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Abstract 14 

The field of metagenomics has developed insight into many of the complex microbial communities 15 

responsible for maintaining life on this planet. Sequencing efforts often uncover novel genetic content; 16 

this is most evident for viral metagenomics, in which upwards of 90% of all sequences demonstrate no 17 

sequence similarity with present databases. For the small fraction which can be identified, the top BLAST 18 

hit is often posited as being representative of the phage taxon. However, as previous research has 19 

shown, the top BLAST hit is sometimes misinterpreted. Furthermore, the appearance of a particular 20 

gene homolog is frequently not representative of the presence of the particular taxon in question. To 21 

circumvent these limitations, we have developed a new method for the analysis of metaviromic 22 

datasets. BLAST hits are weighted, integrating the sequence identity and length of alignments as well as 23 

a phylogenetic signal. A genic rather than genomic approach is presented in which each gene is 24 

evaluated with respect to its information content. Through this quantifiable metric, predictions of viral 25 

community structure can be made with greater confidence. As a proof-of-concept, the approach 26 

presented here was implemented and applied to seven metaviromes. While providing a more robust 27 

means of evaluating metaviromic data, the tool is versatile and can easily be customized to 28 

investigations of any environment or biome. 29 

 30 
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Background 32 

Bacterial viruses (bacteriophages) play an essential role in shaping microbial populations. They drive 33 

community structure through the mediation of mortality, and shape diversity – fundamentally – through 34 

their role as agents of genetic mobility (Wilhelm & Suttle, 1999; Canchaya et al., 2003; Beredjeb et al., 35 

2011; Clokie et al. 2011; Winget et al., 2011; Brum et al. 2016). Their impact has been described at 36 

higher trophic levels (Rohwer & Thurber, 2009; Jover et al., 2014); phages affect microbial processes on 37 

a global scale. In addition to their influence in the environment, evidence has uncovered that phages can 38 

contribute to human disease (e.g. Holmes 2000) and may play a role in human health as part of the 39 

human microbiome (e.g. Willner et al., 2012). Whole genome sequencing (WGS) inquiries of complex 40 

viral communities (metaviromics) have been pivotal in ascertaining both the ubiquity of phages as well 41 

as the sheer number of phages on Earth (Edwards & Rohwer, 2005). As such, a wide variety of 42 

environments have been probed, from the world’s oceans (Hurwitz & Sullivan, 2013) to extreme 43 

environments (Gudbergsdóttir et al., 2015); from deserts (Fancello et al., 2013), to the human gut 44 

(Minot et al., 2013). 45 

In contrast with cellular organisms, no conserved coding regions are ubiquitous among all viral species. 46 

Efforts to utilize genes coding for structural proteins have given limited insight into the diversity of 47 

defined communities of phages (Dorigo, Jacquet & Humbert, 2004; Wilhelm et al., 2006). Similarly, DNA 48 

polymerases have been used as markers for specific groups of phages (Breitbart, Miyake & Rohwer, 49 

2004). However, the study of viral communities based on the examination of whole genomes is widely 50 

considered to be the most robust approach to exploring phage diversity in the environment. The 51 

approach taken for analyzing WGS data sets within metaviromics has paralleled that of metagenomics of 52 

bacterial and archaeal populations – reads or contigs are compared to known, characterized sequences 53 

within public data repositories. Although a powerful tool, the generation of metaviromic surveys, a 54 

literal “who’s who” of the communities present, is confounded by bioinformatic challenges unique to 55 

the examination of phages. Currently, only a small fraction of the genetic diversity that phages represent 56 

is characterized – and it is certainly likely that the large gaps in our knowledge define key processes. 57 

However these general gaps are translated directly from the genome level; most characterized phages 58 

contain a surfeit of genes for which there are no known homologs (Hatfull, 2008). In addition, the 59 

current collection of characterized genomes is sparse; presently, there are just over 2000 phage 60 

genomes deposited in RefSeq, and strains that infect laboratory bacterial models are overrepresented. 61 

Therefore, phages represent a remarkable reservoir of undiscovered genetic diversity (Suttle, 2007). 62 

For the few viral species which can be identified, typically via BLAST searches, the single best hit is often 63 

posited as being representative of the phage taxon containing the homologous region: a method 64 

employed by many metagenome studies and analysis tools (e.g., Huson & Weber, 2013; Wommack et 65 

al., 2012; Keegan et al., 2016; Roux et al., 2014). This approach, however, can be misleading; genes 66 

present within annotated phage genomes may not be true indicators of the phage species. For instance, 67 

such genes may be bacterial in origin (e.g. Mann et al., 2003; Thompson et al., 2011; Thompson et al., 68 

2011; Lindell et al., 2005; Gao, Gui & Zhang, 2012). Thus hits to such genes would be indicative of either 69 

bacterial DNA within the sample sequenced or acquisition of the bacterial genome (which need not be 70 

exclusive to the taxa represented in the sequence data repositories). In a recent metaviromic survey of 71 
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the nearshore waters of Lake Michigan, further investigation of viral species with the most “hits” 72 

revealed that the matches were localized to a particular gene(s) within the genome, and therefore 73 

indicative of the presence of a specific gene rather than that of the species (Watkins et al., 2015). 74 

Moreover, as was the case with one of these phages – Planktothrix phage PaV-LD, BLAST results were 75 

indicative of the presence of bacterial genes. Several Planktothrix phage genes exhibit greater sequence 76 

similarity to bacterial proteins rather than other phage sequences (Gao, Gui & Zhang, 2012). Over half of 77 

the publicly available datasets in the viral metagenomic sequence web server MetaVir (Roux et al., 2014) 78 

include hits to this phage (including samples unlikely to harbor the phage’s cyanobacterial host species), 79 

indicating that misreporting is widespread. Thus, a “BLAST and go” approach for species identification 80 

must be replaced by a more rigorous assessment of each individual BLAST hit result. 81 

Herein we present a new, quantifiable, method for assessment of BLAST results, in an attempt to 82 

address the aforementioned challenges. This approach can be applied to all studies, regardless of the 83 

niche under investigation, as sequence similarity to databases is weighted. Weighting takes into 84 

consideration not only the sequence identity between the metavirome contig and the database record, 85 

but also the length of the alignment, and more importantly the informativity of the match. This latter 86 

metric captures the taxonomic signal within sequence similarity results. Thus, a species’ presence or 87 

absence within a population can be determined with greater confidence. As a proof-of-concept, we 88 

examined seven publicly available freshwater DNA metagenomic datasets. 89 

Materials and Methods 90 

Viral gene datasets. Sequence data were retrieved from NCBI in January 2016. For the analysis of 91 

Pbunalikeviruses, amino acid and nucleotide sequences for the Pbunalikeviruses Pseudomonas phage 92 

PB1 (Accession Number: NC_011810) and Burkholderia phage BcepF1 (Accession Number: NC_009015). 93 

All phage nucleotide sequences (omitting those belonging to the Pbunalikevirus genomes listed in 94 

Supplemental Table 2) were retrieved through an advanced search via the NCBI website with the 95 

following query: PHG[Division] NOT (txid538398[Organism] AND …) in which the list of Pbunalikeviruses 96 

were removed from the search by their taxonIDs (as indicated by “…”). In total over 500000 individual 97 

records were retrieved. 98 

Metaviromic datasets. SRA records were collected from the SRA database. Supplemental Table 1 lists all 99 

of the datasets included in the proof-of-concept study. Each SRA record (line listed in the Supplemental 100 

Table 1) was considered as an individual sample. (Note, two samples are aggregates of more than one 101 

SRA record, both belonging to Metavirome IV, as they were combined in the downloadable file from 102 

SRA.) Each individual sample was next assembled using Velvet (Zerbino & Birney, 2008) with a hash size 103 

of 31. PB1 protein sequences were directly compared to these assembled contigs, rather than raw 104 

reads, via blastx. 105 

 106 

 107 

 108 
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Table 1. Freshwater DNA metaviromic studies retrieved from NCBI’s SRA database. 109 

Metavirome Environmental Niche 
Number of 

Samples 
Sequencing 
Technology Mbp Total Reference 

I Lake Michigan nearshore 40 Illumina 6 909 Watkins 
et al., 
2015; 

Sible et 
al., 2015 

II Lake Bourget 2 454 698 Roux et 
al., 2012 

III Kent SeaTech tilapia pond 3 454 47 Dinsdale 
et al., 
2008 

IV Lake Limnopolar 2 454 18 López-
Bueno et 
al., 2009 

V Reclaimed water samples 6 454 364 Rosario et 
al., 2009 

VI Lake Ontario 3 454 223 n/a 

VII Feitsui Reservoir 5 454 86 Tseng et 
al., 2013 

 110 

Results and Discussion 111 

Determination of Informativity Metric for Quantifying Hits 112 

Establishing a Phylogenetic Signal Threshold. To ascertain the presence/absence of specific taxon 113 

within a metagenome, we suggest a threshold to differentiate between informative and uninformative 114 

hits. The phylogenetic signal threshold T is determined through a two-step process prior to evaluation of 115 

the metagenomic data. Firstly, for a given taxon of interest, each annotated coding region is compared 116 

to all annotated sequences within the genome of a known relative. Thus, each coding region’s sequence 117 

x (xX, where X is the set of sequences for all coding regions annotated within the genome of the taxon 118 

of interest) is compared to each coding region’s sequence g (gG, where G is the set of sequences for 119 

all coding regions annotated within the genome of a known relative). The use of a known relative 120 

genome establishes if and how conserved the coding region is between known, related strains/species. 121 

Where sequence homology is detected, the sequence identity and query coverage of the match is 122 

recorded: S1 and Q1, respectively. 123 

In the second step, each coding region’s sequence is compared again, this time to the sequences for all 124 

annotated coding regions for the group assayed by the metagenomic study (e.g. phages, all viruses, 125 

bacteria, archaea, etc.), however, those belonging to the phylogenetic group containing the taxon of 126 

interest and the known relative considered in step one are omitted. Many hits may be recorded for a 127 

particular gene x. Thus the best hit, both with respect to the sequence identity and the query coverage 128 

of the match, is selected; S2 and Q2 denote this best match’s sequence identity and query coverage, 129 
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respectively. A phylogenetic signal threshold T is defined as T={S1-S2, Q1-Q2} where the subscripts 1 and 130 

2 represent the sequence identity and query coverage of the match detected from steps one and two, 131 

respectively. Figure 1 illustrates the two-step process, the T values produced. 132 

It is important to note, that the phylogenetic group used for comparison is user defined. For instance, in 133 

order to ascertain if a gene can be used to distinguish between the presence/absence of a particular 134 

species, one may consider the phylogenetic group to be inclusive only of strains of the species. 135 

Therefore in this case, the most distant relative belonging to the phylogenetic group in step one would 136 

be the closest related species. If a more distant relative, say the most distantly related species of the 137 

same genus, were to be investigated, then the phylogenetic signal threshold T would serve as a means 138 

to distinguish between the presence/absence of a subset of the species (inclusive of the taxon of 139 

interest) within the genus. This flexibility enables the researcher to define and control the granularity of 140 

his/her analyses. In addition to the intended purpose of establishing the phylogenetic signal threshold, 141 

the two-step process can provide insight into putative horizontally acquired elements and gene loss 142 

events within a phylogenetic group. For example, instances in which the gene did not include a homolog 143 

in the most distant relative but did exhibit sequence similarity to a gene within the genome of another 144 

phylogenetic group. Furthermore, the two-step process can identify genomes which have been 145 

taxonomically misclassified - such instances would result in high S2 and Q2 scores for a large majority of 146 

the genes. 147 

 148 

Figure 1. Two-step process for determining the phylogenetic signal threshold T and the information 149 

which can be gained regarding the presence/absence of a taxon’s phylogenetic group. S1 and S2 150 
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represent the sequence identity of homologies identified in step 1 and 2, respectively. Likewise, Q1 and 151 

Q2 refer to the query coverage of the match detected in step 1 and 2, respectively. 152 

 153 

Using Informativity to Ascertain Confidence in OTU Calls. As indicated in Figure 1, when the set T is 154 

greater than or equal to zero (outcomes A, C, and D1), the presence of a specific gene can provide 155 

insight. OTU calls are informed by this threshold to decipher BLAST analyses of metaviromic datasets as 156 

some hits may be to genes which are conserved and thus poor indicators of a species’ or taxa’s presence 157 

or absence. For a given “hit” within a metaviromic dataset, the sequence identity and query coverage, 158 

SH and QH respectively, is assessed relative to the phylogenetic signal threshold T for the gene 159 

producing the match. Genes in which T < 0 have already been classified as uninformative (Figure 2). 160 

Now hits which fall below the gene’s threshold, {SH, QH}-T < 0, are also classified as uninformative. Hits 161 

which are above the threshold are considered informative. The informativity I of each hit is quantified 162 

based upon deviation from this threshold T such that I= {SH, QH}-T. I can range from 0 (equivalent to the 163 

threshold T) to 100 (T={0,0}, SH = 100% sequence identity and QH = query coverage of the gene). Thus 164 

genes with a large value of I are strong indicators of the presence of a particular taxon. 165 

 166 

Figure 2. BLAST hits to PB1 genes within both the set of non-Pbunalikevirus viral genomes and seven 167 

freshwater DNA metaviromic datasets (Table 1). Hits (SH and QH) are qualified relative to the sequence 168 

similarity shared between PB1 and its distant Pbunalikevirus relative, Burkholderia phage BcepF1 (S1 and 169 

Q2). 170 
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Implementation 171 

The posited method for assessing the informativity of metagenomic hits was implemented using a series 172 

of BLAST databases and BLAST searches. First, a collection of all coding regions (either nucleotide or 173 

amino acid sequences) were retrieved for the taxon of interest (X) as well as all genes annotated within 174 

the user defined genome of the selected relative (G). A local BLAST database was created for G, and the 175 

genes belonging to X were queried against the local database. The sequence identity and query 176 

coverage of the match detected for the best hit for each gene was then parsed from the BLAST results 177 

quantifying each gene’s S1 and Q1 values. Next, a BLAST database was created using all characterized, 178 

annotated sequences other than those associated with the phylogenetic group. Each of the genes for 179 

the taxon of interest X was queried against the second local database; the results were again parsed for 180 

each gene’s S2 and Q2 values so that the phylogenetic signal threshold T could be calculated. 181 

A metagenomic dataset was next evaluated, comparing each read or contig against a collection of 182 

annotated gene sequences. While we implemented this step locally, users with limited computational 183 

resources can utilize a resource such as MG-RAST (Keegan, Glass & Meyer, 2016), MEGAN (Huson & 184 

Weber, 2013), VIROME (Wommack et al., 2012), or MetaVir (Roux et al., 2014) and use the remotely 185 

generated BLAST results produced for further analysis here. Each BLAST hit was next assessed with 186 

respect to its scores {SH, QH} relative to that of the gene’s threshold T. Informative results were written 187 

out to file, including the values of I, T, and{SH, QH}. The user can then evaluate the likelihood of a 188 

particular taxon or phylogenetic group’s presence within the metagenomic sample based upon the I 189 

values for informative genes, as described. Taking into consideration the number of informative genes 190 

detected within a metgenomic sample and their individual I values can leverage additional confidence in 191 

calling OTUs. 192 

The described process has been automated via a Python script and calls to commands within the BLAST+ 193 

command line application. Users must supply or specify the fasta format files for the taxon of interest 194 

(X), the genome of a known relative (G), and the group assayed (less the taxonomic group of interest). If 195 

metagenomic comparisons are to be conducted locally, the user must also supply the metagenomic 196 

dataset. The script has been designed for both ease of use as well as flexibility, such that analyses can be 197 

tailored to the environmental niche and/or hypothesis under investigation. Most importantly, this script 198 

is a light-weight solution which can be integrated into the standard method of metaviromic analyses. 199 

The script and documentation are publicly available through http://www.putonti-200 

lab.com/software.html. 201 

 202 

Proof-of-Concept 203 

Our group previously isolated and characterized phages similar to the Pseudomonas phage PB1 (Malki et 204 

al., 2015), therefore we sought to examine populations of PB1 within other freshwater environments. 205 

Thus, each gene annotated for the PB1 genome (Accession Number: NC_011810) (Ceyssens et al., 2009) 206 

was compared first to the set of genes for the most distant relative of PB1 within its genus 207 

Pbunalikeviruses, Burkholderia phage BcepF1 (Accession Number: NC_009015). For each gene the S1 208 
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and Q1 values were computed. Next each gene annotated for the PB1 genome was compared via blastx 209 

to all genes from viral species other than those annotated as Pbunalikevirus in GenBank (see Methods), 210 

determining the values of S2 and Q2. 211 

Surprisingly the majority of the PB1 genes exhibited greater sequence similarity to sequences within this 212 

collection than they did to the Burkholderia phage BcepF1. This led us to manually inspect the genomes 213 

producing these hits. In doing so, we identified a number of viral strains assigned to the taxonomic level 214 

of “unclassified Myoviridae” within NCBI, rather than “Pbunalikeviruses”. These genomes were thus 215 

removed from the collection of non-Pbunalikevirus viral gene sequences (as they are in fact 216 

Pbunalikeviruses) and blastx was run again. (See Supplemental Table 2 for a list of the genomes 217 

reclassified here as Pbunalikeviruses.) Threshold T was then calculated for all 93 annotated PB1 genes. 218 

This threshold is visually represented in Figure 2 in the row marked as “GenBank*”. This variation is 219 

represented as a single measure, the average of SH and QH (S2 and Q2 in this case) less the average of S1 220 

and Q1. Here we can see that several gene sequences (as indicated by the color scale) had better “hits” 221 

to records within the GenBank collection queried than they did to the Burkholderia phage BcepF1; gray 222 

blocks signify that no or weaker homology was detected (T≤0). 223 

The methodology developed here was then applied to seven freshwater DNA metaviromic studies 224 

(Table1); a list of the SRA datasets from each study is provided in Supplemental Table 1. Reads from all 225 

seven metavirome datasets were first assembled (see Methods for details). The contigs were then 226 

compared to the PB1 genome via blastx. Figure 2 graphically represents these results. Again, each gene’s 227 

best hit within each metavirome sample was qualified (colored) with respect to its value relative to S1, 228 

and Q1. From Figure 2, one can readily identify that not all genes provide an equal signal as to the 229 

presence or absence of PB1 within the sample, some serve as better markers. For instance, there are 230 

several genes which have a greater sequence similarity to the PB1 genome than PB1 has to BcepF1; 231 

these hits are represented within the heatmap. However non-Pbunalikevirus phage sequences may 232 

exhibit equivalent or greater sequence similarity to the PB1 gene sequence (as shown in the GenBank* 233 

row). The informativity metric provides a quantifiable confidence in assigning the presence/absence of a 234 

taxon. Thus, the informativity I of each BLAST hit within the metaviromic samples was calculated. In 235 

doing so, individual genes which provide a strong phylogenetic signal for the Pbunalikeviruses can 236 

readily be identified. Figure 3 represents the results of this computation, in which each hit to a PB1 gene 237 

is now assessed in light of the phylogenetic signal. 238 

In an effort to assess the strength of the metric presented here, we evaluated the raw BLAST results of 239 

the datasets and a BLAST score-based analysis. The BLAST results of Metaviromes II, IV, V, and VII are 240 

publicly available through the web service MetaVir (Roux et al, 2014). Nine of the samples from 241 

Metavirome I are also available through MetaVir. It is important to note that in contrast to the uniform 242 

method in which the metavirome samples were preprocessed here (see Methods), the sequences 243 

submitted to MetaVir may be assembled or raw sequences. Furthermore, MetaVir conducts BLAST 244 

comparisons against the RefSeq viral database, whereas here we have included all partial and complete 245 

phage sequences from GenBank which is several magnitudes of difference greater in size. Nevertheless, 246 

hits to the Pbunalikeviruses (Supplemental Table 2) genomes were identified in all five MetaVir datasets; 247 

the Lake Michigan and Lake Bourget samples (nine samples from Metavirome I and both samples from 248 
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Metavirome II) produced the most BLAST hits to the Pbunalikeviruses genomes (hundreds to 249 

thousands). As MetaVir determines taxonomy based upon the best BLAST hit, these best hits were next 250 

evaluated. All five datasets again included hits which were classified as Pbunalikeviruses. 251 

As Figure 3 shows, Metavirome I (the Lake Michigan metaviromes generated by our group (Watkins et 252 

al., 2015; Sible et al., 2015)) identifies many informative genes indicative of the presence of 253 

Pseudomonas phage PB1. Metaviromes II, V, and VII contain informative hits to 1, 2, and 1 PB1 genes 254 

respectively. Their informativity, however, is low, i.e. {SH, QH} ≈ T. This would suggest that PB1 is not 255 

present within the sample: rather a homolog of the gene is present. The prevalence of informative 256 

genes within several of the samples of Metavirome I and the lack thereof in the other metaviromes 257 

suggests that PB1 and likewise other Pbunalikeviruses are not present (or at the least not prevalent) in 258 

the other metaviormes. As viral sequence databases expand through the isolation and characterization 259 

of additional viral strains, the threshold T is likely to change thus providing greater confidence in the 260 

evaluation of BLAST hits for OTU calling. 261 

 262 

Figure 3. Informativity of hits to PB1 genes within seven freshwater DNA metaviromic datasets (Table 1). 263 

Conclusions 264 

The presented method for extrapolating the presence/absence of microbial taxa is both robust and 265 

versatile. Although specifically developed to tackle some of the challenges facing metavirome studies, it 266 

can be applied to any WGS dataset. Specifically, the proof-of-concept investigation of seven freshwater 267 

metavirome datasets can be applied in the effort to identify novel strains and species of phages with 268 
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confidence. Many of the prokaryote members of the human microbiome are undergoing examination, 269 

but exploration of human viromes is the next frontier (Abeles & Pride, 2014; Ogilvie & Jones, 2015). As 270 

such, these studies will face many of the same challenges that are detailed as part of the presented 271 

study. Nevertheless, improved bioinformatic tools for mining metaviromic analyses, coupled with 272 

further physical isolation and characterization of viral species have the potential to greatly expand our 273 

knowledge of the viral diversity on Earth. 274 
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Supplemental Data 383 

Supplemental Table 1. SRA datasets from each study. 384 

Metavirome ID SRA run datasets 

I 

SRR1301999 

SRR1302020 

SRR1302010 

SRR1296481 

Private data set 

Private data set 

Private data set 

Private data set 

Private data set 

SRR1974493 

SRR1974494 

SRR1974490 

SRR1974491 

SRR1974495 

SRR1974496 

SRR1974497 

SRR1974498 

SRR1915829 

SRR1915851 

SRR1974488 

SRR1974489 

SRR1974499 

SRR1974500 

SRR1974501 

SRR1974502 

SRR1974503 

SRR1974504 

SRR1974505 

SRR1974506 

SRR1974507 

SRR1974508 

SRR1974509 

SRR1974510 

SRR1974511 

SRR1974512 

SRR1974513 

SRR1974514 

SRR1974515 

SRR1974516 
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SRR1974517 

II 
ERR019477 

ERR019478 

III 

SRR001047 

SRR001075 

SRR001076 

IV 
SRR013515, SRR013516, SRR013517 

SRR013520, SRR013521 

V 

SRR014584 

SRR014585 

SRR014586 

SRR014587 

SRR014588 

SRR014589 

VI 

SRR138365 

SRR155589 

SRR171296 

VII 

SRR371574 

SRR648311 

SRR648312 

SRR648313 

SRR648314 
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Supplemental Table 2: Pbunalikevirus genomes 386 

Phage Genome size NCBI Assigned Taxonomy GenBank Accession No. 

PB1 65764 Pbunalikevirus NC_011810 

SN 66390 Pbunalikevirus NC_011756 

14-1 66238 Pbunalikevirus NC_011703 

LMA2 66530 Pbunalikevirus NC_011166 

LBL3 64427 Pbunalikevirus NC_011165 

F8 66015 Pbunalikevirus NC_007810 

BcepF1 72415 Pbunalikevirus NC_009015 

PaMx13 66450 Pbunalikevirus JQ067083 

pp DL52 65867 Pbunalikevirus KR054028 

pp SPM-1 65729 Pbunalikevirus NC_023596 

pp vB_PaeM_C1-14_Ab28 66181 unclasified Myoviridae NC_026600 

pp DL60 66103 unclasified Myoviridae KR054030 

pp KPP12 64144 unclasified Myoviridae NC_019935 

pp NH-4 66116 unclasified Myoviridae NC_019451 

pp vB_PaeM_PAO1_Ab27 66299 unclasified Myoviridae NC_026586 

pp vB_PaeM_PAO1_Ab29 66326 unclasified Myoviridae LN610588 

pp JG024 66275 unclasified Myoviridae NC_017674 

pp DL68 66111 unclasified Myoviridae KR054033 

S12-1 66257 unclassified Myoviridae LC102730 

R18 63560 unclassified Myoviridae LC102729 
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