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Abstract 
Centrifuge is a novel microbial classification engine that enables rapid, accurate and 
sensitive labeling of reads and quantification of species on desktop computers.  The 
system uses an indexing scheme based on the Burrows-Wheeler transform (BWT) and 
the Ferragina-Manzini (FM) index, optimized specifically for the metagenomic 
classification problem.  Centrifuge requires a relatively small index (4.2 GB for 4,078 
bacterial and 200 archaeal genomes) and classifies sequences at very high speed, 
allowing it to process the millions of reads from a typical high-throughput DNA 
sequencing run within a few minutes.  Together these advances enable timely and 
accurate analysis of large metagenomics data sets on conventional desktop computers.  
Because of its space-optimized indexing schemes, Centrifuge also makes it possible to 
index the entire NCBI non-redundant nucleotide sequence database (a total of 109 billion 
bases) with an index size of 69 GB, in contrast to k-mer based indexing schemes, which 
require far more extensive space.  Centrifuge is available as free, open-source software 
from http://www.ccb.jhu.edu/software/centrifuge.  
 
Background 
Microbes such as archaea and bacteria are found virtually everywhere on earth, from soils 
and oceans to hot springs and deep mines [1].  They are also abundant on and inside 
living creatures, including a variety of niches on the human body such as the skin and the 
intestinal tract [2].  These invisible life forms perform a vast range of biological functions; 
they are indispensable for the survival of many species; and they maintain the ecological 
balance of the planet.  Many millions of prokaryotic species exist [3], although only a 
small fraction of them (<1% in soil and even fewer in the ocean) can be isolated and 
cultivated [4].  High-throughput sequencing of microbial communities, known as 
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metagenomic sequencing, does not require cultivation and therefore has the potential to 
provide countless insights into the biological functions of microbial species and their 
effects on the visible world. 
 
In 2004, the RefSeq database contained 179 complete prokaryotic genomes, a number 
that grew to 954 genomes by 2009 and to 4,278 by December 2015.  Together with 
advances in sequencing throughput, this ever-increasing number of genomes presents a 
challenge for computational methods that compare DNA sequences to the full database of 
microbial genomes.  Analysis of metagenomics samples, which contain millions of reads 
from complex mixtures of species, necessitates a compact and scalable indexing scheme 
for classifying these sequences quickly and accurately.  Most of the current 
metagenomics classification programs either suffer from slow classification speed, a 
large index size, or both.  For example, machine-learning based approaches such as the 
Naïve Bayes Classifier (NBC) [5] and PhymmBL [6, 7] classify less than 100 reads per 
minute, which is too slow for datasets that contain millions of reads.  In contrast, the 
pseudoalignment approach employed in Kraken [8] processes reads far more quickly, 
more than 1 million reads per minute, but its exact k-mer matching algorithm requires a 
large index.  For example, Kraken’s 31-mer database requires 93 GB of memory (RAM) 
for 4,278 prokaryotic genomes, considerably more memory than today’s desktop 
computers contain. 
  
Fortunately, modern read-mapping algorithms such as Bowtie [9, 10] and bwa [11, 12] 
have developed a data structure that provides very fast alignment with a relatively small 
memory footprint.  We have adapted this data structure, which is based on the Burrows-
Wheeler transform [13] and the Ferragina-Manzini (FM) index [14], to create a 
metagenomics classifier, Centrifuge, that can efficiently store large numbers of genome 
sequences, taxonomical mappings of the sequences, and the taxonomical tree.  Centrifuge 
is open-source software freely available to download at 
http://www.ccb.jhu.edu/software/centrifuge.  
 
Core algorithmic methods 
Database Sequence Compression 
We implemented memory-efficient indexing schemes for the classification of microbial 
sequences based on the FM index, which also permits very fast search operations.  We 
further reduced the size of the index by compressing genomic sequences and building a 
modified version of the FM index for those compressed genomes, as follows.  First, we 
observed that for some bacterial species, large numbers of closely related strains and 
isolates have been sequenced, usually because they represent significant human 
pathogens.  Such genomes include Salmonella enterica with 138 genomes, Escherichia 
coli with 131 genomes, and Helicobacter pylori with 73 genomes available (these figures 
represent the contents of RefSeq as of December 2015).  As expected, the genomic 
sequences of strains within the same species are likely to be highly similar to one another.  
We leveraged this fact to remove such redundant genomic sequences, so that the storage 
size of our index can remain compact even as the number of sequenced isolates for these 
species increases.   
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Figure 1 illustrates how we compress multiple genomes of the same species by storing 
near-identical sequences only once.  First, we choose the two genomes (G1 and G2 in the 
figure) that are most similar among all genomes.  We define the two most similar 
genomes as those that share the greatest number of k-mers (using k=53 for this study) 
after k-mers are randomly sampled at a rate of 1% from the genomes of the same 
species.  In order to facilitate this selection process, we used Jellyfish [15] to build a table 
indicating which k-mers belong to which genomes.  Using the two most similar genomes 
allows for better compression as they tend to share larger chunks of genomic sequences 
than two randomly selected genomes.  We then compared the two most similar genomes 
using nucmer [16], which outputs a list of the nearly or completely identical regions in 
both genomes.  When combining the two genomes, we discard those sequences of G2 
with ≥99% identity to G1, and retain the remaining sequences to use in our index.  We 
then find the genome that is most similar to the combined sequences from G1 and G2, and 
combine this in the same manner as just described.  This process is repeated for the rest 
of the genomes.   
 
As a result of this concatenation procedure, we obtained dramatic space reductions for 
many species; e.g., the total sequence was reduced from 661 to 74 Mbp (11% of the 
original sequence size) in S. enterica and from 655 to 107 Mbp (16%) in E. coli (see 
Table 1).  Overall, the number of base pairs from ~4,300 bacterial and archaeal genomes 
was reduced from 15 to 9.1 billion bases (Gb).  The FM-index for these compressed 
sequences occupies 4.2 GB of memory, which is small enough to fit into the main 
memory (RAM) on a conventional desktop computer.  As we demonstrate in the 
Supplementary Material, this compression operation has only a negligible impact on 
classification sensitivity and accuracy. 
 
Classification based on the FM-index 
The FM-index provides several advantages over k-mer based indexing schemes that store 
all k-mers in the target genomes.  First, the size of the k-mer table is usually large; for 
example, Kraken’s k-mer table for storing all 31-mers in ~4,300 prokaryotic genomes 
occupies ~100 GB of disk space.  Second, using a fixed value for k incurs a tradeoff 
between sensitivity and precision: classification based on exact matches of large k-mers 
(e.g., 31 bp) provides higher precision but at the expense of lower sensitivity, especially 
when the data being analyzed originates from divergent species.  To achieve higher 
sensitivity, smaller k-mer matches (e.g., 20-25 bp) can be used, however this results in 
more false positive matches.  The FM-index provides a means to exploit both large and 
small k-mer matches by enabling rapid search of k-mers of any length, at speeds 
comparable to those of k-mer table indexing algorithms (see Results). 
 
Using this FM index, Centrifuge classifies DNA sequences as follows.  Suppose we are 
given a 100-bp read (note the Centrifuge can just as easily process very long reads, 
assembled contigs from a draft genome, or even entire chromosomes).  We search both 
the read (forward) and its reverse complement from right to left (3' to 5') as illustrated in 
Figure 2a.  Centrifuge begins with a short exact match (16 bp minimum) and extends the 
match as far as possible.  In the example shown in Figure 2a, the first 40 bp match 
exactly, with a mismatch at the 41st base from the right.  The rightmost 40 bp segment of 
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the read is found in six species (A, B, C, D, E, F) that had been stored in the Centrifuge 
database.  The algorithm then resumes the search beginning at the 42nd base and stops at 
the next mismatch, which occurs at the 68th base.  The 26-bp segment in the middle of the 
read is found in species G and H.  We then continue to search for mappings in the rest of 
the read, identifying a 32-bp segment that matches species G.  Note that only exact 
matches are considered throughout this process, which is a key factor in the speed of the 
algorithm.  We perform the same procedure for the reverse complement of the read, 
which in this example produces more mappings with smaller lengths (17, 16, 28, 18, and 
17) compared to the forward strand.  
 
Based on the exact matches found in the read and its reverse complement, Centrifuge 
then classifies the read using only those mappings with at least one 22-bp match.  Figure 
2a shows three segment mappings on the forward strand read and one on the read’s 
reverse complement that meet this length threshold.  Centrifuge then scores each species 
using the following formula, which assigns greater weight to the longer segments: 
 
𝑆𝑐𝑜𝑟𝑒 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑋 = (𝑙𝑒𝑛𝑔𝑡ℎ ℎ𝑖𝑡 − 15)!

!!"∈!"#$%#& !

 

 
After assessing a variety of formulas, we empirically found that the sum of squared 
lengths of segments provides the best classification precision.  For the example in Figure 
2, species A, B, C, D, E, and F are assigned the highest score (625), based on the 
relatively long 40-bp exact match.  Species G and H get lower scores because they have 
considerably shorter matches, even though each has 2 distinct matches.  Note that H has 
mappings on both the read and its reverse complement, and in this case Centrifuge 
chooses the strand that gives the maximum score, rather than using the summed score on 
both strands, which might bias it towards palindromic sequences.   
 
Centrifuge can assign a sequence to multiple taxonomic categories; by default, it allows 
up to five labels per sequence.  (Note that this strategy differs from Kraken, which always 
chooses a single taxonomic category, using the lowest common ancestor of all matching 
species.)  In Figure 2, six different species match the read equally well.  In order to 
reduce the number of assignments, Centrifuge traverses up the taxonomic tree.  First it 
considers the genus that includes the largest number of species, which in this example 
(Figure 2b) is genus I, which covers species A, B, and C.  It then replaces these three 
species with the genus, thereby reducing the number of assignments to four (genus I plus 
species D, E, and F).  If more than five taxonomic labels had remained, Centrifuge would 
repeat this process for other genuses and subsequently for higher taxonomic units until it 
reduced the number of labels to five or fewer.  
 
The user can easily change the default threshold of five labels per sequence; for example, 
if this threshold is set to one, then Centrifuge will report only the lowest common 
ancestor as the taxonomic label, mimicking the behavior of Kraken.  In the example 
shown in Figure 2, this label would be at the family level, which would lose some of the 
more specific information about which genuses and species the reads matched best.   
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If the size of the index is not a constraint, then the user can also use Centrifuge with 
uncompressed indexes, which classify reads using the same algorithm.  Although 
considerably larger, the uncompressed indexes allow Centrifuge to classify reads at the 
strain or genome level; e.g., as E. coli K12 rather than just E. coli. 
 
Abundance analysis 
In addition to per-read classification, Centrifuge performs abundance analysis at any 
taxonomic rank (e.g. strain, species, genus).  Because many genomes share near-identical 
segments of DNA with other species, reads originating from those segments will be 
classified as multiple species.  Simply counting the number of the reads that are uniquely 
classified as a given genome (ignoring those that match other genomes) will therefore 
give poor estimates of that species’ abundance.  To address this problem, we define the 
following statistical model and use it to find maximum likelihood estimates of abundance 
through an Estimation-Maximization (EM) algorithm.  Detailed EM solutions to the 
model have been previously described and implemented in the Cufflinks [17] and Sailfish 
[18] software packages. 
 
Similar to how the Cufflinks calculates gene/transcript expressions, the likelihood for a 
specific configuration of species abundance 𝛼, given the read assignments 𝐶, is defined 
as follows: 

𝐿 𝛼 ∣ 𝐶 =
𝛼!𝑙!
𝛼!!

! 𝑙!
𝐶(𝑖, 𝑗)

!

!!!

!

!!!

 

where 𝑅 is the number of the reads, 𝑆 is the number of species, 𝛼! is the abundance of 
species 𝑗, summing up to 1 over all 𝑆 species, 𝑙! is the average length of the genomes of 
species 𝑗 and 𝐶(𝑖, 𝑗) is 1 if read 𝑖 is classified to species 𝑗 and 0 otherwise. 
 
To find the abundances 𝛼 that maximize the likelihood function 𝐿 𝛼 , Centrifuge repeats 
the following EM procedure as also implemented in the Cufflinks until the difference 
between the previous estimate of abundances and the current estimate, |𝛼! − 𝑎!!|!

!!! , is 
less than 10!!". 
 
Estimation (E-step): 

𝑛! =
𝛼!𝐶(𝑖, 𝑗)
𝛼!𝐶(𝑖, 𝑘)!

!!!

!

!!!

 

where 𝑛! is the estimated number of reads assigned to species 𝑗. 
 
Maximization (M-step): 

𝛼!! =
𝑛!/𝑙!
𝑛!/𝑙!!

!!!
 

where 𝛼!! is the updated estimate of species 𝑗’s abundance.  𝛼! is then used in the next 
iteration as 𝛼. 
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Results and discussion 
We demonstrated the performance of Centrifuge in four different settings involving both 
real and simulated reads, and using several databases with different sizes, specifically one 
consisting of ~4,300 prokaryotic genomes (index name: p, index size: 4.2 GB), another 
with ~4,300 prokaryotic genomes plus human and viral genomes (p+h+v, 6.9 GB), and a 
third comprised of NCBI nucleotide sequences (nt, 69 GB).  We compared the sensitivity 
and speed of Centrifuge to one of the leading classification programs, Kraken (v0.10.5-
beta) [8].  We also included Megablast [19] in our assessment, as it is a very widely-used 
program that is often used for classification.  In terms of both sensitivity and precision of 
classification, Centrifuge demonstrated similar accuracy to the other programs we tested.  
Centrifuge’s principal advantage is that it provides a combination of fast classification 
speed and low memory requirements, making it possible to perform large metagenomics 
analyses on a desktop computer using p or p+h+v index.  For example, Centrifuge took 
only 47 minutes on a standard desktop computer to analyze 130 paired end RNA 
sequencing runs (a total of 26 GB) from patients infected with Ebola virus [20-22] as 
described below.  Centrifuge’s efficient indexing scheme makes it possible to index the 
NCBI nucleotide collection (nt) database, which is a comprehensive set of sequences (> 
36 million non-redundant sequences, ~110 billion bps) collected from viruses, archaea, 
bacteria, and eukaryotes, and enables rapid and accurate classification of metagenomics. 
 
Comparison of Centrifuge, Kraken, and Megablast on simulated reads from 4,278 
prokaryotic genomes 
We created a simulated read dataset from the 4,278 complete prokaryotic genomes in 
RefSeq [23] that were used to build the.  From these genomes, we generated 10 million 
100-bp reads with a per-base error rate of 3% using the Mason simulator, v0.1.2 [24].  
We used an error rate higher than found in Illumina reads (≤ 0.5%) in order to model the 
high mutation rates of prokaryotes.  Reads were generated randomly from the entire data 
set; thus longer genomes had proportionally more reads.  The full set of genomes is 
provided in Supplementary File 1.  We built indexes for each of the respective programs.  
Kraken and Megablast require 100 GB and 25 GB of space (respectively) for their 
indexes.  In contrast, Centrifuge requires only 4.2 GB to store and index the same 
genomes.  The run-time memory footprint of MegaBlast is small (Table 2) because it 
does not read the entire database into memory, in contrast to Kraken and Centrifuge.  We 
classified the reads with Centrifuge, Kraken, and Megablast and calculated sensitivity 
and precision at the genus and species levels for each program (Table 2).  Centrifuge and 
Megablast often report multiple assignments for a given read, while Kraken instead 
reports the lowest common ancestor.  To make our evaluation consistent across the 
programs, we only considered uniquely classified reads.  Here we define sensitivity as the 
number of reads that are correctly classified divided by the total number of reads.  
Precision (also called positive predictive value) is defined as the number of correctly 
classified reads divided by the number of predictions made (i.e., reads that have no match 
and are not classified are not counted). 
 
At the species level, Megablast provides the highest sensitivity at 78.8%, followed by 
Centrifuge (76.9%) and then Kraken (73.9%).  Overall sensitivity is relatively low 
because many reads are assigned to multiple species and considered as unclassified in our 
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evaluation.  Megablast provides the highest precision, 99.4%, followed closely by Kraken 
at 99% then Centrifuge at 96.9%.  At the genus level, Megablast provides the highest 
sensitivity at 93.4%, followed by Centrifuge (93.1%) and then by Kraken (90.4%).  All 
three programs had near-perfect precision at the genus level, from 99.5-99.9%. 
 
Kraken was the fastest program on this data, classifying about 1,062,000 reads per minute 
(rpm), followed by Centrifuge, which was approximately one-half as fast at 563,000 rpm.  
Megablast is far slower, processing only 327 rpm.   
 
Comparison of Centrifuge and Kraken performance on real datasets from sequencing 
reads of bacterial genomes 
To test our method on real sequencing datasets, we downloaded 532 DNA sequencing 
datasets from the Sequence Read Archive (SRA).  We selected them according to 
whether the SRA samples had been assigned a taxonomic identifier that belongs to a 
genus for which we have at least one genome in the database.  All of the datasets were 
generated by whole-genome shotgun projects using recent Illumina platforms; 225 were 
sequenced on HiSeq and 307 on MiSeq instruments, with mean read lengths of 100 and 
218 bps, respectively.  Supplementary File 2 contains a complete list of the SRA 
identifiers, taxonomy IDs, number of reads and classification results.  In total, this data 
contains over 560 million reads, with an average of 1,061,386 reads per sample 
(Supplementary Table 2). 
 
For this experiment, we compared Centrifuge and Kraken but omitted Megablast because 
it would take far too long to run.  Kraken was chosen as the standard for comparison 
because it demonstrated superior accuracy over multiple other programs in a recent 
comparison of metagenomic classifiers [25].  Figure 3 shows the results for both accuracy 
and speed using the database of ~4,300 prokaryotic genomes.  On average, Centrifuge 
had slightly higher sensitivity (0.5% higher) than Kraken.  Perhaps due to its use of a 
longer exact match requirement (31 bases), Kraken had slightly higher precision (1.5%) 
than Centrifuge.  The lower accuracy of both programs on some data sets may be due to: 
1) substantial differences between the genome that we have in the database and the strain 
that was sequenced, 2) numerous contaminating reads from the host or reagents, or 3) a 
high sequencing error rate for a particular sample. 
 
Overall accuracy for both programs was very similar.  Kraken was slightly faster, with an 
average run time (using 8 cores) of 39.4 seconds per genome, while Centrifuge required 
50.9 seconds per genome.   
 
Application of Centrifuge for analyzing samples with Ebola virus and GB virus co-
infections on a desktop 
To demonstrate the speed, sensitivity, and applicability of Centrifuge on a real data set, 
we used data from the Ebola virus disease (EVD) outbreak.  The 2013-2015 EVD 
outbreak in West Africa cost the lives of over 11,000 people as of August 26, 2015 
(WHO Ebola Situation Report, http://apps.who.int/ebola/ebola-situation-reports).  In an 
international effort to research the disease and stop its spread, several groups sequenced 
the Ebola virus collected from patients’ blood samples and released their datasets online 
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[20-22].  The genomic data was used to trace the disease and mutations in the Ebola 
genome, and inform further public health and research efforts.  Lauck et al. [26] 
reanalyzed one of the datasets (Gire et al. [21]) in order to assess the prevalence and 
effect of GB virus C co-infection on the outcome of EVD. 
 
We analyzed 130 paired-end sequencing runs from 49 patients reported in Gire et al. [21] 
using Centrifuge to look for further co-infections.  This dataset has a total of 97,097,119 
reads (26 GB of FASTA files).  The accession IDs of this data are provided in 
Supplementary File 3.   For this analysis, we used the database containing all prokaryotic 
genomes (compressed), all viral genomes, and the human genome (total index size: 6.9 
GB).  Running on a desktop computer (quad-core, Intel Core i5-4460@3.2GHz with 8GB 
RAM), Centrifuge completed the analysis of all samples in 47 minutes with four threads.  
RNA-sequencing [27] requires more steps than DNA-sequencing, including the reverse-
transcription of RNA to DNA molecules, which introduces sequencing biases and 
artifacts.  In order to handle these additional sources of errors and remove spurious 
detections, we filtered the results to include only reads that have a matching length of at 
least 60bp on the 2x100-bp reads. 
 
Figure 4 shows our classification results for the 49 patients.  Centrifuge detects between 
3,853 and 6,781,684 Ebola virus reads per patient.  As reported by Lauck et al., we also 
detected co-infection of Ebola virus and GB virus C in many of the patients.  Centrifuge 
identified at least one read from this virus in 27 of the 49 patients; nine patient samples 
had 50 or more reads.  Eleven patients had between one and 10 reads matching the 
Hepatitis B virus, and in one sample over one thousand reads aligned uniquely to this 
virus.  This Hepatitis B co-infection has not been reported previously, demonstrating the 
inherent advantage of using a metagenomics classification tool, which can also detect off-
target species. 
 
Centrifuge’s ability to index a comprehensive nucleotide sequence database 
The NCBI nucleotide sequence database includes a comprehensive set of sequences 
collected from viruses, archaea, bacteria, and eukaryotes.  Identical sequences have been 
removed to make it non-redundant, but even after this reduction the database contains 
over 36.5 million sequences with a total of ~109 billion bases (Gb).  This rapidly growing 
database, called nt, enables the classification of sequencing data sets from hundreds of 
plant, animal, and fungal species as well as thousands of viruses and bacteria and many 
other eukaryotes.  Metagenomics projects often include substantial quantities of 
eukaryotic DNA, and a prokaryotes-only index, as was used in the experiments above, 
cannot identify these species. 
 
The challenge in using a much larger database is the far greater number of unique k-mers 
that must be indexed.  For example, using Kraken’s default k-mer length of 31 bp, the nt 
database contains approximately 57 billion distinct k-mers.  Although it employs several 
elegant techniques to minimize space, Kraken still requires 12 bytes per k-mer, which 
means it would require an index size of 684 GB for the full nt database.  Reducing the k-
mer size helps only slightly: with k=22, Kraken would require an index of 520 GB.  
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Either of these indexes would require a specialized computer with very large main 
memory. 
 
Centrifuge’s index is based on the space-efficient Burrows-Wheeler transform, and as a 
result it requires only 69 GB for the nt database, less than the raw sequence itself.  Blast 
and Megablast are currently the only alternative methods that can classify sequences 
against the entire nt database; thus we compared Centrifuge with Megablast using our 
simulated read data, described above.  Megablast uses a larger index, requiring 155 GB 
on disk, but it does not load the entire index into memory, and requires only 16 GB of 
RAM, while Centrifuge requires 69 GB.  However, Centrifuge classified reads at a far 
higher speed: in our experiments on the Mason simulation data it processed ~372,000 
reads/minute, over 3500 times faster than Megablast, which processed only 105 
reads/minute.  The classification precision and sensitivity of both programs were very 
high: Centrifuge’s precision and sensitivity were 99.5% and 89.9% respectively, while 
Megablast’s were 99.8% and 93.9%.   
 
As a test of Centrifuge’s nt database, we used it to analyze sequences from a mixture of 
common fruits and vegetables sequenced using long-read single molecule technology. 
The mixture included more than a dozen common foods: grape, blueberry, yam (sweet 
potato), asparagus, cranberry, lemon, orange, iceberg lettuce, black pepper, wheat (flour), 
cherry tomato, pear, bread (wheat plus other ingredients), and coffee (beans).  The 
“fruitshake” mixture was blended together, DNA was extracted, and sequencing was run 
on an Oxford Nanopore MinION.  The number of reads generated from the fruitshake 
sample was 20,809, with lengths ranging from 90 to 13,174 bp and a mean length of 893 
bps (Supplementary File 4 provides the reads in fastq format).  Although MinION 
platforms produce much longer reads than Illumina platforms, MinIONs’ high 
sequencing error rates (estimated at 15% [28]) prevent reads from containing long exact 
matches and increase the chance of noisy and incorrect matches.  We initially labeled 
8,236 reads using Centrifuge.  In order to reduce false positive assignments for these 
error-prone reads, we filtered out those reads that scored ≤300 and had match lengths 
≤50-bp, resulting in 3,617 reads ultimately classified.  Table 3 shows 14 species to which 
at least 5 reads are uniquely assigned, encompassing many of the species included in the 
sample such as wheat, tomato, lettuce, grape, barley, and pear.  Note that as with any real 
sample, the true composition of the reads is unknown; we present these results here to 
illustrate (a) the use of the large nt database and (b) the use of Centrifuge on long, high-
error-rate reads.  Although apple was not known to be present in the sample, the 5 reads 
assigned to apple might have been due to similarity between the apple genome and the 
pear genome.  26 reads were identified as sheep and 8 as cow, which were confirmed 
separately by Blast searches.  These could represent sample contamination or possibly 
contaminants in the sheep and cow assemblies.  Missing species can be explained either 
by low abundance in the sample or because their genomes are substantially different from 
those in the Centrifuge nt database. 
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Conclusions 
Centrifuge is a rapid and sensitive classifier for microbial sequences with low memory 
requirements and a speed comparable to the fastest systems.  Centrifuge classifies 10 
million reads against a database of all complete prokaryotic and viral genomes within 20 
minutes using one CPU core and requiring less than 8GB of RAM.  Furthermore, 
Centrifuge can also build an index for NCBI’s entire nt database of non-redundant 
sequences from both prokaryotes and eukaryotes.  The search requires a computer system 
with 128 GB of RAM, but runs over 3500 times faster than Megablast. 
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Figures 

 
Figure 1.  Compression of genome sequences before building the Centrifuge index. 
All genomes are compared and similarities are computed based on shared 53-mers.  In 
the figure, genomes 1 and 2 are the most similar pair.  Sequences in that are ≥99% 
identical between the two genomes are merged, and the remaining “unique” sequences 
from genome 2 are added to genome 1, created a merged (1+2) genome.  Similarity 
between all genomes is recomputed using the merged genomes.  Sequences <99% 
identical in genome 3 are then added to the merged genome, creating genome 1+2+3. 
This process repeats for the entire Centrifuge database until each merged genome has no 
sequences ≥99% identical to any other genome. 
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Figure 2.  Classification of reads 
The figure shows how the score for a candidate at the species level is calculated.  Given a 
100-bp read, both the read (forward) and its reverse complement from right to left are 
searched.  Centrifuge first identifies a short exact match then continues until reaching a 
mismatch: the first 40 bp segment exactly matches six species (A, B, C, D, E, F), 
followed by a mismatch at the 41st base, the second 26-bp segment matches two species 
(G and H), followed by a mismatch at the 68th base, and the third 32-bp segment matches 
only species G.  This procedure is repeated for the reverse complement of the read.  
Centrifuge assigns the highest score (625) to species A, B, C, D, E, and F.  Centrifuge 
then traverses up the taxonomic tree to reduce the number of assignments, first by 
considering the genus that includes the largest number of species, genus I, which covers 
species A, B, and C, and then replacing these three species with the genus.  This 
procedure results in reducing the number of assignments to four (genus I plus species D, 
E, and F). 
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Figure 3.  Results on 532 sequencing data sets from bacterial genomes retrieved from the 
Sequence Read Archive at NCBI.  Each dot represents the results for one genome, with 
Centrifuge shown in orange and Kraken in teal.  The uppermost plot shows sensitivity, 
computed as the percentage of reads classified as the correct species.  The center plot 
shows precision, computed as the percentage of species-level classifications made by a 
program that were correct.  The lower plot shows runtime measured in seconds. 
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Figure 4.  Heatmap of most abundant species in Ebola samples 
The color scale encodes the abundance (number of unique reads normalized by genome 
size), from blue (less than .1% of normalized read count) to red (100% of reads).  All 
species that have a normalized read count over 1% in any of the samples are shown. Zaire 
ebolavirus dominates the samples, however there is also a signal for other viruses in some 
of the patients – namely GB virus C and Hepatitis C virus.  
 
 
Tables 
 
Table 1.  Compression ratios for 10 bacterial species that have multiple genomes fully 
sequenced and available in RefSeq. 

Species name Number of 
genomes 

Total size 
(Mbp) 

Total size after 
compression (Mbp) 

Compression 
ratio 

Salmonella enterica 138 661 74 8.9 
Escherichia coli 131 655 107 6.1 
Staphylococcus aureus 77 220 31 7.1 
Helicobacter pylori 73 119 78 1.5 
Chlamydia trachomatis 66 69 4 17.3 
Listeria monocytogenes 54 160 25 6.5 
Burkholderia pseudomallei 47 341 46 7.4 
Klebsiella pneumoniae 41 230 47 4.9 
Streptococcus pyogenes 39 72 13 5.5 
Campylobacter jejuni 37 62 13 4.8 

 
Table 2.  Classification sensitivity and precision for the Centrifuge, Kraken, and 
Megablast using simulated reads. In Centrifuge, we used only uniquely classified reads to 
compute accuracy. To measure speed, we used 10 million reads for Centrifuge and 
Kraken and 100,000 reads for Megablast.  We ran all programs on a Linux system with 1 
TB of RAM using one CPU (2.1 GHz Intel Xeon) 
Classifier Genus Species Speed 

(reads/min) 
Memory usage 
(GB of RAM) Sensitivity Precision Sensitivity Precision 
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Centrifuge 93.1 99.5 76.9 96.9 563,380 4.2 
Kraken 90.4 99.7 73.9 99.0 1,061,947 93 
Megablast 93.4 99.9 78.8 99.4 327 9.9 
 
Table 3.  Classification of the fruitshake sample using Centrifuge’s nt database 
The table shows 14 genomes to which at least 5 reads sequenced from the fruitshake 
sample were uniquely assigned.  Common names in red represent species known to be 
present in the mixture. 

Scientific name Common name 
Number of uniquely 
classified reads 

Triticum aestivum wheat 2889 
Solanum lycopersicum tomato 207 
Lactuca sativa lettuce 134 
Ovis canadensis canadensis  sheep 26 
Vitis vinifera grape 16 
Aegilops tauschii wheat 13 
Triticum urartu  wheat 12 
Solanum pennellii tomato 12 
Triticum turgidum subsp. durum wheat 8 
Triticum monococcum wheat 8 
Bos taurus cow 8 
Hordeum vulgare subsp. vulgare barley 6 
Malus domestica apple 5 
Pyrus x bretschneideri pear 5 
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