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Mutation rate varies along the human genome, and part of this variation is explainable by 
measurable local properties of the DNA molecule. Moreover, mutation rates differ between 
orthologous genomic regions of different species, but the drivers of this change are unclear. 
Here, we compare the local mutation rates of several species. We show that these rates are 
very similar between human and apes, implying that their variation has a strong 
underlying cryptic component not explainable by the known genomic features. Mutation 
rates become progressively less similar in more distant species, and these changes are 
partially explainable by changes in the local genomic features of orthologous regions, most 
importantly, in the recombination rate. However, they are much more rapid, implying that 
the cryptic component underlying the mutation rate is more ephemeral than the known 
genomic features. These findings shed light on the determinants of mutation rate evolution.  
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Mutation rate is known to vary substantially between chromosomal regions1-3, and this variation 
is medically relevant4-7. Mutagenesis is affected by a range of biochemical processes, most 
importantly, meiotic recombination, replication and transcription, as well as by chromatin 
structure. Consistently, the local mutation rate (LMR) is strongly dependent on genomic features 
such as replication timing8, density of DNase-hypersensitive sites (DHSs)9, gene density, histone 
modifications, GC-content etc.10-12. Still, up to 70% of the human germline LMR variation at 
megabase scale cannot be explained by the known features11. Understanding the LMR variation 
and its causes is critical for inferring genomic functional elements and the genetic basis of 
heritable disease and cancer4,7,13.  

The LMR landscape is dynamic. LMRs co-vary between closely related species14, but are 
almost independent of each other in remote species15. While the variation in LMR has been 
studied extensively, the dynamics and causes of LMR evolution are poorly understood (but see 
refs. 2,12,14). LMR evolution may be driven by changes in known genomic features or by other 
factors.  

Evolution and co-evolution of the LMR and genomic features can be studied by analyzing 
the correlations between LMRs and features of orthologous genomic regions in species at a range 
of phylogenetic distances from each other. Here, we make use of complete genome alignments of 
9 primate species, and of mouse, to study the evolution of the LMR between closely related 
vertebrates. We show that although only less than a half of the variance in LMR either in human 
or in apes can be explained by the known human genomic features, the LMRs in human and in 
apes are very strongly correlated, implying the existence of a strong “cryptic” component of the 
LMR variability. Furthermore, most of the genomic features are evolutionally stable and are 
good predictors of the LMR even in distantly related species; still, some changes in the LMR 
between species may be traced to changes in the underlying features, notably, in the 
recombination rate. By contrast, the “cryptic” fraction of the LMR variation not explainable by 
genomic features evolves very rapidly. 

 

RESULTS 
LMRs are strongly correlated between humans and apes 
We study the multiple sequence alignment of 8 primate genomes (chimpanzee, gorilla, 
orangutan, gibbon, rhesus macaque, green monkey, squirrel monkey and marmoset) with 
human16, split into 2,261 1Mb non-overlapping windows (the results obtained for 100Kb 
windows were generally similar; Supplementary Note 1), together with the data on human 
polymorphism and de novo mutations in these same windows. To minimize the effect of 
selection on LMR estimates, we exclude exons and UTRs, and include the mean frequency of 
minor allele (MAF) in non-coding windows among the analyzed genomic features (see below). 
Still, selection acting at non-coding regions may confound inference of mutation rate variability 
(see Discussion).  
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For each species, we infer the nucleotide substitutions since its divergence from the last 
common ancestor with its closest relative (Fig. 1e,f), and count the number of such substitutions 
in each window as a proxy for the LMR (divergence-based LMR, dLMR). Additionally, for 
humans, we also estimate LMR using the numbers of rare SNPs17 (polymorphism-based LMR, 
pLMR) and the numbers of observed de novo mutations18 (mLMR). While mLMR is the gold 
standard for LMR measurements, the data on it is limited (Supplementary Note 2), and we only 
use it for validation. pLMR is slightly better correlated with mLMR than dLMR, although both 
correlations are significant (P<0.01; Supplementary Fig. 1). We exclude substitutions prone to 
biased gene conversion from analyses (Methods and Supplementary Note 3). 

The LMRs are strongly correlated between human and chimpanzee (R2=0.82 for dLMR, P 
< 2.2×10-16; R2=0.46 for pLMR, P < 2.2×10-16; Fig. 1a-b). When less related species are 
considered, this correlation decays with phylogenetic distance, reaching the minimal value 
among primates in marmoset (R2=0.27 for dLMR, P < 2.2×10-16; R2=0.04 for pLMR, P < 
2.2×10-16; Fig. 1a-b), and is even lower in mouse (R2=0.11 for dLMR, P < 2.2×10-16; R2=0.02 for 
pLMR, P < 3.13×10-7; Supplementary Fig. 2). This decay is independent of the decrease in the 
fraction of alignable nucleotides with phylogenetic distance, as the correlation between LMRs 
remains similar when only the columns of the multiple alignments without gaps or ambiguous 
nucleotides in any of the species are considered (Supplementary Fig. 3). The proportion of the 
variance in LMR explainable by the human LMR decays by half at phylogenetic distance of 
~0.04 substitutions per site, or ~16 million years19, roughly corresponding to the last common 
ancestor of human and orangutan. Human mLMR is also better correlated with the dLMRs of the 
more closely related species, compared with more distant ones (Supplementary Fig. 1 and 4). 

 

A cryptic component to the LMR 
The LMR depends on DNA properties10-12. The linear model that predicts the human dLMR 
from the measured genomic features of embryonic stem cells explains 33% of the variance in 
dLMR, which is in agreement with the previous estimates11 based on a feature annotation from a 
different tissue (Supplementary Note 4). The remaining variance may be random, or associated 
with genomic features not picked up by our analyses. The fact that the human LMR is a good 
predictor for the LMR in apes, in particular, in chimpanzee and in gorilla (Fig. 1a-b), suggests 
that the LMR variation not explainable by the measured genomic features still has a strong non-
random component conserved between species.  

To better understand this cryptic component, we first ask how well the human genomic 
features predict the LMR in non-human primates (Supplementary Fig. 5). For this, we construct, 
for each non-human species, a linear model predicting the dLMR in this species from human 
features alone and in combination with the human dLMR or pLMR. The non-human dLMR can 
be predicted nearly as well as the human dLMR by the features of the human orthologous 
segments (Fig. 1c-d, red line). This is consistent with the generally conservative nature of 
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genomic features20. Indeed, most of the features are very strongly correlated even between 
human and mouse (Table 1).  

By contrast, adding the human LMR to the linear model radically increases the fraction of 
explained variance (Fig. 1c-d, black line): from R2=0.37 to 0.67 (for pLMR) or to 0.83 (for 
dLMR) in chimpanzee, and from 0.36 to 0.66 (for pLMR) or to 0.79 (for dLMR) in gorilla. 
Therefore, in closely related apes, the linear model that includes both the data on genomic 
features and the human polymorphism or divergence data explains about twice as much variance 
in LMR as the model with the genomic features alone, implying that about a half of the 
explained variance in LMR is cryptic (Fig.1c-d, shaded area). 

Furthermore, there is a striking difference in how the explanatory power of genomic 
features and LMR changes with phylogenetic distance. While the human genomic features 
explain about as much variance in the LMR for distantly related as for closely related species, 
the human LMR predicts the LMR in closely related apes much better than that in less related 
primates. Therefore, unlike the measured genomic features which are relatively stable, the 
cryptic component of variation in LMR is short-lived. For the mouse LMR, human genomic 
features are much better predictors than the human LMR (Supplementary Fig. 2), suggesting that 
conserved features are important predictors of the LMR at large phylogenetic distances, while 
the LMR of a remote species carries no additional information. The cryptic component decays 
uniformly with phylogenetic distance, with the exception of the gibbon genome which carries an 
unusually high number of rearrangements21. Again, the shape of this decay is independent of the 
differences in alignment quality between species (Supplementary Fig. 3). 

 

Stability of genomic features in determination of the LMRs 
The LMRs of orthologous genomic regions evolve with time (Fig. 1). The fraction of the 
variance in LMR explained by the human genomic features is similar in closely related and in 
distantly related primate species. Still, it is possible that individual features, and thus their power 
to predict the LMR in another species, change at different rates. We asked to what extent 
changes in LMR are determined by the evolution of individual features. As the data on genomic 
feature landscapes of primates is limited22,23, we addressed this question indirectly. 

For this, we estimated the fraction of the variance in dLMR explained by individual human 
features. Because features are correlated with each other (Supplementary Fig. 6), we performed 
the ANOVA type III analysis to single out the independent contribution of each feature 
accounting for the contributions of other features (Fig. 2a). The estimated relative contributions 
of different features to the human dLMR are in line with previous work10,11,14. For the dLMRs in 
non-human primates, they are also mostly similar to those for the human dLMR, and for most 
features are independent of the phylogenetic distance to the analyzed species (Supplementary 
Fig. 7). The only feature with contribution declining with the phylogenetic distance is the 
recombination rate (P=0.009 for the correlation between R2 and the phylogenetic distance, 
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Supplementary Fig. 7). The variance explained by it is high initially, in line with the evidence for 
its major effect on LMR24-26; but decreases rapidly with phylogenetic distance, from 6.02% for 
humans to 0.0005% for marmoset (Fig. 2a). This decay is linked to recombination per se, rather 
than to the associated process of gene conversion, as our analysis excludes the substitutions 
prone to biased gene conversion. Instead, they are in agreement with the gBGC-independent 
mutagenic role of recombination26,27. The observed decay suggests that changes in recombination 
are rapid, in line with its known high evolvability28-30. Such changes may contribute to changes 
in the LMR.  

Changes in recombination rate are associated with changes in LMRs 
The importance of the local recombination rate for the LMR evolution is further supported by 
comparisons with chimpanzee and mouse. For these two species, recombination maps are 
available30,31. Recombination is poorly conserved between species: the human recombination 
rate is only weakly correlated even with that of chimpanzee (R2=0.24, P < 2.2×10-16), and not 
correlated with that of mouse (Table 1). 

For each genomic window, we compared the interspecies differences in dLMR with 
differences in recombination rates. In both human-chimpanzee and human-mouse comparisons, 
they were weakly positively correlated (R2=0.01, P < 7×10-6 for chimpanzee, Fig. 2b; and 
R2=0.1, P<2.2×10-16 for mouse; Fig. 2c), implying that an increase in the recombination rate of a 
genomic region between species is associated with an increase in LMR, and vice versa.  

For the human-mouse comparison, we also analyzed several other genomic features, asking 
whether their changes are correlated with changes in the LMR. In total, ~16.4% of the variance 
in dLMR differences between branches could be explained by differences in the feature 
landscapes (Fig. 2k). When contributions from individual variables were considered, differences 
in recombination rate alone explained ~10% of the variance (Fig. 2c,k), while other features 
explained substantially less (Fig. 2d-j, k). To single out the genomic features in which changes 
between mouse and human lineages independently contribute to changes in the LMR between 
these two species, we performed the ANOVA (type III) analysis (Fig. 2l). Changes in only a few 
of the genomic features significantly contributed to changes in the dLMR. The most substantial 
contributor was recombination. Although the recombination landscape changes rapidly, and 
human recombination hotspots are not informative about the positions of hotspots in mouse 
(Table 1), changes in recombination rate landscape explain changes in dLMR more than those of 
any other features. 

To better understand the link between changes in recombination and mutation, we studied 
the genomic windows in which the LMR has been substantially accelerated or decelerated in the 
human lineage, or in the chimpanzee lineage, since divergence from the human-chimpanzee 
common ancestor. In the human-accelerated regions (HARs), the human recombination rate is 
substantially higher than the genome average (one-sided Wilcoxon rank sum test P=2.9×10-9, 
Fig. 3a), implying that the HARs frequently carry recombination hotspots. By contrast, in the 
chimpanzee-accelerated regions (CARs), the human recombination rate is only slightly higher 
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than the genome average (P=8.0×10-3, Fig. 3b). Together, these data imply that the HARs are 
frequently associated with recombination hotspots that are short-lived, so that they increase the 
mutation rate in human more than in chimpanzee. Reciprocally, the chimpanzee recombination 
rate is elevated in CARs (P=3.7×10-7, Fig. 3d), slightly more than in HARs (P=7.4×10-6, Fig. 3c).  

We also analyzed the genomic regions that were substantially decelerated in human 
(human decelerated regions, HDR) or chimpanzee (CDR). The human recombination rate at 
HDRs as well as the chimpanzee recombination rate at CDRs were slightly reduced compared to 
the genome average (one-sided Wilcoxon rank sum test P= 7.7×10-4 and P= 3.9×10-4 

respectively; Supplementary Fig. 8). This implies that the LMR deceleration is also partially 
caused by recombination-related factors, although likely to a smaller extent than LMR 
acceleration. All these patterns were associated with the recombination per se rather than biased 
gene conversion (Supplementary Note 5). 

 

DISCUSSION 
While the LMR is known to differ between species2,32,33, the rate and the driving forces of the 
LMR evolution are obscure. To our knowledge, this study is the first quantitative analysis to this 
end.  

Our approach to estimation of the germline mutation rate from divergence and 
polymorphism data has three important caveats. First, selection and GC-biased gene conversion 
(gBGC) can affect both divergence and polymorphism. To limit the effect of selection, we only 
analyzed intronic and intergenic regions, as only ~8% of mutations at these regions are affected 
by selection34. The contribution of MAF to the explained variance is significant (Fig. 2a), 
implying that the effect of selection on LMR is still high even within the noncoding regions. 
However, the contribution of MAF is much smaller than the unexplained component of the LMR 
variance, implying that the high correlation between LMRs of closely related species is not due 
to common selection pressures. Moreover, the contribution of MAF is roughly constant between 
species at different phylogenetic distances (Fig. 2a), implying that selection pressures are rather 
stable, and their changes contribute little to the LMR evolution. gBGC is indeed associated with 
divergence29 and polymorphism; however, its effect is weak or absent in the considered subset of 
substitutions (Supplementary Notes 3 and 5). Second, the estimates of the LMR can be affected 
by the polymorphism in the ancestral population. In particular, the differences in coalescence 
times between genomic regions may inflate the correlation between the dLMRs estimated from 
two descendant sister branches35-37. Similarly, such differences may contribute to the association 
between the dLMR and the recombination rate, as genomic regions with higher recombination 
rates have larger local effective population size, and therefore longer coalescence times37-39. Such 
phenomena do not affect correlations with de novo mutations (Supplementary Fig. 1). They are 
also unlikely to contribute to pLMRs, as transspecies polymorphisms are rare40,41, and can only 
contribute to the correlations between dLMRs, and the correlation between LMR and 
recombination, of human, chimpanzee and gorilla – the species in which the contribution of the 
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ancestral polymorphism to divergence is reported42. In all other comparisons, a relatively long 
period of independent divergence (black edges in the phylogeny of Fig. 1) separates the branches 
at which the dLMR is measured (red edges in Fig. 1). Furthermore, the time to coalescence of a 
genomic region is highly correlated with its exonic density38, and the correlation between the 
exonic density and the dLMR is low (R2=0.01, Fig. 2a), suggesting that the ancestral 
polymorphism also does not contribute much to correlations between dLMRs, or to correlations 
between the LMR and the recombination, even in the most closely related species. Still, such 
confounders may affect dLMR estimates to some degree; in particular, they may be the reason 
why the correlations between dLMRs are higher and more long-lived than the correlations 
between the pLMR in human and dLMRs in other species. Third, the mutation rate estimation is 
dependent on the window size, with small windows giving unreliable estimates15. The window 
sizes we use, 100Kb and 1 Mb, are a compromise between resolution and robustness.  

Given these caveats, we show that the correlation between the LMRs of closely related 
species is surprisingly high. As a result, the LMR of a species can be much better predicted by 
the LMR of a closely related species than by its own genomic features. Still, the LMR is plastic, 
being rather poorly conserved even between moderately related species of primates, and evolves 
much faster than the known genomic features. These results imply the existence of a strong but 
transient cryptic component in LMR variation; the unknown genomic features that underlie it 
must undergo a rapid turnover, changing at the timescale of a few tens of millions of years. 

By contrast, the predictive power of human genomic features for the non-human LMR 
changes little with time since divergence from human, probably due to the conservative nature of 
these DNA properties. As a result, in the human-mouse comparison, human genetic features are 
better predictors of the LMR in mice than the human LMR. 

Our findings therefore imply that changes in the known genomic features may not be 
responsible for most of the changes in LMR in the course of evolution, at least at short 
timescales. Nevertheless, we can still measure the correlation between the genomic features and 
the LMR defined in another species, and trace how this correlation changes with distance 
between species, as a proxy for the rate of evolution of DNA landscape. A decrease in 
correlation between the LMR of one species and DNA properties of another species mirrors 
changes in genomic features with time.  

Using this approach, we show that features differ in their contributions to the mutation rate 
dynamics. The recombination rate is known to be one of the key features that influence the 
mutation rate variation in humans28,43,44,45. Furthermore, local recombination rate is very plastic, 
and its hotspots vary dramatically even between closely related species46,47; the correlation of the 
recombination rates is low even between human and chimpanzee. Our results show that changes 
in the recombination rate are among the biggest contributors to the LMR evolution among the 
studied genomic features. 
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The high similarity of LMRs between closely related species implies that the estimates of 
the neutral mutation rate at a genomic region could be substantially improved by considering the 
mutation rate at homologous regions from closely related species. By contrast, the functional 
annotation may be more informative about the mutation rate in a more distantly related species. 

More generally, existing approaches to inference of functional genomic elements often use 
interspecies conservation as a proxy for function. This involves two assumptions about the 
mutation process: first, that the mutation rate is uniform along the genome; second, that it is 
constant between species. Violations of these assumptions can lead to false inferences. The first 
assumption is now being relaxed2,4,48; however, the second largely remains in place. 
Appreciation of the importance of the variation in the genomic mutation rates in the course of 
evolution has revolutionized the field of molecular dating2,49. Analogously, we propose that 
understanding the LMR variation between species and its causes may help predict the likelihood 
of mutations and infer their functional importance. 
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Online Methods 
Alignments 
The multiple sequence alignment of 8 primate genomes (chimpanzee, gorilla, orangutan, gibbon, 
rhesus, green monkey, marmoset and squirrel monkey) with the hg19 version of the human 
genome assembly was obtained from the multiple alignment of 100 vertebrate species 
downloaded from the UCSC Genome Browser (https://genome.ucsc.edu/)16 using multiz-tba50. 
The alignment was then split into non-overlapping 1Mb or 100Kb windows. Exonic nucleotides, 
UTRs, repeats, ambiguous nucleotides and CpG dinucleotides were masked, and windows with 
more than 20% gaps and masked nucleotides in any of the nine species were excluded from 
further analysis. This procedure resulted in 2,261 1Mb windows, or in 23,551 100Kb windows. 
Independently, multiple alignments of the same 9 genomes with the mouse genome were 
obtained in the same way. Since there are more gaps in the primates-mouse alignment than in the 
primates-only alignment we excluded windows with more than 10% gaps and masked 
nucleotides in any of the species. This procedure resulted in fewer windows: 1,454 1Mb 
windows, and 16,449 100Kb windows. 

To make sure that our results are not affected by differences in the fraction of excluded 
(unaligned or masked) nucleotides between genomic regions, we repeated the analyses using 
only those alignment columns where all species had an aligned and unmasked nucleotide, and 
only those windows where there were >10% in the primates-mouse alignment. This resulted in 
1,091 1Mb windows for the primates-and-mouse alignment.  

Genomic features mapping  
Replication time, DHSs and histone modifications H3K9me3, H3K27ac, H3K27me3 as 
measured by the ENCODE project51 were downloaded from the UCSC Genome Browser 
(http://genome.ucsc.edu/ENCODE/). The analysis in the main text uses these maps obtained for 
embryonic stem cells. Additionally, we used the maps for 5 other tissues: GM12878, HUVEC, 
NHEK, Hela-S3, K562 and (Supplementary Fig. 9, Supplementary Table 1). Recombination 
rates were obtained from the HapMap project (http://hapmap.ncbi.nlm.nih.gov/). gBGC tracts 
obtained using phastBias with the parameter B=3 were taken from ref. 52. The value of a feature 
for a genomic window was calculated as the weighted average of this feature, excluding masked 
nucleotides and gaps. MAFs and polymorphism data were obtained for all human SNPs except 
those that were W↔S from the 1000 genomes project17. Mean values of MAFs for each window 
were calculated. pLMRs were calculated as the polymorphism’ frequencies by utilizing only 
50% of the rarest SNPs. The list of de novo mutations was obtained from the ref.18.  

Chimpanzee and mouse recombination rates were obtained from refs. 30 and 31 respectively. 
Mouse DHSs, replication timing, and histone modifications H3K9me3, H3K27ac and 
H3K27me3 measured by the Mouse ENCODE project for ES cells (mouse genome version 
mm9) were downloaded from the UCSC Genome Browser (http://genome.ucsc.edu/ENCODE/), 
and mouse genomic coordinates were converted into hg19 coordinates using liftOver16.  
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The fraction of exonic nucleotides were calculated for all nucleotides (including masked 
ones) at each genomic window. To compare changes between features in the course of evolution, 
the values of each feature for each species were normalized to mean=0 and variance=1. 

Inference of LMR 
As a proxy for the local mutation rate (LMR) in a genomic window, we inferred the number of 
single-nucleotide substitutions that occurred in this window at a given phylogenetic branch (red 
in Fig. 1e-f). For this, we inferred the ancestral states using maximum parsimony, and measured 
the fraction of substituted nucleotides among all unmasked non-gapped nucleotides. These 
fractions for all genomic windows were defined as LMRs normalized to mean=0 and variance=1, 
and LMR was defined as this normalized value. To avoid the confounding effect of GC-biased 
gene conversion (gBGC), we excluded W↔S substitutions (Supplementary Note 3). The 
analyses including the W↔S substitutions are presented in Supplementary Fig. 10-13. As an 
alternative approach, we also utilized the maximum likelihood as implemented in the baseml 
program of the PAML package53, using the REV model with no molecular clock; here, all 
substitutions, including W↔S, were analyzed, and the results were similar (Supplementary 
Figure 10).  

We assessed the accuracy and power of LMR inference by bootstrapping nucleotide sites 
within each window. The observed dLMRs and pLMRs were very strongly correlated with the 
bootstrapped samples (dLMR: R=0.97, P< 2.2×10-16, pLMR: R=0.98, P< 2.2×10-16), implying 
that these estimates are robust. The correlation was weaker for mLMRs (R=0.75, P< 2.2×10-16; 
Supplementary Figure 14).  

Since mutation rates differ between nucleotides54, our LMR estimates as described above 
may be confounded by the differences in the nucleotide composition of genomic windows. To 
address this, we additionally used an alternative procedure for LMR estimation that accounts for 
the nucleotide composition. We calculated, for each species b and genomic window h, the 
expected number of mutations Μ based on its nucleotide composition: 

��,� � μ��G � C�	�,��G 
 C� 
 μ��A � T�	�,��A 
 T�, 

where μ� is the genomic rate of the corresponding mutation in species b; and 	�,� is the number 
of corresponding nucleotides in this window in species b. We then defined LMR as the ratio of 
the observed and expected numbers of mutations. This procedure yielded very similar results to 
those in the main text (Supplementary Figures 15-16).  

Explained variance of the LMR  
Using linear regression as implemented in the lm function in R, we calculated the fraction of the 
variance in LMR between genomic windows in a species that can be explained by genomic 
features in the same and/or different species, and/or by the human LMR. Adjusted R2 values 
were used to minimize the effect of the number of explanatory variables. To calculate the 
contribution of each feature independently of the contributions of other features, we performed 
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ANOVA type III tests using drop1 function in R. 95% CIs for R2 values were obtained by 
bootstrapping genomic windows in 200 bootstrap trials. Local polynomial regression fitting in 
Figure 1 was performed using the loess function of R.  

Correlating differences between LMR and genomic features  
For each window, we calculated the difference in normalized LMR values between human and 
mouse or chimpanzee, and the differences in normalized feature values between the same two 
species. We then calculated Pearson’s correlation coefficients between these values. We also 
performed ANOVA type III tests to estimate the independent contributions of changes in 
different genomic features to changes in the mutation rate, explaining changes in LMR between 
species with the drop1 function corresponding to changes in each feature separately. 95% CIs for 
R2 values were obtained by bootstrapping genomic windows in 200 bootstrap trials.  

Correlations with phylogenetic distance 
To estimate the significance of the correlation between the phylogenetic distance and the R2 

values, we obtained the distribution of Spearman correlation coefficients by bootstrapping 
genomic windows in 10,000 bootstrapping trials.  

Identification of HARs, HDRs, CARs and CDRs 
We aimed to select the genomic windows such that the human (chimpanzee) LMR was 
substantially increased or decreased, compared with the chimpanzee (respectively, human) LMR. 
In this section, raw LMR values were used, i.e., normalization to mean=0 and variance=1 was 
not applied. First, we predicted the expected LMR ub,h(exp) in phylogenetic branch b for each 
genomic window h, accounting for the mean LMR of this window across all branches 
� �
∑ ��,��

�
 and the length of the branch leading to this species �� � ∑ ��,��

�
, and normalizing by the 

mean LMR across all windows in all species: 


�,������ � ∑ ��,�� ∑ ��,��

∑ ∑ ��,���
. 

We compared this value for human or chimpanzee with the corresponding observed value 
of LMR, ub,h(obs). To single out the genomic windows with LMR changes in the species of 
interest, we then selected all windows where the magnitude of change in this species sp1 (human 
or chimpanzee) was greater than the magnitude of change in the sister species sp2 (respectively, 
chimpanzee or human): 

��� ����,��	�
�

����,���
��
� � ��� ���	,��	�
�

���	,���
��
�. 

We ranked these windows by the magnitude of change in LMR in sp1 compared with sp2, 

�� � ����,��	�
�

����,���
��
/ ���	,��	�
�

���	,���
��
 , 
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and identified accelerated regions (ARs) and decelerated regions (DRs) as the 100 windows with 
the highest and lowest values of Δh. Summary statistics describing the properties of ARs and 
DRs are presented in Supplementary Table 2.  

For all density plots, we used the kernel density estimation implemented in ggplots R-
package with the default optimized bandwidth of smoothing (bw.nrd0). The scores for 
recombination and gBGC for all genomic windows were normalized to mean=0 and variance=1. 
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Table 1. Correlations between human and mouse genomic features in 1Mb genomic 
windows. 

Feature Pearson’s R P-value 
LMR 0.34   (0.29, 0.38) <2.2×10-16 
Recombination rate 0.01   (-0.04, 0.06)   0.67 
DHSs  0.83   (0.82, 0.85) <2.2×10-16 
Replication timing  0.71   (0.69, 0.74) <2.2×10-16 
GC-content 0.94   (0.93, 0.94) <2.2×10-16 
Exonic nucleotide density 0.95   (0.94, 0.95) <2.2×10-16 
H3K9me3  0.32   (0.28, 0.37) <2.2×10-16 
H3K27ac  0.73   (0.70, 0.75) <2.2×10-16 
H3K27me3  0.66   (0.63, 0.69) <2.2×10-16 
 

The 95% confidence intervals (asymptotic confidence intervals estimated based on Fisher's Z 
transform) are in parentheses. 
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Figure 1. Local mutation rate (LMR) variation in primate species explained by genomic 
features and LMR in the human lineage. a-d, For each primate species, the fraction of the 
explained variance in LMR (R2, vertical axis) is plotted against the phylogenetic distance from 
human (horizontal axis). The values for the gibbon, which has a high rate of rearrangements21, 
are plotted, but were not included in the fit. a, b, Variance in dLMR explained by the human 
dLMR (a) or pLMR (b). c, d, Variance in dLMR explained by human genomic features alone 
(red) or in combination with the human dLMR (c) or pLMR (d; black). The following features 
were included in the model: GC-content, recombination rate, number of exonic nucleotides, 
replication timing, number of DHSs, densities of H3K27ac, H3K27me3 and H3K9me3 histone 
marks and MAF. The shaded area represents the inferred fraction of the variance in non-human 
LMR explainable by the human LMR independently of the genomic features. Error bars 
correspond to 95% confidence intervals obtained by bootstrapping. e, f, Phylogenetic tree of the 
considered species. Red color denotes branches for which the LMR was calculated.  
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Figure 2. LMR explained by individual genomic features. a, Variance of the LMR explained 
by the genomic features. For each genomic feature, the fraction of the variance explained by this 
feature in ANOVA type III analysis is shown for each primate at increasing phylogenetic 
distances from human. The order of the species along the horizontal axis is the same as in Figure 
1. The asterisks indicate the significance of the negative correlation between the R2 and the 
phylogenetic distance. b-j, Scatterplots for raw correlations of the changes in the LMR and shifts 
of genomic features maps between human and mouse lineages. Each dot corresponds to a 1 Mb 
window. k and l, Changes in the LMR explained by the changes in genomic features between 
human and mouse. Vertical axis, fraction of variance in differences in LMRs explainable by 
differences in genomic features between human and mouse. Columns correspond to the variance 
explained by features measured by R2 (k) or ANOVA type III analysis (l). Error bars correspond 
to 95% confidence intervals obtained by bootstrapping. Asterisks indicate the significance of the 
deviation of the regression line from 0 (*: P<0.05, **: P<0.01, ***: P<0.001). 
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Figure 3. Distributions of human recombination scores (a-b) in HARs (a) and CARs (b), 
and of chimpanzee recombination scores (c-d) in HARs (c) and CARs (d). The schematic 
phylogenies show the lineage in which the LMR was increased in red (H, human, or C, 
chimpanzee), and the species in which recombination was measured, as a circle. The dashed line 
corresponds to the median recombination rate in the ARs and all genomic regions.  
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