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Abstract: Genome assemblies using short read sequencing technology are often fragmented into many contigs
because of the abundance of repetitive sequences. Long read sequencing technologies allow the generation
of reads spanning most repeat sequences, providing the opportunity to complete these genome assemblies.
However, substantial amounts of sequence data and computational resources are required to overcome the
high per-base error rate inherent to these technologies. Furthermore, most existing methods only assemble
the genomes after sequencing has completed which could result in either generation of more sequence data at
greater cost than required or a low-quality assembly if insufficient data are generated. Here we present the
first computational method which utilises real-time nanopore sequencing to scaffold and complete short-read
assemblies while the long read sequence data is being generated. The method reports the progress of completing
the assembly in real-time so users can terminate the sequencing once an assembly of sufficient quality and
completeness is obtained. We use our method to assemble four bacterial genomes and one eukaryotic genome,
and show that it is able to construct more complete and more accurate assemblies, and at the same time,
requires less sequencing data and computational resources than existing pipelines. We also demonstrate that
the method can facilitate real-time analyses of positional information such as identification of bacterial genes
encoded in plasmids and pathogenicity islands.

Introduction

High-throughput sequencing technology has profoundly
transformed genomics research over the last decade with
the ability to sequence the whole genome of virtually every
organism on the planet. Most sequencing projects to date5

employ short read technology and hence cannot unam-
biguously resolve repetitive sequences which are present
abundantly in most genomes. As a result, the assem-
blies are fragmented into large numbers of contigs and
the positions of repeat sequences in the genome cannot10

be determined. These repeat sequences often play impor-
tant biological roles. For example, they mediate lateral
transfer of pathogenicity islands between bacterial species.
Analysing these regions is thus essential for determining
key characteristics such as antibiotic resistance profiles and15

for identifying highly pathogenic variants of many bacterial
species (Ashton et al., 2015).

Long read sequencing technologies introduced recently
by Pacific Biosciences (SMRT sequencing) and Oxford
Nanopore (nanopore sequencing) permit the generation20

of reads spanning most repetitive sequences which can
be used to close gaps in the fragmented assemblies. The
key innovation of the MinION nanopore sequencing device
is that it measures the changes in electrical current as a
single-stranded DNA passes through the nanopore and25

uses the signal to determine the nucleotide sequence of
the DNA strand (Branton et al., 2008; Kasianowicz et al.,
1996; Stoddart et al., 2009). As such the raw data of a
read can be retrieved and analysed while sequencing is
still in progress. This offers the opportunity to obtain30

analysis results as soon as sufficient data are generated,

upon which the sequencing can be terminated or used for
other experiments.

A number of algorithms have been developed to make
use of the long reads for genome assembly. De novo as- 35

semblers such as HGAP (Chin et al., 2013), Canu (Berlin
et al., 2015) and nanocorrect/nanopolish (Loman et al.,
2015) are able to completely assemble a bacterial genome
using only long read sequencing data. However, because
of the high error rates in these sequencing technologies, 40

this de novo approach requires substantial amounts of
sequencing data and extensive computational resources,
mainly for polishing the genome assembly. The hybrid
assembly approach, which combines error-prone long reads
with highly accurate and cheaper short read sequence data, 45

provides a more economical and efficient alternative for
building complete genomes. Tools in this category gener-
ally a) error-correct long reads with the high quality short
reads, and assemble the genome with the corrected long
reads (PBcR (Koren et al., 2012), Nanocorr (Goodwin 50

et al., 2015) and NaS (Madoui et al., 2015)), or b) use long
reads to scaffold and to fill in gaps of the assemblies from
short read sequencing (SPAdes-hybrid (Ashton et al., 2015;
Bankevich et al., 2012), SSPACE-LongRead (Boetzer and
Pirovano, 2014; Karlsson et al., 2015) and LINKS (Warren 55

et al., 2015)).

While these tools are reported to assemble high quality
bacterial genomes, they have not made use of real-time
sequencing potential of the MinION; assembly of a genome
can only be performed in ‘batch mode’ after the sequenc- 60

ing is complete. This can lead to over-sequencing, in
which extra cost and time is incurred to generate an as-
sembly which could have been generated with fewer data;
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Figure 1: General workflow of the real-time algorithm.

or under-sequencing resulting in a low-quality assembly.
Here, we present npScarf, the first hybrid assembler that
can scaffold and complete fragmented short read assem-
blies with sequence data streaming from the MinION while
sequencing is still in progress. npScarf can constantly re-5

port the quality of the assembly during the experiment so
that users can terminate the sequencing when an assem-
bly of sufficient quality and completeness is obtained. We
show that npScarf can generate more accurate and more
complete genomes than existing tools while requiring less10

nanopore sequencing data and computation resources. We
also demonstrate that, npScarf can facilitate the real-time
analysis of positioning genomic sequences such as identify-
ing genes encoded in plasmids and pathogenicity islands
underlying the acquisition of antibiotic resistance.15

Results

Algorithm overview

The genomes of most organisms contain an abundance
of repeat sequences that are longer than the read length
limit (300bps) of Illumina sequencing platforms (Treangen20

and Salzberg, 2012). In assembling a genome using this
technology, these repeat sequences cannot be distinguished
and hence are often collapsed into contigs, leaving gaps
in the genome assembly. To scaffold and fill in gaps in
the assembly, npScarf first determines the multiplicity of25

each contig, thereby identifying contigs representing non-
repetitive sequences (called unique contigs). These unique
contigs are then bridged with long reads to form a backbone
of the genome, while repetitive contigs are used to fill in
gaps in the backbone.30

Determining unique contigs

Prior to scaffolding a fragmented short read genome assem-
bly, npScarf determines the multiplicity of each contig in

the assembly by comparing short read sequencing coverage
of the contig to that of the whole genome. The coverage 35

information is often included in the sequences assembled
by most tools such as SPAdes (Bankevich et al., 2012)
and Velvet (Zerbino and Birney, 2008), or otherwise can
be obtained from mapping of short reads to the assembly.
npScarf estimates the depth coverage of the genome as the 40

normalised average coverage of up to 20 largest contigs
longer than 20Kb, which are most likely unique contigs in
bacterial genomes (Koren and Phillippy, 2015).

depthg =

∑
i depthi × leni∑

i depthi
(1)

In Equation 1, depthi and leni represent the sequencing
depth (coverage) and the length of contig i, respectively, 45

and depthg is the estimated coverage of the whole genome.
The multiplicity of contig i (muli) is determined by

muli =
depthi

depthg
(2)

npScarf considers a contig unique if its multiplicity is less
than 1.5.

Bridging unique contigs and filling gaps with repetitive 50

contigs

npScarf next builds the backbone of the genome from
the unique contigs. It identifies the long reads that align
to two unique contigs, thereby establishing the relative
position (i.e., distance and orientation) of these contigs. 55

In order to minimise the effect of false positives that can
arise from aligning noisy long reads, npScarf groups reads
that consistently support a particular relative position
into a bridge and assigns the bridge a score based on the
number of supporting reads and the alignment quality of 60

these reads. When two unique contigs are connected by
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a bridge, they are merged into one larger unique contig.
npScarf uses a greedy strategy based on the Kruskal’s
algorithm (Kruskal, 1956) that merges contigs from the
highest scoring bridges. In the newly created contig, the
gap is temporarily filled with the consensus sequence of the5

reads forming the bridge. npScarf then identifies repetitive
contigs that are aligned to this consensus sequence, and
use these contigs to fill in the gap.

Real-time processing

To support real-time analysis of nanopore sequencing, the10

previously described algorithm can be augmented to pro-
cess long read data directly from a stream (See Figure 1).
In this mode, npScarf employs a mapping method that
supports streaming processing such as BWA-MEM (Li,
2013) to aligns each long read to the existing assembly15

as the read arrives. If the read is aligned to two unique
contigs, it is added to the bridge connecting the two contigs.
Once the bridge reaches a pre-defined scoring threshold,
the two contigs are merged and the gap is filled as above.
In case this merging contradicts with the existing assembly,20

such as the relative distance and/or orientation implied by
the bridge are inconsistent with that of the previous used
bridges, npScarf revisits the previous bridges to break the
smallest scoring contradicting bridge and uses the current
bridging instead. The algorithm hence gradually improves25

the completeness and the quality of the assembly as more
data are received.

Completing bacterial assemblies

We assessed the performance of our algorithm on scaffold-
ing and completing the Illumina assemblies of two bacterial30

Klebsiella pneumoniae strains, ATCC BAA-2146 (NDM-1
positive resistant strain) and ATCC 13883 (type strain).
We first sequenced the genomes of these strains with the
Illumina MiSeq platform to a coverage of 250-fold, and
assembled them with SPAdes (Bankevich et al., 2012) (See35

Methods). This resulted in assemblies of 90 and 69 contigs
that are 500bps or longer, respectively. The N50 statistics
of the two assemblies were 288Kb and 302Kb, respectively.
We then sequenced the two strains with Oxford Nanopore
MinION using chemistry R7. For ATCC BAA-2146 strain,40

we obtained 185Mb of sequencing data (∼33-fold coverage
of the genome), in which 27Mb were 2D (two-directional)
reads. The run for strain ATCC 13883 yielded only 13.5Mb
of sequencing data (∼2.4-fold coverage). We re-sequenced
this strain with the improved chemistry R7.3. By combin-45

ing sequencing data from both experiments for this strain,
we obtained a total of 100Mb (∼18-fold coverage) data,
including 22.5Mb of 2D reads. The quality of the data,
described in (Cao et al., 2015), was broadly similar to that
reported by other MinION users (Ashton et al., 2015; Jain50

et al., 2015; Loman and Quinlan, 2014).
As the pipeline was developed after we performed the

MinION sequencing runs, we tested our streaming analysis
by rerunning the base-calling using Metrichor service. Se-
quence reads in fast5 format were written to disk, and were55

instantaneously picked up and streamed to the pipeline
by npReader (Cao et al., 2016). In essence, the scaffold-
ing pipeline received sequence data in fastq format in a
streaming fashion as if a MinION run was in progress.

During the analysis, the pipeline continuously reported 60

the assemblies’ statistics (the numbers of contigs and the
N50 statistic), allowing us to track the completeness of the
assembly, as well as the number of circular sequences in the
genome. This is especially important for analysis of bacte-
rial genomes where chromosomes and plasmids are usually 65

circular. To validate the resulting assemblies, we compared
them with the reference genomes of these strains obtained
from NCBI (GenBank Accessions GCA 000364385.2 and
GCA 000742135.1). We also ascertained the predicted plas-
mids in these assemblies by looking for the existence of plas- 70

mid origins of replication sequences from PlasmidFinder
database (Carattoli et al., 2014).

Figure 2a) and 2b) present the progress of assembly
completion against the coverage of MinION data during
scaffolding. As expected, the N50 statistics increased and 75

the number of contigs decreased with more MinION data.
We found that for K. pneumoniae ATCC BAA-2146 strain,
our algorithm required only 20-fold coverage of sequence
data (<120Mb) to complete the genome, reducing the as-
sembly to the limit of 5 contigs (one chromosome and four 80

plasmids). Those five contigs were circularised, indicating
they were completed. We found these five contigs were
in total agreement with the complete genome assembly
of the strain, previously sequenced with PacBio and Illu-
mina (Hudson et al., 2014) (See Table 1 and Supplementary 85

Figure 1).

With 18-fold coverage of the MinION data for the
K. pneumoniae strain ATCC 13883, the assembly was
improved to four contigs, in which one was reported to
be circular (Contig 4). These contigs were aligned to the 90

reference genome for this strain, which contained 16 con-
tigs in five scaffolds. We found Contig 1 and Contig 2
from the npScarf’s assembly were aligned to the reference
scaffold KN046818.1, while Contig 3 and Contig 4 were
aligned to two reference scaffolds (See Table 1 and Sup- 95

plementary Figure 2). The alignments contained forward
and reverse matches. We found the breakpoints of these
matches corresponded to the contig joints in the reference
scaffolds, indicating the incorrect orientation of contigs in
the reference scaffolds. The reference scaffold KN046818.1 100

size was 5.2Mb suggesting this scaffold was the chromo-
some and was fragmented into two contigs in the npScarf’s
assembly. In examining this chromosomal sequence, we
found the two contigs were separated by an rRNA operon
of length 7kb. BLAST search revealed the structure of 105

this operon with rRNA 5S, 23S and 16S as the main com-
ponents. This rRNA operon sequence was also found to
be present at five other loci in the genome, which were all
resolved. However, there was not any long MinION read
aligning to this particular position possibly because of the 110

low yield of this dataset, causing the chromosome sequence
to be fragmented. We anticipate this could be resolved
with more nanopore sequencing data. Contig 3 (139kb)
and Contig 4 (119kb) contained several origin of replica-
tion sequences (See Table 1), suggesting they were plasmid 115

sequences and also Contig 4 was reported to be a circular
sequence. In Contig 4, we noticed an extra plasmid origin
of replication sequence (ColRNAI) that was not found in
the reference genomes (see Table 1). In examining the
position of ColRNAI, we found it was in one of the gaps 120
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Figure 2: Assembly statistics during real-time scaffolding

Table 1: Comparison between the npScarf’s assemblies to the reference genomes of the two K. pneumoniae samples

npScarf assemblies Reference sequences
Name Size (bp) Plasmid ORI Accession Size (bp) Plasmid ORI

K. pneumoniae ATCC BAA-2146
Contig 1∗ 5,437,518 - CP006659.1∗ 5,435,369 -
Contig 2∗ 141,026 IncA/C2 CP006661.1∗ 140,825 IncA/C2
Contig 3∗ 118,278 IncFIB(K); IncFII(K) CP006663.1∗ 117,755 IncFIB(K); IncFII(K)
Contig 4∗ 85,233 IncR; IncFIA(HII) CP006662.1∗ 85,164 IncR; IncFIA(HII)
Contig 5∗ 2,015 ColRNAI CP006660.1∗ 2,014 ColRNAI

K. pneumoniae ATCC 13883
Contig 1 4,923,970 - KN046818.1 5,284,261 -
Contig 2 372,214 -
Contig 3 139,480 IncFIA(HII); IncFIB(K) KN046820.1 95,930 IncFIA(HII); IncFIB(K)

KN046821.1 42,420 -
Contig 4* 119,388 ColRNAI; IncFII(pCoo); pSM22 KN046819.1 106,842 IncFII(pCoo); pSM22

KN046822.1 16,331 -
∗Circular sequences.

in the reference scaffold, hence not reported in reference
assembly.

Real-time identification and plasmids and genomic is-
lands

The ability to complete genome assemblies in streaming5

fashion also enables real-time analyses that rely on po-
sitional information. Such analyses include identifying
genes encoded in bacterial genomic islands and plasmids.
These functional regions in the bacterial genomes can be
horizontally transfered between organisms which is one of10

the main mechanisms for acquiring antibiotic resistance
in pathogenic bacteria. Here we demonstrate these anal-
yses on the multi-drug resistance K. pneumoniae ATCC
BAA-2146 sample.

Prior to scaffolding the Illumina assembly of the sample,15

we annotated the assembly using Prokka (Seemann, 2014)
to identify the positions of genes and insertion sequences
in the assembly. Bacterial genomic islands are genomic
regions longer than 8Kb, containing certain classes of genes

such as antibiotic resistance genes. In addition, they often 20

carry mobility genes such as transposase, integrase and
insertion sequences (IS) (Langille et al., 2010). These se-
quences generally appear multiple times in the genomes
(repetitive sequences), causing genomic islands fragmented
in the short read assembly. We ran Island (Mantri and 25

Williams, 2004) and PHAST (Zhou et al., 2011) on the Illu-
mina assembly which together detected six genomic islands.
In the annotation, we also found 28 insertion sequences,
14 of them were within 3Kb of the contig ends, suggesting
any genomic islands flanked by these insertion sequences 30

were fragmented. During scaffolding of the assembly with
nanopore sequencing data, npScarf constructed further
four genomic islands which were not previously reported
by Island and PHAST (data not shown). Figure 3 presents
the structure of such a genomic island, namely Kpn23SapB, 35

and the timeline of its reconstruction. The genomic island
harboured three antibiotic resistance genes, aadA (medi-
ates resistance to streptomycin and spectinomycin), sulI
(sulfonamides) and ebr (ethidium bromide and quaternary
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Figure 3: Structure of a genomic island harbouring three antibiotic resistance genes strep, sulI and ebr, flanked by
mobility genes integrase (int), inverstase (hin), DNA replication (dnaC), and insertion sequences (IS26 and IS6100).
The genomic island was fragmented into 10 contigs in the Illumina assembly, and was completely resolved with 65Mb
out of the total of 185Mb of nanopore sequence data.

ammonium). The genomic island also carried two copies of
the insertion sequence IS26 that flanked the antibiotic re-
sistance genes, and a copy of the insertion sequence IS6100.
The presence of these repetitive sequences caused the island
to be fragmented into 10 contigs in the Illumina assembly;5

the three resistance genes were in two different contigs.
npScarf required 64.59Mb of data (14-fold coverage of the
genome) to report the full structure of the island.

For real-time detection of plasmid-encoded genes, we
identified plasmid origin of replication sequences from the Il-10

lumina assembly using the PlasmidFinder database (Carat-
toli et al., 2014). Contigs that contained a plasmid origin
of replication sequence were considered part of a plasmid.
Essentially, only 166 genes contained within these contigs
couTld be ascertained as plasmid-encoded genes from the15

Illumina sequencing of the K. pneumoniae ATCC BAA-
2146 strain. During scaffolding the Illumina assembly, once
a contig was added to a plasmid, npScarf reported genes
in the contig as plasmid-encode genes. The timelines of
detection are presented in the Supplementary Spreadsheet.20

In particular, we was able to confirm the NDM gene was
plasmid-encoded after 46Mb of sequencing.

Comparison with other methods

We compared the performance of our algorithm against
existing methods that were reported to build assemblies25

with nanopore sequencing. In addition to the two sam-
ples presented above, we sourced three other samples
reported in the literature including i.) an Escherichia
coli K12 MG1655 strain sequenced to 67-fold coverage
with two nanopore R7 flowcells (Quick et al., 2014);30

ii.) a Salmonella enterica serovar Typhi (S. Typhi)
haplotype, H58 (Ashton et al., 2015) sequenced to 27-
fold and iii.) a Saccharomyces cerevisiae W303 genome
(196-fold) (Goodwin et al., 2015). Of the methods se-
lected for comparison, SPAdes-hybrid (Bankevich et al.,35

2012), SSPACE-LongRead (Boetzer and Pirovano, 2014),
LINKS (Warren et al., 2015) and npScarf were scaffolders
whereas Nanocorr (Goodwin et al., 2015) and NaS (Madoui
et al., 2015) belonged to the error-correction category.
We assembled the Illumina data of these samples using40

SPAdes (Bankevich et al., 2012) before running the scaf-
folding methods with nanopore data. SPAdes-hybrid was
run by incorporating nanopore data into the assembly

(with –nanopore option). The two error-correction tools,
Nanocorr and NaS were run on the nanopore sequencing 45

data using about 50-fold coverage of Illumina data, as per
suggestion of the respective publications. The corrected
reads were then assembled using Celera Assembler (Myers
et al., 2000). We observed that the quality of the assemblies
produced by Celera Assembler were highly sensitive to the 50

parameters specified in the specification file. We therefore
ran Celera Assembler for each data set on three specifica-
tion files provided by the authors of Nas and Nanocorr,
and reported here the most complete assembly obtained.

We evaluated the assemblies in terms of both complete- 55

ness and accuracy. The completeness of an assembly was
assessed by the N50 statistics and the number of contigs
that were longer than 500bp. To examine the accuracy of
an assembly, we compared that with the closest reference
genome of the samples in NCBI (See Methods) to obtain the 60

number of mis-assemblies and the number of mismatches
and short indels. During the test, we recorded the CPU
times required by these pipelines to produce the assemblies.
The runtimes for the scaffolder methods included times
for running SPAdes and for scaffolding, while that for the 65

NaS and Nanocorr included correction time and Celera
Assembler time. Table 2 presents the comparison metrics
of all assemblies as reported by Quast (Gurevich et al.,
2013) as well as their runtimes.

We ran npScarf in real-time mode, in which nanopore 70

sequencing data are streamed to the pipeline in the exact
order they were generated. This allowed us to assess the
completeness of the assemblies against the amount of data
generated. Figure 2 shows the progress of completing the
assemblies for all five samples. As mentioned previously, 75

npScarf produced a complete and a near-complete assem-
blies for the two K. pneumoniae samples (Figures 2a and
2b) with only under 20-fold coverage of nanopore data.
For the E. coli sample, npScarf required less than 30-fold
coverage nanopore data to complete the genome assembly 80

with one circular contig. npScarf also reduced the S. Typhi
assembly to only nine contigs (N50=864kb), which was
significantly better than the assembly reported by Ashton
et al. (2015) from the same data (34 contigs, N50=319kbs).

As for the S. cerevisae W303 genome which con- 85

tains 16 nuclear chromosomes and one mitochondrial
chromosome, npScarf generated an assembly of 19 con-
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tigs (N50=913Kb), substantially fewer than 108 con-
tigs (N50=600Kb) genereated by the next best method
(Nanocorr, see Table 2). We noticed a drop in N50 statis-
tics at the point where about 50-fold coverage of nanopore
data were received (Figure 2e). This was because npScarf5

encountered contradicting bridges and hence broke the
assembly at the lowest scoring bridge in lieu of a higher
score one. The N50 was then improved to reach the N50 of
913Kb with 90-fold coverage of nanopore sequencing; the
assembly did not change with more data (90- to 196-fold).10

We examined the assembly by comparing that with the
S. cerevisae strain S288C reference genome. One of the con-
tigs (Contig 17, length=81kb) was reported to be circular
which was completely aligned to the mitochondrial chromo-
some of the reference genome. Ten chromosomes (II, IV, V,15

VII, IX, X, XI, XIII, XV and XVI) were completely assem-
bled into individual contigs, and three chromosomes (I, III
and VIII) were assembled into two contigs per chromosome
(See Supplementary Figure 3). We found a mis-assembly
that joined chromosome IV and the start of chromosome20

XIV into Contig 10. The end of chromosome XIV was
also joined with chromosome XII into Contig 2. These
mis-assemblies essentially fused these three chromosomes
into two contigs.

We reran npScarf on the data sets in batch mode in25

which the scaffolding was performed with the complete
dataset. We found that all five assemblies were slightly
more complete than that from the real-time mode. In
particular, the S. cerevisae W303 assembly was further
reduced to 17 contigs as chromosomes I and VIII were30

resolved into individual contigs (data not shown). In this
assembly, 12 out of 17 chromosomes were completely recov-
ered to one contig, one chromosome (XIII) was fragmented
into two contigs and three chromosomes were fused into
two contigs due to mis-assemblies35

In all datasets, npScarf consistently produced the most
complete assemblies while its accuracy was among the
best. It was the only method that could completely re-
solve the K. pneumoniae ATCC BAA-2146 genome (5
contigs, N50 of 5.4Mb) with no mis-assembly requiring40

only 20-fold coverage of nanopore data; the second most
completed assembly (produced by SPAdes Hybrid) con-
tained 17 contigs and had the N50 of only 3.1Mb despite
using 33-fold coverage of nanopore sequence data. On the
well studied E. coli sample where LINK, Nas and Nanocorr45

were reported to resolve the whole genome with a larger
data set (147-fold coverage) (Warren et al., 2015), none
of these methods could produce the same result on the
67-fold coverage data set we tested. npScarf on the other
hand, was able to reconstruct the genome into one circular50

contig with as little as 30-fold coverage of the data. On
the S. Typhi data set, npScarf produced assemblies with
9 contigs in real-time mode and with 8 contigs in batch
mode (N50=864kb), significantly better than assemblies
from other methods (over 20 contigs). Similarly, while the55

S. cerevisae W303 assembly produced by npScarf was near
complete and N50 statistics reached the theoretical limit of
924kb, whereas other methods produced over 100 contigs
and more mis-assemblies or errors.

In terms of running times, we observed that the scaf-60

folding methods were much faster than the error correction

counterparts. Both NaS and Nanocorr required the align-
ment of the short reads to the long reads which were
computationally expensive. On the other hands, the scaf-
folding pipelines required 20 CPU-hours or less to build 65

an assembly from short reads, and between a few hours
to around 30 hours to scaffold the assembly with long
reads. Apart from SPAdes-Hybrid which performed scaf-
folding as part of assembling short reads, npScarf was the
fastest among other scaffolders with consistently requiring 70

much less scaffolding times. Note the times reported in
Table 2 were for processing the entire nanopore dataset,
whereas npScarf could be terminated early once a desirable
assembly is obtained.

Discussion 75

The development of high-throughput long read sequencing
technologies such as PacBio and nanopore has opened up
opportunities for resolving repetitive sequences to assemble
complete genomes and to improve existing genome assem-
blies. However, the relatively high error rates of these 80

technologies pose a challenge to the accurate assembly the
genome sequences. It is natural to combine these long
and erroneous reads with more accurate and cheaper short
read data for assembling genomes (Bashir et al., 2012;
Koren et al., 2012). One such hybrid-assembly approach 85

is to correct the long reads, which are then used to as-
semble the genome (Bashir et al., 2012; Goodwin et al.,
2015; Koren et al., 2012; Madoui et al., 2015) with classi-
cal assemblers designed for long and accurate reads such
as Celera Assembler (Myers et al., 2000). The approach 90

usually requires large amounts of long read data and exces-
sively high computational resources. The second class of
hybrid assemblers harness the long spanning reads to guide
extension of contigs in the draft genome assemblies. For
example, SSPACE-LongRead (Boetzer and Pirovano, 2014) 95

and Cerulean (Deshpande et al., 2013) rely on alignment
of long reads to the assembly graph determine the adja-
cent contigs. LINKS (Warren et al., 2015) uses a k-mer
approach which further improves the running time with a
small sacrifice of accuracy. These hybrid-assembly meth- 100

ods, especially those in the scaffolding category, provide
economical genome finishing pipelines that can produce
high quality genome assemblies from small amounts of long
read data on modest computing equipments.

The npScarf algorithm presented in this article is similar 105

to these mentioned scaffolders in the sense that npScarf
aligns the long reads to the contigs to build a scaffold of the
genome. However, our method estimates the copy number
of each contig in the genome and constructs the scaffold
from non-repetitive contigs while the repetitive contigs 110

are used to fill the gaps in the scaffold. Consequently,
npScarf was demonstrated to be able to generate more
complete and accurate assemblies than the competitors,
while requiring much less data.

One of the main contributions of our algorithm is that 115

it can process data directly from Metrichor base-caller and
report the current status of the analysis in real-time. The
pipeline hence allows answering the biological problems at
hand at the earliest time possible while sequencing is still
in progress. Investigators can also assess the progress of the 120

analysis, and terminate the sequencing once an assembly
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of sufficient quality and completeness is obtained. This
enables the generation of sufficient data necessary for the
analysis to guarantee the experiment outcomes and at the
same time, avoid costly over-sequencing of data.

One limitation of the current approach is that it relies on5

the cloud-based base-caller, Metrichor, which can introduce
a time-lag. In order to circumvent such as Nanocall (David
et al., 2016) or DeepNano (Boža et al., 2016) into our
pipeline.

The real-time function to complete genomic sequences10

open the possibility of in situ biological analyses (Cao
et al., 2015). Certain biological markers of interests may
be identified from short read assembly, but their positions
in the genome could only be determined by completing
the genome assembly with long reads. We have showed15

that npScarf can facilitate such analyses in real-time by
demonstrating the identification of antibiotic resistance
genes encoded in genomic islands and plasmids.

Methods

Bacterial cultures and DNA extraction.20

Bacterial strains K. pneumoniae ATCC BAA-2146 and
ATCC 13883 were obtained from American Type Culture
Collection (ATCC, USA). Bacterial cultures were grown
overnight from a single colony at 37◦C with shaking (180
rpm). Whole cell DNA was extracted from the cultures25

using the DNeasy Blood and Tissue Kit (QIAGEN c©, Cat
#69504) according to the bacterial DNA extraction proto-
col with modified enzymatic lysis pre-treatment.

Illumina sequencing and assembly.

Library preparation was performed using the NexteraXT30

DNA Sample preparation kit (Illumina) as recommended by
the manufacturer. Libraries were sequenced on the MiSeq
instrument (Illumina) with 300bp paired end sequencing,
to a coverage of over 250-fold.

MinION sequencing35

Library preparation was performed using the Genomic
DNA Sequencing kit (Oxford Nanopore) according to the
manufacturer’s instruction. For the R7 MinION Flow
Cells SQK-MAP-002 sequencing kit was used and for R7.3
MinION Flow Cells SQK-MAP-003 were used according40

to the manufacturer’s instruction. For each run a new
MinION Flow Cell (R7 or R7.3) was used for sequencing.
The library mix was loaded onto the MinION Flow Cell
and the Genomic DNA 48 hour sequencing protocol was
initiated on the MinKNOW software.45

Data collection

MinION data for the E. coli sample Loman and Quinlan
(2014) were downloaded from the European Nucleotide
Archive (ENA) with accession number ERP007108. We
used the data from the chemistry R7.3 run (67-fold cover-50

age of the genome from run accession ERR637419) rather
than the chemistry R7 reported in work by Goodwin et al.
(2015); Madoui et al. (2015); Warren et al. (2015). Il-
lumina MiSeq sequencing data for the sample were also
obtained from ENA (assession number ERR654977). Data55

from both Illumina and MinION sequencing of the S. Ty-
phi strain (Ashton et al., 2015) were collected from ENA
accession number ERP008615. The S. cerevisae W303
sequencing data were provided by Goodwin et al. (2015)
from the website http://schatzlab.cshl.edu/data/nanocorr/. 60

Data processing

Read data from Illumina sequencing were trimmed with
trimmomatic V0.32 (Bolger et al., 2014) and subsequently
assembled using SPAdes V3.5 (Bankevich et al., 2012).
SPAdes was run with the recommended parameters (-k 65

21,33,55,77,99,127 –careful). SPAdes-Hybrid was run with
the inclusion of –nanopore option. SSPACE and LINKS
were run on the original SPAdes’ assemblies. For SSPACE,
we used the parameters reported to work with MinION
reads in Karlsson et al. (2015) (-i 70 -a 1500 -g -5000). In 70

case of LINKS, a script was adapted from the example run
for E. coli to allow 30 iterations of the algorithms being
executed for each data set. NaS and Nanocorr were applied
to correct nanopore data from the maximum of 50-fold
coverage of Illumina data. The corrected long reads were 75

assembled using Celera Assembler version 8.3 with the
configuration files provided by the respective publication.

The Illumina assembly of the K. pneumoniae ATCC
BAA-2146 sample was annotated using Prokka (version
1.12-beta) with the recommended parameters for a K. pneu- 80

moniae strain. Plasmid origin of replication sequences in
both K. pneumoniae assemblies were identified by upload-
ing the assembly to the PlasmidFinder database (Carattoli
et al., 2014).

Real-time analyses 85

In real-time analysis of the Illumina assembly, npScarf
aligned incoming long reads using bwa-mem (Li, 2013)
with parameters -k11 -W20 -r10 -A1 -B1 -O1 -E1 -L0 -a
-Y -K10000 index -. The -K10000 parameter allowed the
alignments to be streamed to the scaffolding algorithm 90

after several reads were aligned.

Comparative metrics

The assemblies produced by the mentioned methods was
evaluated using Quast (V3.2) to compare with the respec-
tive reference sequences. The number of contigs, N50 95

statistic and the number of mis-assemblies were as per
Quast reports, while the error rates were computed from
sum of number of mismatches and the indel length. The
CPU time of each pipeline was measured with the Linux
time command (/usr/bin/time -v), the sum of user time 100

and system time was reported. When a pipeline was dis-
tributed across a computing cluster, its CPU time was the
sum of that from all the jobs.

Data access

The MinION sequencing data for the two K. pneumo- 105

niae samples were deposited to ENA under accessions
ERR868296 and ERR868298. The MiSeq sequencing data
are in the process of depositing to ENA.
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Software Availability

The software presented in this article and its documentation
is publicly available at https://github.com/mdcao/npScarf.
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Table 2: Comparison of on assemblies by using npScarf and the comparative methods.

#Contigs N50 Mis- Error Runtimes
Method (≥ 500bps) (bps) assemblies (per 100kb) (CPUhrs)

K. pneumoniae ATCC BAA-2146. Nanopore data: 33X coverage
SPAdes 90 288,316 0 4.72 15.63
SPAdes-Hybrid 17 3,075,643 1 6.61 16.07
SPAdes + SSPACE 53 400,264 4 12.73 15.63 + 2.3
SPAdes + LINK 31 553,853 5 16.05 15.63 + 4.03
SPAdes + npScarf (real-time) 5 5,438,323 0 20.00 15.63 + 1.6
SPAdes + npScarf (batch) 5 5,437,526 0 22.76 15.63 + 0.84
NaS + CA 29 344,904 15 18.89 324.35 + 3.49
Nanocorr + CA 68 139,201 8 141.32 312.64 + 1.37

K. pneumoniae ATCC 13883. Nanopore data: 18X coverage
SPAdes 69 301,775 5 6.22 16.95
SPAdes-Hybrid 15 728,705 19 8.02 16.97
SPAdes + SSPACE 36 685,344 13 12.39 16.95 + 1.48
SPAdes + LINK 17 1,527,003 18 16.12 16.95 + 1.12
SPAdes + npScarf (real-time) 4 4,923,746 21 10.84 16.95 + 0.52
SPAdes + npScarf (batch) 4 4,923,952 21 10.26 16.95 + 0.45
NaS + CA 38 393,946 36 10.24 192.78 + 6.92
Nanocorr + CA 60 147,647 16 118.34 161.33 + 2.6

E. coli K12 MG1665. Nanopore data: 67X coverage
SPAdes 114 176,197 0 3.51 4.38
SPAdes-Hybrid 42 4,642,938 2 1.21 4.76
SPAdes + SSPACE 59 3,154,619 1 29.26 4.38 + 3.42
SPAdes + LINK 50 3,317,644 2 36.19 4.38 + 4.03
SPAdes + npScarf (real-time) 1 4,643,557 2 13.08 4.38 + 2.43
SPAdes + npScarf (batch) 1 4,645,701 2 11.72 4.38 + 1.91
NaS + CA 21 873,750 19 10.60 807.19 + 6.77
Nanocorr + CA 2 4,649,789 6 10.41 213.68 + 8.49

S. Typhi H58. Nanopore data: 26X coverage
SPAdes 89 106,832 7 39.05 1.86
SPAdes-Hybrid 27 443,374 12 55.46 2.06
SPAdes + SSPACE 34 358,489 10 59.39 1.86 + 1.55
SPAdes + LINK 20 473,170 13 66.65 1.86 + 1.28
SPAdes + npScarf (real-time) 9 864,338 18 53.86 1.86 + 0.93
SPAdes + npScarf (batch) 8 864,241 16 52.01 1.86 + 0.47
NaS + CA 54 211,555 17 58.87 248.32 + 7.21
Nanocorr + CA 95 36,608 9 973.63 199.85 + 0

S. cerevisae W303. Nanopore data: 196X coverage
SPAdes 364 155,423 29 124.10 20.54
SPAdes-Hybrid 240 346,297 68 158.13 67.81
SPAdes + SSPACE 263 392,096 89 136.66 20.54 + 31.54
SPAdes + LINK 161 579,611 83 143.04 20.54 + 26.97
SPAdes + npScarf (real-time) 19 912,664 82 141.93 20.54 + 21.28
SPAdes + npScarf (batch) 17 924,022 79 141.01 20.54 + 18.84
NaS + CA 121 154,851 123 140.08 9811.88 + 140.69
Nanocorr + CA 108 599,597 133 197.00 7208.08 + 272.86
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