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Abstract

A variety of massively parallel assays for measuring
high-resolution sequence-function relationships
have been developed in recent years. However,
software for learning quantitative models from
these data is lacking. Here we describe Sort-Seq
Tools, a software package that allows multiple
types of quantitative models to be fit to massively
parallel data in multiple different ways. We
demonstrate Sort-Seq Tools on both simulated and
published data from Sort-Seq studies, massively
parallel reporter assays, and deep mutational
scanning experiments. We observe that, as an
inference method, information maximization
generally outperforms both least squares
optimization and enrichment ratio calculations.

Background
High throughput DNA sequencing technologies are be-
ing used to do far more than just sequence genomes
[1]. One area of research that is rapidly expanding
thanks to new sequencing technologies is the study
of quantitative sequence-function relationships. In re-
cent years, a variety of massively parallel assays ca-
pable of providing high-resolution measurements of
sequence-function relationships have been described.
These include Sort-Seq experiments on bacterial and
yeast promoters [2, 3, 4], massively parallel reporter
assays (MPRAs) of mammalian enhancers [5, 6], and
deep mutational scanning (DMS) experiments on pro-
teins [7, 8]. Fig. 1 provides an illustration of these three
different assays.

Many massively parallel experiments, including those
of [2, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], share

*Correspondence: jkinney@cshl.edu
2Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory,

11375, Cold Spring Harbor, NY

Full list of author information is available at the end of the article

the common form illustrated in Fig. 2A.[1] One begins
with a specific “wild type” sequence of interest. A li-
brary comprising variants of this wild type sequence
(i.e., that have scattered substitution mutations) is
then generated. These library sequences are used as
input to an experimental procedure that measures a
specific sequence-dependent activity and, as a result
of this measurement, outputs sequences into one or
more “bins.” Finally, the number of occurrences of
each variant sequence in each bin is assayed using high-
throughput sequencing.

When analyzing data from massively parallel ex-
periments, one often wishes to obtain activity mea-
surements for individual sequences. Multiple software
packages that address this need have been described
[28, 29, 30]. In this paper we focus on a different task:
how to use massively parallel data to infer quantita-
tive models of sequence-function relationships. Specif-
ically, given data of the form shown in Fig. 2B, we
wish to learn the values of parameters in a mathe-
matical model that describes the realtionship between
sequence and activity. Such quantitative modeling is
often motivated by the desire to predict the activities
of sequences that have not been assayed in the experi-
ment. Modeling can also provide a way to characterize
biophysical mechanisms, e.g., measure in vivo protein-
DNA and protein-protein interaction energies [2].

Multiple studies have fit quantitative models to mas-
sively parallel data (e.g., [2, 5, 7]), but in almost all
cases this has been done using custom scripts. To our
knowledge, the only published software package that
provides such quantitative modeling capabilities of the
type we seek is DMS Tools [30]. This package, how-
ever, facilitates only the simplest type of modeling:
the inference of matrix models using enrichment ra-
tios. This limitation places severe constraints on the

[1]Not all massively parallel experiments have this
form. SELEX-SEQ and related experiments often use
library DNA that is completely random (e.g., [19, 20,
21, 22, 23, 24]), while some Sort-Seq and MPRA efforts
have used libraries that contain specified arrangements
of binding sites or large numbers of different genomic
regions (e.g., [3, 25, 26, 27]).
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types of questions that one might hope to answer us-
ing massively parallel data.

Here we introduce Sort-Seq Tools, a software pack-
age that enables sophisticated quantitative modeling
of sequence-function relationships using data from a
variety of massively parallel assays. Sort-Seq Tools
provides simple command-line methods that enable
the inference of multiple types of models (i.e., matrix
models and neighbor models) using multiple inference
methods (enrichment ratio calculations, least squares
optimization, and mutual information maximization).
Here we demonstrate these modeling capabilities on
simulated data and on data from three prior stud-
ies: the Sort-Seq experiments of [2], the MPRA ex-
periments of [5], and the DMS experiments of [7]. Im-
portantly, we find that model inference using mutual
information maximization almost always outperforms
model inference using enrichment ratio calculations or
least squares optimization.

Sort-Seq Tools also provides methods for simulating
massively parallel data using a user-specified model,
for computing useful summary statistics, and for eval-
uating quantitative models on arbitrary input se-
quences. These ancillary capabilities are elaborated
in Supplemental Information (SI). All of this func-
tionality is accessible via the command-line. Sort-Seq
Tools is available on PyPI and can be installed with
the command “pip install sortseq tools”. Source
code and documentation is available on GitHub at
jbkinney/sortseq tools, and a snapshot of the soft-
ware used to perform the calculations and to generate
the figures featured in this paper is provided at [URL
TO BE INCLUDED].

Methods
We formalize the problem of inferring quantitative
models of sequence-function relationships as follows.
We represent massively parallel data as a set of
N sequence-measurement pairs, {Sn,Mn}Nn=1, where
each measurement Mn is a non-negative integer cor-
responding to the bin in which the n’th sequence se-
quence, Sn, was found. We assume that all sequences
S have the same length L, and that at each of the L
positions in each sequence there is one of C possible
characters (C = 4 for DNA and RNA; C = 20 for pro-
tein). In what follows, each sequence S is represented
as a binary C × L matrix having elements

Scl =

{
1 if character c occurs at position l
0 otherwise

.(1)

Here, l = 1, 2, . . . , L indexes positions within the se-
quence, while c = 1, 2, . . . , C indexes possible nu-
cleotides or amino acids. Note that, in this represen-
tation, the same sequence S will typically be observed

multiple times in each data set and will often fall into
multiple different bins.

Our goal is to derive a function that can, given a
sequence S, predict the activity R measured by the
experiment. To do this we assume that the activity
value R is given by a function r(S, θ) that depends on
the sequence S and a set of parameters θ. Before we
can infer the values of the parameters θ from data, we
must first answer two distinct questions:

1 What functional form do we choose for r(S, θ)?
2 How, specifically, do we use the data {Sn,Mn}

and the model predictions r(S, θ) to infer param-
eter values?

Sort-Seq Tools provides two different options for the
function r: a “matrix” model, where each position in
S contributes independently to the predicted activity,
and a “neighbor” model, which accounts for potential
epistatic interactions between neighboring positions.
Sort-Seq Tools also provides three different methods
for fitting the parameters θ to data: parameters val-
ues can be inferred by computing enrichment ratios
(a method applicable only to matrix models), by per-
forming least squares optimization, or by maximizing
the mutual information between model predictions and
measurements. These different model types and infer-
ence methods are elaborated below.

Matrix models and neighbor models
Matrix models have the form

rmat(S, θ) =

C∑
c=1

L∑
l=1

θclScl. (2)

In this context, θ is a C × L matrix where each ele-
ment θcl represents the contribution of character c at
position l to the overall sequence-dependent activity.
For example, Fig. 3B shows the parameters of a ma-
trix model that describes the sequence specificity of
Escherichia coli RNA polymerase (RNAP). These pa-
rameters were inferred from the Sort-Seq data of [2]
using Sort-Seq Tools.

Neighbor models have the form

rnbr(S, θ) =
C∑
c=1

C∑
d=1

L−1∑
l=1

θcdlSclSd(l+1). (3)

Such models comprise C2(L− 1) parameters, denoted
θcdl, that represent the contributions of all possible ad-
jacent di-nucleotides or di-amino-acids within S. Fig.
3C illustrates one such model which, as above, de-
scribes RNAP and was inferred using Sort-Seq Tools
operating on data from [2].
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Both matrix and neighbor models, as written above,
suffer from the presence of “gauge freedoms” – direc-
tions in parameter space that do not affect model pre-
dictions. These degrees of freedom must be eliminated
if one wishes to interpret the values of individual pa-
rameters. Sort-Seq Tools accomplishes this by restrict-
ing θ to lie within the subspace of sequence variation.
Moreover, the parameter values returned by Sort-Seq
Tools are normalized so that the mean value of model
predictions over all possible sequences is zero, and the
variance in these values in equal to unity.

Enrichment ratio inference
The computation of enrichment ratios is the simplest
way to infer quantitative sequence-function relation-
ships from massively parallel data. The motivation for
this inference method traces back to the seminal work
of Berg and von Hippel [31, 32], and the resulting mod-
els can be thought of as the incarnation of position
weight matrices [33] in the context of massively paral-
lel experiments. This inference method is the one sup-
ported by dms tools [30], and the calculation of such
models is one of the primary types of analyses reported
in the DMS literature [8].

Enrichment ratio inference, however, places strong
restrictions on the types of models and data that one
can use. Specifically, one is restricted to using matrix
models only, and the data used to compute parameter
values can consist of only two bins: a library bin (M =
0) and a selected bin (M = 1). Moreover, the validity
of this inference procedure depends on assumptions
that are often not satisfied by real-world experiments
[34].

If these restrictions are met and one is willing to
make the necessary assumptions, then model parame-
ters θER are computed using

θER
cl = log

f1cl
f0cl
, (4)

where

fMcl =
1

NM + Cλ

∑
n|M

Sncl + λ

 . (5)

Here, fMcl denotes the fraction of sequences in bin M
having character c at position l, NM is the total num-
ber of sequences in bin M , λ is a nonnegative pseu-
docount (specified by the user), and the sum in Eq.
5 is restricted to sequences Sn that lie within bin M
(i.e., for which Mn = M). Because enrichment ratio
inference reduces to a simple counting problem, Sort-
Seq Tools is able to perform this computation very
rapidly.

Least squares inference
Least squares provides a computationally simple infer-
ence procedure that overcomes the most onerous re-
strictions of enrichment ratio calculations. It can be
used to infer any type of linear model, including both
matrix models and neighbor models. It can also be
used on data that consists of more than two bins.

The idea behind the least squares approach is to
choose parameters θLS that minimize a quadratic loss
function. Specifically, we use

θLS = argminθL(θ), (6)

where

L(θ) =
∑
M

∑
n|M

[r(Sn, θ)− µM ]
2

σ2
M

+ α
∑
i

θ2i . (7)

Here, µM is the presumed mean activity of sequences
in bin M , σ2

M is the presumed variance in the activi-
ties of such sequences, i indexes all parameters in the
model, and α is a “ridge regression” regularization pa-
rameter [35]. By using the objective function L(θ), one
can rapidly compute values of the optimal parameters
θ using standard algorithms [36].

One downside to least squares inference is the need to
assume specific values for µM and for σ2

M for each bin
M . Sort-Seq Tools allows the user to manually specify
these values. There is a danger here, since assuming
incorrect values for µM and σ2

M will generally lead to
bias in the inferred parameters θLS [37]. In practice,
however, the default choice of µM = M and σ2

M = 1
often works surprisingly well when bins are arranged
from lowest to highest activity.

Another downside to least squares is the need to as-
sume that experimental noise – specifically, p(R|M)
– is Gaussian. Only in such cases does least squares
inference correspond to a meaningful maximum like-
lihood calculation. In massively parallel assays, how-
ever, noise is often strongly non-Gaussian. In such sit-
uations, least squares inference cannot be expected to
yield correct model parameters for any choice of µM
and σ2

M [37].

Information maximization inference
An alternative inference procedure, one that does not
suffer from the need to assume a specific form for ex-
perimental noise, is the maximization of mutual infor-
mation. In the large data limit, information maximiza-
tion is equivalent to performing maximum likelihood
inference when the quantiative form of experimental
noise is unknown [37, 38, 39]. This approach was orig-
inally proposed for receptive field inference in sensory
neuroscience [40, 41, 42], but has since been applied in
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multiple molecular biology contexts [38, 43], including
in the analysis of massively parallel experiments [2, 5].

In this approach, parameter values are chosen to
maximize the mutual information between model pre-
dictions and measurements. Specifically, one chooses

θIM = argmaxθI(θ), (8)

where

I(θ) = I[R;M ] (9)

=
∑
M

∫
dR p(R,M) log

p(R,M)

p(R)p(M)
(10)

is the mutual information between the bins M in which
sequences are found and the corresponding model pre-
diction R for those sequences. In what follows, I(θ)
is referred to as the “predictive information” of the
model. For each choice of θ, computing predictive in-
formation requires a regularized estimate of the joint
probability distribution p(R,M). Sort-Seq Tools cur-
rently uses standard kernel density methods [35] to
estimate these distributions, although field-theoretic
density estimation [44, 45] may ultimately prove supe-
rior in this context.

Following [2], Sort-Seq Tools identifies information-
maximizing parameters using a Metropolis Monte
Carlo algorithm in which each choice for θ has rela-
tive probability exp[NI(θ)]. Because this Monte Carlo
procedure is computationally expensive, information
maximization is much slower than enrichment ratio
calculations or least squares inference. Running on a
standard laptop computer, our current algorithm takes
between 30 minutes and 2 hours for each of the infor-
mation maximization tasks described below.

Results
To test the capabilities of Sort-Seq Tools, we analyzed
data from previously published Sort-Seq [2], MPRA
[5], and DMS [7] studies. Each of these studies gener-
ated multiple independent data sets, allowing us to test
the inference capabilities of Sort-Seq Tools by training
and testing models on separate data. We also analyzed
simulated data in order to assess the ability of Sort-Seq
Tools to accurately recover known parameter values.

Sort-Seq data
In their studies of the E. coli lac promoter, Kinney
et al. [2] performed six independent Sort-Seq experi-
ments, which they referred to as rnap-wt, crp-wt, full-
wt, full-500, full-150, and full-0. All of these experi-
ments assayed the transcriptional activity of variant
sequences spanning a 75 bp region of the lac promoter

(Fig. 3A). This assayed region is known to bind two
proteins, RNAP and CRP, at two separate binding
sites. In the original study [2], models for the sequence
specificity of these two proteins were inferred by mod-
eling how transcription depends on sequence variation
within these two different binding sites.

For both RNAP and CRP, we used each of these
six data sets to infer both matrix models and neigh-
bor models.[2] Inference was performed using each of
the three methods supported by Sort-Seq Tools: en-
richment ratios (ER), least squares (LS), and informa-
tion maximization (IM). The performance of each of
these models on each of the available data sets was
then quantified by estimating the predictive informa-
tion I[R;M ].

Fig. 4A illustrates the performance of each inferred
RNAP model (columns) on each of the published data
sets (rows). Fig. 4B shows similar results for the in-
ferred CRP models.[3] For both CRP and RNAP, the
IM-inferred matrix models consistently outperformed
the LS- and ER-inferred matrix models when evalu-
ated on independent test data (Figs. 4C,4D,4E,4F).
This finding lends support to the theory-based argu-
ments of [39, 37] that information maximization has
substantial advantages over other methods for infer-
ring quantitative sequence-function relationships from
massively parallel data.[4]

We also investigated whether neighbor models,
which account for epistatic interactions between neigh-
boring positions in a sequence, might provide better
descriptions of RNAP and CRP than simple matrix
models do. To our knowledge, the presence of such in-
teractions in either of these well-studied proteins has
yet to be definitively established (although see [46]).
We therefore compared the predictive performance of

[2]Raw data from [2] is available on NCBI SRA, ac-
cession number SRA012345; processed data formatted
for use with Sort-Seq Tools is provided on GitHub at
jbkinney/sortseq tools.
[3]RNAP models were not trained or tested on the crp-
wt data set because the RNAP binding site was not
mutagenized in that experiment. Similarly, CRP mod-
els were not trained or tested on the rnap-wt data set.
CRP models were also not trained or tested on the full-
0 data set because cAMP, a ligand that CRP requires
in order to bind DNA, was absent in this experiment.
[4]We note that the ER matrix models computed by
Sort-Seq Tools are essentially indistinguishable from
the ER matrix models computed by dms tools. This
shows that the favorable performance of IM-based in-
ference is not an artifact of how ER-based inference
is implemented within Sort-Seq Tools. See SI for a di-
rect comparision of the ER-based inference methods of
Sort-Seq Tools and dms tools.
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matrix and neighbor models that were trained (using
IM) on the same data sets (Figs. 4G, 4H).

Neighbor models did not always outperform matrix
models in these tests. However, for both CRP and
RNAP, neighbor models did perform better than their
corresponding matrix models when the predictive in-
formation of the matrix model was high (Figs. 4E,4F).
Such high matrix model predictive information values
are expected to occur when the data used to train
models is of high quality. We interpret this finding as
evidence for epistatic interactions in the specificities
of both CRP and RNAP. Indeed we expected a priori
that crp-wt data would be the best data set for training
models of CRP because the mutation rate used in this
experiment was the highest (24%). This expectation
is consistent with our finding that the CRP neighbor
model inferred from crp-wt outperformed every other
matrix model of CRP.

Simulated data
To further establish the ability of Sort-Seq Tools to
properly infer quantitative models, we next analyzed
simulated Sort-Seq data. Specifically, to generate sim-
ulated Sort-Seq data, we used the simulation capabili-
ties of Sort-Seq Tools together with the nbr-IM models
for RNAP and CRP inferred from the full-wt dataset
of [2]. Eight data sets were simulated in total, four for
RNAP and four for CRP. In each simulation, 106 cells
were sorted into either 10 or 2 bins; see SI for simula-
tion details. Half of these simulated data sets (labeled
“train”) were then used to infer matrix and neighbor
models as described in the previous section. The other
half (labeled “test”) were used solely to evaluate model
performance.

Fig. 5A shows results for the simulated RNAP data,
while Fig. 5B shows corresponding results for simu-
lated CRP data. The nbr-IM models performed best in
every case tested, with virtually no apparent difference
in performance between training and test data. In par-
ticular, all of the nbr-IM models performed substan-
tially better than the mat-IM models, demonstrating
the ability of Sort-Seq tools to learn correct epistatic
interactions. Figs. 5C and 5D plot the values of pa-
rameters for inferred neighbor models against the cor-
responding parameter values of the neighbor models
used to generate the data. We found very strong agree-
ment, with a signal-to-noise ratio of 31 across the 528
parameters of the RNAP neighbor model, and a signal-
to-noise ratio of 49 across the 336 parameters of the
CRP neighbor model.

MPRA and DMS data
Sort-Seq tools is designed to facilitate the quantitative
modeling of data from a variety of massively parallel

assays, including MPRA and DMS experiments. To
test the utility of Sort-Seq Tools in these contexts, we
inferred matrix models using MPRA data from [5] and
DMS data from [7].[5]

In [5], replicate MPRA experiments were performed
on a synthetic cAMP responsive element (CRE). These
experiments tested ∼ 2.7×104 microarray-synthesized
CREs having randomly scattered substitution muta-
tions (10% per nucleotide position) throughout an
87 bp region. Using Sort-Seq Tools, we inferred ma-
trix models spanning this entire 87 bp region us-
ing IM, LS, and ER-based inference. We found that
the IM-inferred models performed the best in cross-
comparisons (Fig. 6A). Moreover, both of these IM-
inferred models performed better on both data sets
relative to the matrix model described in the original
publication [5].

The DMS experiments of [7] assayed a variable re-
gion spanning 33 aa within a WW domain protein.
Specifically, the gene sequences of this WW domain
was mutagenized at ∼2% per base. Multiple rounds of
panning using a peptide ligand were then used to se-
lect WW-domain variants displayed on the surface of
phage. The WW domain coding sequences present in
the phage library after 0, 3, and 6 rounds of selection
were then sequenced.

Using Sort-Seq Tools, we fit models to either the
round 0 and round 3 libraries, or to the round 3
and round 6 libraries. When trained on round 0,3
data and tested on round 3,6 data, IM-inferred ma-
trix models performed better than LS-inferred models
and about the same as ER-inferred models (Fig. 6B).
However, IM-inferred models fit to round 3,6 data ac-
tually performed worse than the corresponding ER-
inferred models. This is the only situation we encoun-
tered where ER models outperformed IM models.

The poor performance of IM in this context is most
likely due to the sparsity of data in the round 3,6
dataset. Specifically, in the round 3,6 dataset, we ob-
served 8 amino-acid-position combinations with no
representation in the data. Furthmore, 16 amino-acid-
position combinations were represented by data from

[5]The preprocessed MPRA data of [5] was obtained
from NCBI GEO, accession number GSE31982. The
preprocessed DMS data of [8] was kindly provided by
Douglas Fowler; raw data is available from NCBI SRA,
accession number SRA020603. Processed data from
both publications, formatted for use with Sort-Seq
Tools, is provided on GitHub at jbkinney/sortseq tools.
The neighbor models fit to data from both of these
studies performed poorly relative to matrix models.
We therefore ignore these neighbor models in what fol-
lows.
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only one sequence. By contrast, the round 0,3 dataset
contained data on all amino-acid-position combina-
tions, and for only 2 of these combinations did this
data come from a single sequence. Our results there-
fore suggest that IM-based inference can perform at
least as well on DMS data as ER-based inference, but
only when datasets are sufficiently rich. More gener-
ally, the existence of 20 amino acids compared to 4
DNA/RNA bases places a significantly larger burden
on the amount of data needed to obtain accurate mod-
els from DMS data relative to Sort-Seq or MPRA data.
This is true regardless of the inference method one
uses.

Discussion
Sort-Seq Tools provides routines for inferring quanti-
tative models of sequence-function relationships from
massively parallel data. Unlike existing bioinformatic
software, Sort-Seq Tools allows the user to fit multi-
ple types of models using multiple different inference
methods. It also provides routines for simulating data,
computing summary statistics, assessing model per-
formance, and evaluating models on arbitrary input
sequences. These capabilities fill a major gap in the
current bioinformatics software repertoire.

Applying Sort-Seq Tools to previously published
data sets, we observed that matrix models inferred
using mutual information maximization consistently
performed as well or better than matrix models in-
ferred using either enrichment ratios or least squares
optimization. The only exception to this finding oc-
cured in a situation where the training data covered
less sequence space than the test data. Our findings
thus validate previous theoretical work [37, 38, 39] ar-
guing that the noisiness of massively parallel experi-
ments makes information-based inference ideal in the
large data regime. Sort-Seq Tools is the first software
package to enable such information-based inference on
massively parallel data.[6]

We also demonstrated the ability of Sort-Seq Tools
to accurately learn neighbor models, which account
for epistatic interactions between neighboring posi-
tions within a sequence. Not surprisingly, the accurate
inference of neighbor models requires higher quality
data than does the accurate inference of matrix mod-
els, and not all of the data sets analyzed here met this
criterion. Still, when analyzing the data of [2] we did

[6]The software package FIRE [43] enables information-
based inference of short motifs within long regulatory
sequences. However, the severe length limitation that
FIRE places on motifs (which must be . 10 bp) makes
this software inapplicable to most massively parallel
datasets.

observe epistatic interactions in the sequence specifici-
ties of CRP and RNAP, a finding that was missed in
the original publication.

There is still much to do to facilitate the quantita-
tive modeling of sequence-function relationships. In-
ference with Sort-Seq Tools is currently limited to ma-
trix models and neighbor models, yet there are a va-
riety of other types of models that are likely to prove
useful. Of particular interest are models with sparse
all-versus-all pairwise interactions [46], models with
interactions based on higher-order sequence features
[47], deep neural network models [48], and nonlinear
biophysics-based models [2]. Sort-Seq Tools provides a
framework into which such modeling capabilities can
be incorporated in the future, and through which the
results of different modeling strategies can be com-
pared in a transparent way.
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Figure 1 Three different massively parallel experiments. (A) The Sort-Seq assay of [2]. A plasmid library is generated in which
mutagenized versions of a bacterial promoter (blue) drive the expression of a fluorescent protein (green). Cells carrying these plasmids
are then sorted according to measured fluorescence using fluorescence-activated cell sorting (FACS). The variant promoters in each
bin of sorted cells are then sequenced. (B) The MPRA assay of [5]. Variant enhancers (blue) are used to drive the transcription of
RNA that contains enhancer-specific tags (shades of brown). Expression constructs are transfected into cell culture, after which
tag-containing RNA is isolated and sequenced. Output sequences consist of the variant enhancers that correspond to expressed tags.
(C) The DMS assay of [7]. Randomly mutagenized gene sequences (blue) produce variant proteins (colored bells) that are expressed
on the surface of phage (gray rectangles). Panning is used to enrich for phage that express proteins that bind a specific ligand of
interest (brown circles). The variant coding regions enriched after one or more rounds of panning are then sequenced.
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Figure 2 Overview of Sort-Seq Tools. (A) In all massively parallel assays, a library of sequences is used as input to an experiment
(black box) that outputs these sequences into one or more bins. The prevalence of each sequence in each bin depends on the assayed
activity of that sequence. Sort-Seq Tools can be used to analyze data from such experiments when the input library consists of
substitution-mutated versions of a specific “wild type” sequence. (B) The data from such experiments can be represented as a table
listing the number of occurrences of each unique sequence in each bin. Sort-Seq Tools provides routines for inferring quantitative
models from data sets that have this form. Routines are also provided for data preprocessing, for simulating data, for computing
summary statistics, and for evaluating models on arbitrary sequences.
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AATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGG

34 bp22 bp

Figure 3 Examples of quantitative models. (A) A 75 bp
region of the E. coli lac promoter, containing binding sites for
CRP and RNAP, was assayed in the Sort-Seq experiments of
[2]. Multiple types of quantitative models for both CRP and
RNAP (spanning the two indicated regions) were inferred from
the multiple data sets of [2] using multiple different inference
methods. (B) A matrix model for RNAP, inferred from the
full-wt experiment of [2] via information maximization. (C) A
neighbor model for RNAP spanning the same region and fit to
the same data as in panel B, again inferred using information
maximization. The parameters shown in panels (B) and (C)
are centered and normalized as described in the text.
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Figure 4 Analysis of Sort-Seq data. (A,B) Performance of (A) RNAP and (B) CRP models inferred from and evaluated on Sort-Seq
data from [2]. Each column corresponds to an inferred model; column headers indicate the data set (rnap-wt, crp-wt, full-wt,
full-500, full-150, or full-0) used to train the model, the type of model inferred (neighbor (nbr) or matrix (mat)), and the inference
method used (information maximization (IM), least squares (LS), or enrichment ratios (ER)). Rows indicate the data sets used to
evaluate model performance. Heatmap values give the predictive information of each inferred model (column) on each test set (row).
These values are expressed as a percentage of the maximal predictive information achieved on each test set (i.e., along each row).
(C-H) Scatter plot comparisons of predictive information values for (C,D) matrix models fit using IM (Imat,IM) vs. using ER
(Imat,ER), (E,F) matrix models fit using IM vs. using LS (Imat,LS), and (G,H) IM-inferred matrix models versus IM-inferred
neighbor models (Inbr,IM). Data points in panels C-H indicate model performance on non-training data only. In panels G and H,
regression lines and 95% bootstrap confidence intervals are shown.
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Figure 5 Analysis of simulated data. Sort-Seq data was simulated using the RNAP and CRP neighbor models inferred via
information maximization from the full-wt data of [2]. Four data sets were generated for each model: one training and one test set
were generated by sorting into 10 bins, while one training and one test set generated by sorting into 2 bins. (A,B) Performance of
(A) RNAP and (B) CRP models inferred from and evaluated on these simulated data sets. Columns indicate the data set used to
train the model, the type of model inferred (nbr or mat), and the inference method used for training (IM, LS, or ER). Rows indicate
data used to evaluate model performance. As in Figs. 3A and 3B, heatmaps show predictive information values expressed as a
percentage of the maximal predictive information achieved on each data set. (C,D) Comparison of the parameters of the neighbor
models used in these simulations to the parameters of the neighbor models fit to the corresponding “sim-10 train” data via
information maximization. Also shown is the signal-to-noise ratio, defined as the variance in the abcissa divided by the variance in
the deivation of the ordinate from the diagonal.
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Figure 6 Analysis of MPRA and DMS data. (A)
Cross-comparison of matrix models fit to data from two
replicate MPRA experiments reported in [5]. The performance
of the matrix model reported in the original publication (Pub)
is also shown. (B) In the DMS experiments of [7], sequence
data was gathered after 0, 3, and 6 rounds of selection. Shown
is a cross-comparison of matrix models fit to data from either
rounds 0 and 3, or to data from rounds 3 and 6.
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