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Abstract

Genome-wide association studies (GWAS) have identified thousands of regions in the genome that

contain genetic variants that increase risk for complex traits and diseases. However, the variants un-

covered in GWAS are typically not biologically causal, but rather, correlated to the true causal variant

through linkage disequilibrium (LD). To discern the true causal variant(s), a variety of statistical fine-

mapping methods have been proposed to prioritize variants for functional validation. In this work we
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introduce a new approach, fastPAINTOR, that leverages evidence across correlated traits, as well as

functional annotation data, to improve fine-mapping accuracy at pleiotropic risk loci. To improve com-

putational efficiency, we describe an new importance sampling scheme to perform model inference. First,

we demonstrate in simulations that by leveraging functional annotation data, fastPAINTOR increases

fine-mapping resolution relative to existing methods. Next, we show that jointly modeling pleiotropic risk

regions improves fine-mapping resolution relative to standard single trait and pleiotropic fine mapping

strategies. We report a reduction in the number of SNPs required for follow-up in order to capture 90%

of the causal variants from 23 SNPs per locus using a single trait to 12 SNPs when fine-mapping two

traits simultaneously. Finally, we analyze summary association data from a large-scale GWAS of lipids

and show that these improvements are largely sustained in real data.

Introduction

Genome-wide association studies (GWAS) have identified thousands of regions in the genome containing

risk variants for complex traits and diseases [9, 29, 25, 31, 21]. However, the vast majority of the GWAS

reported variants are not biologically causal, but rather, correlated to the true causal variants through linkage

disequilibrium (LD) [30, 14, 16]. Fine mapping studies gather detailed genetic information within the loci

that have been implicated in GWAS [23, 17, 32] and statistically dissect these regions to prioritize variants

according to probability of causality. The top variants resulting from this procedure may become candidates

for functional validation [6, 24].

Many statistical methods for fine-mapping have been developed for the prioritization of causal variants.

Standard approaches range from a simple ranking of SNPs based on their p-values to more sophisticated LD-

aware ranking algorithms that quantify probabilities for variants to be causal [14, 4, 1, 16]. Initial probabilistic

methods have assumed a simple model in which only one variant per locus is biologically causal [22], with more

recent methods extending the statistical frameworks to accommodate multiple casual variants at risk regions

[14, 4, 16, 15]. Although modeling multiple causal variants drastically increases performance, particularly at

loci with evidence of multiple signals of association, it also presents a combinatorially challenging problem in

performing inference in the model. That is, the likelihood formulation contains a model space size exponential

in the number of variants at a locus, which clearly cannot be enumerated over for even a modestly-sized locus.

To account for this combinatorial explosion, initial methods approximated the full likelihood by restricting

the maximum number of causal variants allowed at a risk locus to a small number [14, 4, 16, 15]. More

recent works [1] further improved computational efficiency by sampling likely causal models using stochastic
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search, leveraging the intuition that most of the terms in the likelihood computation have near negligible

contribution. The authors demonstrated that this achieves drastic reduction in runtime with comparable

fine-mapping accuracy relative to enumerative methods [1]. However, this was done in the context of a single

fine-mapping locus and did not integrate multiple sources of information.

Many GWAS loci are known to be implicated in multiple related traits – a phenomenon that is observed

in many phenotypic classes. For example, breast cancer and mammographic density [19], high density

lipoprotein (HDL) and low density lipoprotein (LDL) [9], or rheumatoid arthritis and irritable bowel disease

[20, 25] are all pairs of traits that share overlapping GWAS signals. Combining association signals at these

pleiotropic regions may strengthen the signal from the causal variants that are impacting both traits. A

standard approach used when combining association information across multiple studies is fixed-effects meta-

analysis, which assumes that causal variants across studies share the same effect sizes. The random-effects

model does allow for effect size heterogeneity, but it is poorly-suited for situations in which the variant

has opposite effect sizes in the various phenotypes [27]. For this reason, multivariate analyses that jointly

analyze association data from multiple phenotypes and account for effect size heterogeneity are beneficial –

particularly for related traits that have opposing phenotypic consequences such as HDL and LDL [9].

Considerable effort has been put forth into characterizing the chromatin landscape across the entire

spectrum of human tissues [34, 8, 18]. Most recently, the Roadmap Epigenomics consortium interrogated

111 cell types, charting histone modifications, DNA accessibility, DNA methylation, and gene expression, to

produce genome-wide maps of functional elements [18]. Previous works have demonstrated that principled

integration of such data can aid fine-mapping performance in the context of single and multi-population

fine-mapping studies [16, 15]. Since related traits have been shown to share an underlying genetic basis [2]

that localizes within similar functional classes [11], it is plausible that functional annotation data can also

augment cross-trait fine-mapping.

In this work we propose a unified framework to perform fast, integrative fine-mapping across multiple

traits. We integrate the strength of association across multiple traits with functional annotation data to

improve performance in the prioritization of causal variants. Our approach makes the assumption that

the same variants at the risk loci impact both traits though with potentially distinct effect sizes. A key

advantage of our approach is that it requires only summary association data for each trait, thus avoiding

the restrictions that arise from the sharing of individual-level data. To balance computational efficiency

and accuracy we propose an Importance Sampling technique that provides guarantees for convergence, while

relaxing the assumption of the maximum number of causal variants allowed at each risk locus.
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Through simulations we show that our integrative method delivers well-calibrated probabilities for SNPs

to be causal and improves fine-mapping performance relative to current state-of-the-art strategies. To our

knowledge, the only existing method that performs joint mapping for pleiotropy while incorporating func-

tional annotation data is GPA [5]. We show that our approach provides superior accuracy to GPA, likely due

to the explicit modeling of LD in our framework. We illustrate the benefit of our proposed methodologies

by fine-mapping pleiotropic regions of lipid traits in a GWAS of over 180K individuals [9].

Methods

Overview

Here, we introduce statistical methods for fine-mapping of pleiotropic loci with functional annotation data

(see Figure 1). We build upon previous works [16, 15, 14] that make use of a Multivariate Normal (MVN)

distribution to jointly model association statistics at all SNPs at the locus. This not only allows for the

possibility of multiple causal variants at any risk locus, but also avoids the need to access individual level

genotype data as LD can be approximated using the appropriate population-matched reference panel [7]. We

integrate relevant functional annotation data through a prior probability for SNPs to be causal. We introduce

an Importance Sampling procedure to improve computational efficiency over methods that enumerate all

possible models of causal configurations.

Here, we introduce statistical methods for fine-mapping of pleiotropic loci with functional annotation

data (see Figure 1). We build upon previous works [16, 15, 14] that make use of a Multivariate Normal

(MVN) distribution to jointly model association statistics at all SNPs at the locus. This not only allows for

the possibility of multiple causal variants at any risk locus, but also avoids the need to access individual level

genotype data as LD can be approximated using the appropriate population-matched reference panel [7]. We

integrate relevant functional annotation data through a prior probability for SNPs to be causal. We introduce

an Importance Sampling procedure to improve computational efficiency over methods that enumerate all

possible models of causal configurations.

A statistical framework for fine-mapping

The standard approach to connect genotype to phenotype is through a linear model. For individual i, let

yi be the trait value and gi be their vector of genotypes spanning m SNPs. The trait can be modeled

as yi = gTi βββ + εi, where εi ∼ N(0, σ2
e) is random environmental noise. The vector, βββ, represents the
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allelic effects whose entries will be non-zero only at the causal SNPs. Given N individuals with measured

genotypes and trait values, the effect size at SNP j is typically estimated using standard linear regression as

β̂j = (gTj gj)
−1gTj Y. The strength of association is then quantified using the Wald statistic [3]:

Zj =
β̂j

SE(β̂j)
(1)

which asymptotically follows a normal distribution Zj ∼ N (λj , 1) with mean

λj =
βj
√

Var(gj)

σe

√
N. (2)

Here, λj , is referred to as the Non-Centrality Parameter (NCP) and dictates of power of finding a

significant association and, by extension, the power to distinguish causal from non-causal SNPs (i.e. βj 6= 0

vs. βj = 0). When the j’th SNP is causal, the effect sizes are non-zero and therefore the association statistic

(Z-score) corresponding to that SNP will be drawn from a non-central Normal distribution. However, LD (i.e.

correlations between SNPs at each locus) will induce non-zero NCPs at non-causals variants through tagging.

Therefore, neighboring non-causal SNPs will appear to be significantly associated to a trait indirectly through

LD. Previous works [14, 16, 15] have shown that the NCPs at any SNP can be approximated from the NCPs

at the causal SNPs:

Λj =
∑
c

rj,cλ
c (3)

where rj,c denotes the Pearson correlation between SNP j and causal SNP c. If we collect all the pairwise

correlations into a matrix, Σ, and let λC be the vector of standardized effects sizes at the causal SNPs

given by the indicator vector C, the entire set of regional summary statistics, Z, can be approximated by a

Multivariate Normal distribution (MVN)) [14, 16]:

Z | λC,Σ ∼ N (ΣλC,Σ) (4)

However, the causal effect sizes (λC) are typically unknown apriori and must be either approximated [16, 15]

or integrated out [14]. Leveraging the standard infinitesimal model [33], Hormorzdiari et al. [14] proposed to

use a normal prior on the causal NCPs which, due to conjugacy, can be conveniently integrated analytically
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as follows:

λC | C, σ2 ∼ N (0,ΣC)) (5)

ΣC = σ2Diag(C) + Diag(ε) (6)

Z | Σ,C ∼
(∫
N (ΣλC,Σ)N (0,ΣC) dλC

)
P (C) (7)

= N (0,Σ + ΣΣCΣ)P (C) (8)

Here the prior probability of the causal set vector (P (C)) can be set to be uniform [22], hypergeometric [14],

or can be estimated empirically using more sophisticated approaches that incorporate functional genomic

data [16, 15]. Chen et al. [4] made the observation that the marginal likelihood in (eq. 8) is approximately

proportional to a Bayes Factor comparing a causal and null model which depends on the Z-scores and LD only

at the causal SNPs. This effectively reduces the computational burden from cubic in the number of SNPs

to cubic in the number of causal variants considered at each likelihood evaluation. This not only improves

efficiency, but also improves numerical stability since a much smaller matrix is inverted thus alleviating the

need for stringent regularizations. In this work, we follow the Chen et al. implementation of the likelihood

computations [4, 1].

Fine-mapping pleiotropic loci

Next, we extend the framework to exploit pleiotropy across related traits. Given multiple phenotypic mea-

surements across T traits, one can compute Z-scores for each trait independently. If a locus harbors a

significant association for multiple traits, a reasonable assumption would be that the underlying causal vari-

ants driving this association are shared. It follows that the vectors of association statistics are conditionally

independent given the causal variants (C), thus the joint distribution for all T sets of Z-scores decomposes

into product:

P (Z1 . . .ZT | Σ,C) =
T∏
t=1

P (Zt | Σt,C, σ
2
t ) (9)

To simplify notation we hereafter refer to the collection of Z-scores at a fine-mapping locus as Z∗ =

{Z1 . . .ZT }. We assume that all trait measurements have been performed in a single population and there-

fore assume that Σt,= Σ for all t. Importantly, we note that our formulation makes no assumptions on the
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coupling between effect sizes at causal SNPs across traits which allows for arbitrary levels of heterogene-

ity. Accommodating this effect size heterogeneity could be important for related traits that have opposing

phenotypic consequences.

Under the assumption that causal variants are shared across pleiotropic loci, the marginal likelihood of

the data can be written as a summation across all possible causal sets, C:

L(Z∗ | Σ, σ2) =
∑
C∈C

T∏
t=1

P (Zt | Σ,C, σ2
t )P (C) (10)

We can now use this to obtain the posterior probability of any causal set with a straightforward application

of Bayes’ rule:

P (C | Z∗,Σ) =

∏T
t=1 P (Zt | Σ,C, σ2

t )P (C)

L(Z∗ | Σ, σ2)
(11)

which can be marginalized to yield per-SNP posterior probabilities:

P (Cj = 1 | Z∗,Σ, γ) =
∑

C:Cj=1

P (C | Z∗,Σ) (12)

Incorporating functional genomic data

To integrate functional annotation data within this framework, we use a logistic function to connect a SNP’s

functional genomic context to its causal status as follows:

P (Cj = 1 | γ,A) =
exp(γ′Aj)

1 + exp(γ′Aj)
(13)

P (C | γ,A) =
m∏
j=1

P (Cj | γ,A)C
j (

1− P (Cj | γ,A)
)1−Cj

(14)

The vector Aj is the set of annotations corresponding to the j’th SNP and γk is the prior-log odds that a

SNP in annotation k is causal. We note that γ can be estimated directly from the data through an Empirical

Bayes approach first described in Kichaev et al. [16]. However, this restricts functional enrichment estimation

to only the fine-mapping loci under investigation. Alternatively, one could exploit potentially more powerful,

genome-wide approaches such as stratified LD-score regression [11] that can infer global functional genomic

enrichments using only summary data. Our framework is amenable to both approaches, and we allow the

user to estimate γ from all the fine-mapping loci jointly using the EM algorithm proposed in [15] or supply
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it from external analyses.

Model Inference via Importance Sampling

The marginal likelihood in (eq. 10) requires enumeration of O(2m) possible causal sets (C). This rapidly

becomes intractable as the number of SNPs grows large, and strategies for dealing with this computational

bottleneck need to be considered. Earlier frameworks [16, 4, 15] avoided this problem by simply restricting

the total number of potential casual variants to a small number (k << m), thus reducing the computational

burden to O(mk). However, even in this reduced model space, enumerating over all possible combinations is

inefficient as most causal configurations will contribute minimally to the overall likelihood of the data. Recent

works have shown that sampling can circumvent brute-force enumeration by efficiently exploring likely causal

configurations through stochastic search [1] – though this still requires pre-specifying a subjective prior that

explicitly upper-bounds the maximum number of causal variants considered at the locus.

In this work, we make use of Importance Sampling, a variance reduction technique commonly used in

Monte Carlo integration [12], to provide an efficient approximation of the marginal likelihood (eq. 10). Unlike

other recently proposed sampling techniques, Importance Sampling comes with asymptotic convergence

guarantees and allows us to drop the hard cutoff on the maximum number of potential causal variants

considered. The summation given in (eq. 10) could naively be approximated by sampling directly from the

prior and computing a simple Monte Carlo average:

Cj ∼ Bern
(
P (Cj | γ,A)

)
(15)

L(Z∗ | Σ, σ2) ≈ 1

S

S∑
s=1

T∏
t=1

P (Zt | Σ,C(s), σ2
t ) (16)

However, this is inefficient as highly probable causal sets in the posterior may not necessarily be reflected

in the prior. To better guide the sampling of highly probable causal sets, we build off the intuition that

SNPs with stronger associations are more likely to be casual than ones with weak associations. We can

thus construct a discrete proposal distribution, G, to take this into account by simulating causal sets as

independent Bernoulli draws with probabilities given by:
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G(Cj | Z∗) ∼ Bern

( ∑
t(Z

j
t )2∑

i

∑T
t (Zit)

2

)
(17)

G(C(s) | Z∗) =
m∏
j=1

G(Cj | Z∗)C
j (

1−G(Cj | Z∗)
)1−Cj

(18)

This proposal will favor selecting SNPs that have strong evidence of association in multiple traits. We can

then compute importance weights and re-adjust the bias introduced by sampling from G as follows:

L(Z∗ | Σ, σ2) ≈
∑S
s=1

∏T
t=1 P (Zt | Σ,C(s), σ2

t )W (C(s))∑S
s=1W (C(s))

(19)

W (C(s)) =
P (C(s) | γ,A)

G(C(s) | Z∗)
(20)

Which we can then use to approximate the per-SNP probabilities using the same S samples:

P (Cj = 1) ≈
∑S
s=1 1(Cj(s) = 1)

∏T
t=1 P (Zt | Σ,C(s), σ2

t )W (C(s))∑S
s=1

∏T
t=1 P (Zt | Σ,C(s), σ2

t )W (C(s))
(21)

Simulation Setup

To mimic real genotype data, we used HAPGEN2 [28] and the 1000 Genomes [7] European samples, to

simulate 20,000 haplotypes for a number of randomly selected 25KB loci from chromosome 1. We filtered

rare SNPs (MAP ¡ 0.01) and normalized genotypes to be mean-centered with unit variance. We overlapped

our simulated regions with DNase Hypersensitivity (DHS) sites spanning 217 cell types and tissues [13].

Using these annotations, we drew causal status for each SNP according to the logistic model described

previously, setting the DHS enrichment to 5.1 to reflect what was reported in [13]. Each locus harbored one

causal variant in expectation, though the random assignment of causal status could yield zero or multiple

casual variants for a given locus. In experiments that were done over 50 loci simultaneously, this typically

resulted in an average of 18 loci with a single causal variant and 14 loci with multiple causals. Once we

established the causal SNPs, we simulated phenotypes under a linear model such that for individual i, their

phenotype value Yi was given by Yi =
Nc∑
j=1

βj · gji + εi, where Nc is the number of causal variants, βj is the

effect size of the j′th causal SNP, and gji is number of copies of the risk allele j for individual i. We drew

εi for each individual from a normal distribution N (0, σ2
e), where σ2

e was given by the formula h2g =
σ2
g

σ2
g+σ

2
e
,
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setting σ2
g to the empirically observed genetic component.

We computed Z-scores for all the SNPs within causal loci by regressing the phenotype vector Y on each

genotype vector Gj and then taking the Wald statistic. To simulate correlated traits, the effect sizes (βc1, β
c
2)

at the shared causal variants were drawn from an MVN distribution: βc1

βc2

 ∼ N (0,

 h2g/Nc ρh2g/Nc

ρh2g/Nc h2g/Nc

) (22)

where ρ represents the desired genetic correlation. We chose a ρ of 0.4, consistent with typical correlations

for lipids data reported in [2].

For computational efficiency, we also performed simulations in which the vectors of association statistics

where drawn directly from an MVN distribution (eq. 4). In this scenario the NCP (λC) was set to 5 at all

causal SNPs.

Existing methods

We compared our approach to several existing fine-mapping methods. For single-trait fine-mapping, we

compared to FINEMAP and CAVIARBF [1, 4], two methods based on the CAVIAR[14] model that do

not incorporate functional annotation data. We ran CAVIARBF v1.4 using the default settings, setting

prior variance explained to be 0.05 and the maximum number of causal variants in the model to 3. After

CAVIARBF computed Bayes factors for each SNP, we ran their model search algorithm, which outputs

posterior probabilities based on Bayes factors. In this step, we set the prior probability of each SNP being

causal to 1/m, where m is the number of variants in the locus. We ran the FINEMAP v1.1 software using

default settings, allowing for 3 causal SNPs per locus with prior probabilities of (0.6, 0.3, 0.1) for 1, 2, and

3 causals respectively.

For multi-trait fine-mapping, we compared to GPA [5]. To our knowledge, GPA is the only other method that

performs multi-trait fine-mapping while leveraging functional annotation data. As GPA requires p-values

as input, we converted Z-scores from our simulations to p-values for each SNP. We provided GPA with the

same DHS annotation data as we did for our approach. On multi-trait analyses, GPA outputs 4 posterior

probabilities for each variant, indicating the probability that the SNP is causal for neither trait, Trait 1,

Trait 2, or both traits. When evaluating accuracy, we considered the SNP to be deemed causal by GPA if

it was implicated in both traits. In addition, we explored traditional meta-analysis techniques to combine

information across traits by computing inverse variance fixed effects association statistics [10]. We then used
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these Z-scores in fine-mapping under the assumption of a single causal variant [22] as well as within our

framework as a single trait.

Empirical Lipids Data

We downloaded GWAS summary data across four blood lipids phenotypes: High Density Lipoprotein, Low

Density Lipoprotein, and Triglycerides [9]. For each of the traits, we used Imp-G summary [26] to impute Z-

scores up to the latest version (V3) of the 1000 Genomes European reference panel [7] yielding approximately

7.6 million SNPs per trait in total. We then compiled a list of 24 pleiotropic regions which we defined as a

GWAS hit that was observed in least two traits of the three traits. For each of these regions, we centered a

250KB window around the lead SNP and overlapped these regions with two functional marks derived from

the Roadmap Project: Liver H3K4me1 and Liver H3K27ac [18].

Results

Fast and reliable performance in single trait fine-mapping

We first sought to empirically assess how our sampling-based approach compared to fine-mapping methods

CAVIARBF and FINEMAP. These previous approaches can model multiple causal variants, but were not

designed to exploit pleiotropy. As such, in order to make the comparisons fair, we conducted our initial

investigation in the context of a single trait. Furthermore, because these methods, as well as our proposed

approach, are faster generalizations of the underlying CAVIAR model, we chose not to compare to CAVIAR

nor PAINTOR, both of which would predictably have slower computational performance but similar accu-

racies.

We first assessed performance on the basis of CPU runtime. The number of samples that are drawn

to approximate the posterior distribution is invariably connected to the resulting runtime for our method,

fastPAINTOR. Therefore, we determined the number of samples required to yield approximately unbiased

credible sets and find that one million samples was typically sufficient across a wide-range of locus sizes

(Figure 2). We then compared to existing approaches and, not surprisingly, discover that methods that

approximate the posterior model space through sampling vastly outperform methods that enumerate over

all possible combinations (Figure 3). For example, both fastPAINTOR and FINEMAP scale favorably with

the size of the locus, with average run times of (11.5s, 10.8s) per 25KB locus and (186s, 31s) per 250KB

locus. The added computational overhead of fastPAINTOR is due to the fact that functional enrichments
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must be iteratively estimated using an EM-algorithm. If these estimates are supplied from external analyses,

running fastPAINTOR* takes an average of 75s per 250KB locus to produce probabilities.

We next evaluated the accuracy of these methods in resolving causal variants to ensure that our sampling

approximation did not deflate performance. We simulated 100KB regions with various levels of DHS enrich-

ment to reflect a wide diversity of potential functional genetic architectures. In general, we see that leveraging

functional annotation data improves fine-mapping resolution relative to non-integrative approaches (Figure

4) – particularly as causal variants localize within smaller fractions of the genome (i.e. increasing enrichment).

For example, the average rank of the causal SNPs was around 21.9 and 21.4 for CAVIARBF and FINEMAP

across all functional genetics architectures. On the other hand, when causal variants are diffusely enriched

within DHS, their average rank based on fastPAINTOR probabilities is 21.4 while strong functional enrich-

ment yields an average rank of 15.0. Taken together, these results suggest that sampling-based, integrative

methods are both scalable and achieve greater accuracy than current state-of-the-art methodologies.

Multi-trait fine-mapping

Having established that our new computationally efficient approach compared favorably in standard fine-

mapping scenarios, we next sought to investigate how leveraging information across related traits as well as

functional annotation data affected fine-mapping performance. We simulated two traits for 10,000 individuals

where the causal variants are shared between the traits but have heterogeneous effects (see Methods). We

find that by borrowing information across related traits, we are able to improve fine-mapping performance

with greater efficiency than just simply increasing sample size for any single trait (see Figure 5). In our

multi-trait analysis with fastPAINTOR, we required (1.4, 12.4) SNPs per locus for follow-up in order to

capture (50%, 90%) of the true causal variants, as compared with (1.9, 23.1) SNPs in a single-trait analysis.

Intuitively, this is due to the fact that power to detect causal variants grows with the square root of the

sample size, while growing linear with the allelic effects (see eq 2). Therefore, leveraging traits with multiple

effect sizes will, on average, be more beneficial than simply increasing the sample size for one of the traits.

We next explored principled strategies for assembling data spanning multiple traits. Our main comparator

was GPA– a method specifically proposed to use pleiotropy and functional data to prioritize variants– as

well as running fastPAINTOR with standard Fixed Effects (FE) meta-analysis. In general, our approach

is more accurate and robust than previously proposed methods, requiring (1.4,12.4) SNPs per locus for

follow-up in order to identify (50%, 90%) of the causal variants compared to (2.3,25.1) for fastPAINTOR

with FE or (11.6,32.3) for GPA (Figure 5). One of the critical model assumptions of GPA is that SNPs are
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independent. Clearly, in the context of fine-mapping, this assumption is strongly violated which explains the

sub-optimal performance. Alternatively, FE can be viewed as simply a weighted-average of the effect sizes.

In the extreme, though not implausible, scenario where causal effects are going in opposite directions, FE

will provide weak evidence that a SNP is causal.

Finally, we formulated our framework with the assumption that causal variants are shared across traits.

This may not always hold in practice and we wanted to understand how our method responds to violations

of this assumption. We performed simulations in which causal variants for the two traits were drawn

independently leading to potentially distinct causal SNPs. We find that our joint fine-mapping method is

robust to pleiotropic loci with differing causals, yielding relatively small mis-calibration of the credible sets

on the order of 10% (see Table 1). We can thus conclude that our proposed framework that jointly models

sets of association statistics, explicitly accounts for local correlation structure, and integrates functional data

prioritizes variants robustly and accurately.

Multi-trait fine-mapping in lipids data

In order to demonstrate that the gains in our multi-trait fine-mapping approach are realized in real data,

we analyzed summary association data from a large-scale GWAS of lipids [9] . High Density Lipoprotein

(HDL), Low Density Lipoprotein (LDL), and Total Triglycerides (TG) are prototypical pleiotropic traits,

sharing 24 GWAS hits for at least two. To showcase our pleiotropic fine-mapping framework, we obtained

GWAS data over these traits spanning 180K individuals [9] and did integrative fine-mapping across putative

pleiotropic regions. Functional annotation selection was guided by the genome-wide heritability-based func-

tional enrichments reported in Finucane et al. [11]. The authors analyzed HDL, LDL, and TG and found

that the H3K4me1 mark in liver tissue had the strongest enrichment of heritability across all three traits.

Their result provides strong support for the key assumption that causal variants are shared across traits in

our model. In addition to liver H3K4me1, we also used the liver H3K27ac mark, which displayed strong

enrichment for multiple traits. In addition to a joint analysis, we applied our framework with and without

functional data as well as on each trait independently. To quantify fine-mapping resolution we use 99%

credible sets [22, 16] which are defined as the set of variants that aggregate to capture 99% of the posterior

probability mass. Consistent with simulations, pleiotropic fine-mapping provided a reduction in the size of

the credible set as compared with investigating individual traits alone (see Table 2). Additional functional

data helps refine the signal, though only marginally, since exceedingly strong associations at these regions

dominate the prior evidence. Moreover, we show that the 99% credible sets obtained from the cross-trait
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analysis contained 13 novel SNPs not found in any of the single-trait analyses alone (Figure 6). This suggests

that, for some loci, leveraging association strength across related traits may increase our power to detect

more weakly associated causal variants in the individual traits. In conclusion, these encouraging results

illustrate that carefully merging related traits can improve the resolution of statistical fine-mapping.

Discussion

In this work, we introduced a fast fine-mapping method that integrates several sources of genetic data to

efficiently and accurately prioritize causal variants. Our Importance Sampling strategy dramatically reduces

runtime due to its ability to efficiently sample high probability causal configurations, demonstrating that

enumerating over complex model spaces is not necessary for integrative fine-mapping. We generalized this

approach to leverage multiple traits simultaneously and demonstrated, both in simulations and real data,

that this strategy can improve the ability to detect causal variants impacting both traits. As GWAS data

accumulate and evidence for the abundance of pleiotropic risk loci mounts, there is a need for fine-mapping

methods that can perform large-scale integrative analyses. Moreover, efforts by large consortia such as

ENCODE will continue to provide genomic annotation data that will improve the accuracy of fine-mapping

studies. A key advantage to our method is that it requires only summary association data, overcoming the

issues that arise when sharing individual data that would otherwise limit sample sizes. In light of these

developments, our proposed methodology will become increasingly applicable in the future.

We conclude by highlighting some caveats and limitations of our proposed framework. The power of our

multi-trait fine-mapping framework hinges on the assumption that causal variants are shared at pleiotropic

risk regions. While this notion is supported by the fact that related traits have shared functional genetic

architectures [11], it is unknown whether this holds in general when doing fine-mapping. Reassuringly, we

demonstrated in simulations that our framework is robust to this violation. Second, most large-scale GWAS

have overlapping samples and the conditional independence assumption given in (eq. 9) may be violated.

However, it is unclear whether this violation will bias the results dramatically if the underlying causal variants

are shared across traits. Finally, while our Importance Sampling scheme does not explicitly upper-bound the

number of causal variants at a fine-mapping regions, it favors exploring parsimonious models over complex

ones. We therefore advocate that fine-mapping using our approach be undertaken where there is evidence

of only moderate allelic heterogeneity.
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Method Proportion of causals identified SNPs selected (s.e.)
Trait 1 0.96 46.01 (0.27)
Trait 2 0.96 45.54 (0.27)

Differing causals 0.86 28.42 (0.22)
Same causals 0.97 26.00 (0.17)

Table 1: The performance of fastPAINTOR is largely sustained when the assumption of shared causal
variants across traits is violated. As compared with fine-mapping single traits independently, the reduction
in the 95% credible set size is sustained while still capturing a large proportion of the causal variants. We
define an 95% confidence set as the number of SNPs we need to select in order to accumulate 95% of the
total posterior probability mass per locus.

Fine-mapping Annotations
Strategy without with

HDL 4.83 5.08
LDL 14.25 11.42
TG 5.43 5.38

Multi-trait 4.71 4.71

Table 2: Pleiotropic fine-mapping is superior to single locus fine-mapping. Presented here are the mean
number of SNPs that are in the 99% fine-mapping credible sets.

Figures and Tables
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Figure 1: Example of input and output of fastPAINTOR at locus chr4:35Mb for LDL and TG. As input,
fastPAINTOR receives an LD matrix, functional annotations, and multiple sets of Z-scores at the given
locus. fastPAINTOR performs inference and outputs posterior probabilities for each SNP, indicating the
likelihood that the SNP is causal across both traits.
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Figure 2: One million samples is sufficient to ensure approximately calibrated credible sets. We simulated
variable sized regions by drawing from an MVN with reference LD given by the Europeans in the 1000
Genomes V3. We computed 95% credible sets for each simulated locus, and calculated the bias from defined
as the difference between the proportion of simulated causal variants that were captured and the expected
proportion (0.95). Here, negative bias represents a finding less causal variants than the credible set.
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Figure 3: Importance sampling improves computational efficiency. Sampling approaches scale favorably
with increasing number of SNPs being fine-mapped. We randomly selected 10 GWAS hits and centered
increasingly large windows around them. For convenience, we simulated Z-scores by drawing from an MVN
with reference LD given by the Europeans in the 1000 Genomes V3. Here, fastPAINTOR estimates functional
enrichment empirically while fastPAINTOR* has it provided from external analyses.
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Figure 4: fastPAINTOR effectively leverages functional annotation data. We simulated fifty 100KB loci
under various functional genetic architectures by drawing summary statistics directly from an MVN dis-
tribution. We applied all three methods using default settings and report the average ranks of the causal
variants across all simulated loci.

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2016. ; https://doi.org/10.1101/054684doi: bioRxiv preprint 

https://doi.org/10.1101/054684
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.00

0.25

0.50

0.75

1.00

0 10 20 30
Average number of SNPs per locus selected

Pr
op

. C
au

sa
l V

ar
ia

nt
s 

Id
en

tif
ie

d

Pleiotropic Model
Cross−Trait Fine Mapping
Single Trait
Fixed Effects (Multiple Causal)
Fixed Effects (Single Causal) 
GPA

Figure 5: Integrative methods improve fine-mapping resolution in multiple traits. We simulated fifty 25KB
loci for two traits with shared causal variants at each locus. We measure accuracy as the proportion of causal
variants identified as we increase the size of our candidate SNP set.
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Figure 6: Cross-trait analysis proposes novel SNP sets. We obtained 99% credible sets for HDL, LDL, and
TG analyses independently as well as for the joint analysis. We find that the credible sets from the cross-trait
analysis contain 13 SNPs not found in any independent analysis.
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