory allocations spread across the dual PM task and OG task. These two metrics 

were positively correlated across subjects (r(24) = .37, p = .034; Fig. 1b), indicating that higher 

PM costs were associated with better PM performance. This relationship was previously 

reported by Smith (2003; but see McNerney and West, 2007). The correlation was significant for 

WMbias trials (r(24) = .45, p = .024), but not for EMbias trials (r(24)  =.199, p = .340). However, the 

correlation did not significantly differ between the two conditions (z = -.755, p=.45).  

 

[ insert Fig. 2 here ] 

 

fMRI Results 

Classifier Cross-Validation 

A univariate GLM was used to identify voxels that were more active on target trials vs. no-target 

trials (see Methods). These voxels were located mostly in ventral temporal, occipital, and 

parietal areas (Fig. 2a), and were used as input for pattern classification. Pattern classifiers, 

trained and tested separately for each participant, successfully distinguished task-related brain 

activity on (1) face-target trials, (2) scene-target trials, and (3) no-target trials, and also task-

unrelated brain activity during (4) rest periods between trials. Cross-validated classifier accuracy 

was greater than chance-level performance (0.25) for all four categories (all p’s < .001), and all 

three task-related categories showed higher accuracy in WMbias trials vs. EMbias trials (all p’s < 

.001), while accuracy for rest-period activity did not differ between conditions (t(24)=0.189, 

p=0.852). Classification performance did not differ between face-target and scene-target trials 

(p>.4), therefore classifier estimates from all target trials were relabeled and combined (e.g., on 

a face-target trial, the “face-target” classifier’s output was relabeled as “target” and the “scene-

target” classifier’s output was relabeled as “distractor”).  
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 The PM classifier evidence scores (i.e., “target - distractor”) showed a significant 

interaction of trial condition (WMbias vs. EMbias) x time (target introduction: 4-12 secs vs. delay 

period: 12-22 secs; F(1,24) = 32.37, p < .001). PM evidence did not differ between WMbias and 

EMbias trials during the early part of the trials (8 secs following target introduction, t = 4 to 12 

secs, p = .598), but it did differ during the subsequent delay period (F(1,24) = 31.26, p < .001; 

Fig. 2b) with higher PM evidence on WMbias trials during the delay. This result is consistent with 

the prediction that participants would engage in more active monitoring on WMbias trials. The fact 

that classifier performance was matched for WMbias and EMbias trials during the early part of the 

trial suggests that differences in classification can not be attributed to generally poorer 

classification on EMbias trials (vs. WMbias trials); rather, the difference in classifier performance 

appears to be specific to the delay period. 

 

Relating Classifier Evidence to PM Performance 

For each trial, we calculated a PM classifier evidence score (as described above) and used this 

score to predict PM performance (hit or miss) at the end of each trial. Logistic regression was 

used to relate each continuous classifier evidence score to the binary outcome variable of PM 

accuracy. To increase statistical power for this regression, individual trial data were combined 

across subjects into a supersubject analysis (see Methods), and reliability of the regression 

analysis was assessed using a bootstrapping procedure. 

 Consistent with the prediction that participants would rely more heavily on WM in the 

WMbias condition, PM classifier evidence scores were positively correlated with PM accuracy in 

WMbias trials (logistic regression β1 > 0 in 99.6% of 1,000 bootstraps), but they were not reliably 

correlated with PM accuracy in EMbias trials. Regression coefficients were higher for WMbias trials 

compared to EMbias trials in 94.4% of bootstraps (Fig. 2d), indicating that trial-by-trial fluctuations 

in PM classifier evidence were more predictive of behavior on WMbias trials compared to EMbias 

trials.   
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Relating OG Task Behavior to PM Performance 

The OG task behavioral metrics (accuracy and RT) were also predictive of PM accuracy across 

trials. OG task accuracy was positively correlated with PM accuracy in both trial conditions (β1 = 

.284, which was positive on 99.3% of bootstraps in both trial conditions), with no reliable 

difference between the coefficients in the two conditions. OG task RT was weakly, but positively 

correlated with PM accuracy in both trial conditions (β1 = .212 for WMbias and β1 =.160 for 

EMbias). These coefficients were positive on 93.2% and 89.1% of bootstraps, respectively, with 

no reliable difference between the coefficients in the two conditions. 

 

Combining Behavioral Data and Neural Data to Predict PM Performance 

The findings above indicate that both behavioral and neural measures were predictive of PM 

performance from trial to trial. Here we address the question of whether neural evidence 

provided extra predictive power beyond what what was possible from behavioral observations 

alone. Using our neural measure (PM evidence) and the two behavioral measures (OG 

accuracy and OG RT) together in a three-predictor logistic regression model explained the most 

variance in PM accuracy scores. To control for differences across models in the number of 

predictors, we used a leave-one-participant out cross-validation procedure (Hastie et al., 2005): 

each model was fit using data from N-1 participants and then used to predict data from the held 

out participant. Average log likelihood values across all iterations for each model were used to 

calculate Bayes factors (B10), which assess the relative likelihood of each model (Kass and 

Raftery, 1995). The three-predictor model outperformed the two-predictor model (OG accuracy 

and OG RT) in WMbias trials (log10(B10) = 3.12; this constitutes “decisive” evidence according to 

Kass and Raftery, 1995), but not in EMbias trials (log10(B10) = 0.38; this is “not worth more than a 

bare mention” according to Kass and Raftery, 1995). Importantly, this analysis demonstrates 

that the neural measurements of PM task processing contributed predictive power concerning 
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PM performance on a given trial, above and beyond what could be predicted based on 

observable OG task behavior alone. 

 

[ insert Fig. 3 here ] 

 

Individual Differences in Relating Neural Measurements to Performance 

The neural findings also revealed individual differences in performance across participants. The 

amount of PM classifier evidence for a given participant was positively correlated with both 

overall PM accuracy (r(25)=.73, p<.001) and overall dual-task PM costs (r(25)=.43, p<.05; Fig. 

3).  

 

DISCUSSION 

 

We developed a novel experimental paradigm, designed to bias strategy choice for prospective 

memory (PM) on a trial to trial basis, by concurrently manipulating proactive interference and 

working memory load. When participants were biased to use working memory (WM) instead of 

episodic memory (EM), the PM task exerted a larger cost on the ongoing task (as evidenced by 

slower RTs) — this dual-task interference cost is considered to be a behavioral hallmark of 

strategic monitoring (Smith, 2003; Einstein et al., 2005; Scullin et al., 2010; Meier and 

Zimmermann, 2015). Previously, behavioral interference costs have been used to demonstrate 

effects of a wide range of factors on PM strategy use, including: the availability of cognitive 

resources and the sensitivity to interference costs (Marsh et al., 2003; Smith, 2003; Marsh et al., 

2006), the instructional emphasis on the PM task and the duration of the ongoing task (Einstein 

et al., 2005), the degree & type of planning (Mäntylä, 1996; Burgess and Shallice, 1997), and 

individual differences in cognitive capacities and personality characteristics (McDaniel and 

Einstein, 2000). In this study we identified another set of task demands that bias participants 
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towards a WM strategy: high proactive interference (which makes it harder to use EM) 

combined with a low working memory load (which makes it easier to use WM).  

 In addition to behavioral evidence, we used pattern classifiers applied to fMRI data from 

visual processing regions in temporal and occipital cortices during the PM task to acquire 

second-by-second readouts of neural activity associated with the use of WM to maintain and/or 

monitor for a PM picture target. Neural readouts of PM processing were higher when 

participants were biased to use WM (vs. EM). Furthermore, across trials, PM classifier evidence 

was more predictive of successful PM performance when participants were biased to use WM 

compared to when participants where biased to use EM, even though PM accuracy was 

equivalent across the two conditions. These findings complement and extend prior work that 

has leveraged fMRI data to dissociate PM strategies using activity from a distributed network of 

brain regions. For example, work by McDaniel et al. (McDaniel et al., 2013) showed that activity 

in frontoparietal control networks was greater in conditions that require greater levels of 

strategic monitoring (e.g., non-focal vs. focal PM targets; for other relevant data, see Reynolds 

et al., 2009; Burgess et al., 2011; McDaniel et al., 2013; Barban et al., 2014; Beck et al., 2014).  

 Crucially, our neural measure of WM use provided additional predictive power concerning 

PM performance, beyond that provided by behavior alone. This demonstrates how decoding the 

contents of WM from fMRI data can provide unique evidence concerning the selection and 

success of cognitive strategies deployed during complex cognitive tasks. Prior work has shown 

that the content of delayed intentions (e.g., waiting for a word versus a picture to reappear) can 

be decoded from posterior cortical regions (Gilbert, 2011). However, these neural 

measurements were unrelated to behavioral metrics of PM performance. Here, we found that 

(particularly when participants were biased to use WM to store their delayed intention) neural 

readouts of WM use were diagnostic of PM target detection accuracy on a trial-by-trial basis. 

Across participants, these neural measures were also diagnostic of individual differences both in 

PM accuracy and dual-task interference costs.   
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 It is important to note that both the EMbias and WMbias conditions in our experiment were 

“non-focal” tests of PM, insofar as the stimuli pertaining to the ongoing task (letter strings) were 

distinct from the stimuli that pertained to the PM task (faces and scenes).  As such, both 

conditions required some degree of strategic monitoring: Specifically, participants had to 

allocate some attention to the stream of faces and scenes, in order to be able to detect the face 

or scene target when it appeared. Our key prediction was that, in the EMbias condition, 

participants might favor monitoring for the target category without actively maintaining the 

specific identity of the target stimulus.  For example, if the participant knew that the target was a 

face, they might actively monitor the stream of faces, with the expectation that the target face 

would trigger episodic retrieval of its status as a target.  By contrast, in the WMbias condition, 

participants might devote extra WM resources to monitoring for the specific target face. The fact 

that some strategic monitoring was required in both conditions fits with the finding that dual-task 

costs (on OG task reaction times) were obtained in both conditions, although (as predicted) they 

were larger in the WMbias condition. 

 One potential limitation of the MVPA measure we used to index WM engagement is that it 

is sensitive to both of the types of monitoring described above: checking the “stream” of face 

stimuli (without holding a specific face in mind), and monitoring for a specific face. There is no 

way to disentangle the contribution of these two processes to our neural measures. 

Nevertheless, both sources reflect the engagement of some form of strategic monitoring. The 

finding that our MVPA measure of WM function was stronger in WMbias trials is consistent with 

the engagement of both monitoring processes on those trials (checking the target category 

“stream”, plus monitoring for specific target stimuli), whereas only the checking process may 

have been engaged in EMbias trials.  This might also explain why our neural measure of WM was 

more predictive of behavior in WMbias trials: monitoring for the specific target stimulus should 

substantially increase the likelihood of responding correctly when the target appears, thus WM 

use should be correlated with correct responding. By contrast, merely checking the target 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2016. ; https://doi.org/10.1101/055004doi: bioRxiv preprint 

https://doi.org/10.1101/055004
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

category stream (without actively holding the correct stimulus in mind) is insufficient to insure a 

correct response – even when the target stimulus is seen, it might fail to trigger the 

corresponding episodic memory, resulting in a PM error; thus, there should be a weaker 

relationship between WM use and correct responding.  

 In conclusion, we designed an experiment to bias participants to use either WM or EM to 

solve a PM task while simultaneously engaged in a demanding retrospective memory task.  

Using MVPA (Lewis-Peacock and Norman, 2014b) to measure strategic monitoring, we 

validated that our manipulation was effective in biasing participants’ strategies. More generally, 

using MVPA improved our sensitivity to participants’ strategy use beyond what was possible 

based on behavior alone, leading to improved trial-by-trial predictions of PM accuracy. Future 

work can leverage these improvements to further characterize the factors that shape PM 

performance. 
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FIGURE LEGENDS 

 

Figure 1. Task diagram and behavioral performance. (A) The dual-task PM experiment 

consisted of a picture-target detection task embedded in an ongoing lexical-decision task 

(WMbias trials: 1-back lexical decisions and small set of homogenous pictures; EMbias trials: 2-

back lexical decisions and large set of trial-unique heterogenous pictures). (B) Group behavioral 

performance on the PM task, including target hit rates (left column), dual-task costs to reaction 

time on the ongoing task (middle column), and the relationship between these two performance 

metrics across participants. Error bars indicate s.e.m.,*p < .05. 

 

Figure 2. Pattern classification of fMRI data during the delay period predicts PM performance. 

(A) Voxels that showed significantly greater activity (p < .05, FDR) during probes on target trials 

compared to no-target trials are colored on an inflated atlas brain. This group-level mask was 

transformed into each participant’s native space and used to mask voxel time series data as 

input for the pattern classifiers. (B) Trial-averaged classifier evidence for PM trials. PM classifier 

evidence indicates the difference between target category and distractor category evidence 

(e.g., “face minus scene” for face-target trials). Error shades indicate +/- 1 s.e.m., interpolated 

between mean scores from every 2-sec brain scan. Data are not shifted to account for 

haemodynamic lag. (C) Relating trial-by-trial classifier evidence scores during the delay period 

(12 to 22 sec) to PM accuracy (hit vs. miss). Data reflect the logistic regression fits (β1) between 

PM classifier evidence and PM accuracy. Error bars indicate 95% bootstrap confidence 

intervals, *p < .05 for 1,000 bootstrap samples. 

 

Figure 3. Classifier evidence scores predict PM accuracy and dual-task PM costs across 

participants. Higher PM classifier evidence was predictive of (A) better PM accuracy and (B) 

higher dual-task costs. *p < .05.   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2016. ; https://doi.org/10.1101/055004doi: bioRxiv preprint 

https://doi.org/10.1101/055004
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

Figure 1 
 

 
 
 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 24, 2016. ; https://doi.org/10.1101/055004doi: bioRxiv preprint 

https://doi.org/10.1101/055004
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

Figure 2	
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Figure 3 
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