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Université Grenoble-Alpes,14

TIMC-IMAG, UMR CNRS 5525,15

Grenoble, 38042, France.16

+334 56 52 00 25 (ph.)17

+334 56 52 00 55 (fax)18

olivier.francois@imag.fr19

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2016. ; https://doi.org/10.1101/054585doi: bioRxiv preprint 

https://doi.org/10.1101/054585
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract20

Finding genetic signatures of local adaptation is of great interest for many population genetic21

studies. Common approaches to sorting selective loci from their genomic background focus on22

the extreme values of the fixation index, FST, across loci. However, the computation of the23

fixation index becomes challenging when the population is genetically continuous, when predefining24

subpopulations is a difficult task, and in the presence of admixed individuals in the sample. In25

this study, we present a new method to identify loci under selection based on an extension of the26

FST statistic to samples with admixed individuals. In our approach, FST values are computed27

from the ancestry coefficients obtained with ancestry estimation programs. More specifically, we28

used factor models to estimate FST, and we compared our neutrality tests with those derived29

from a principal component analysis approach. The performances of the tests were illustrated30

using simulated data, and by re-analyzing genomic data from European lines of the plant species31

Arabidopsis thaliana and human genomic data from the population reference sample, POPRES.32
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1 Introduction33

Natural selection, the process by which organisms that are best adapted to their environment34

have an increased contribution of genetic variants to future generations, is the driving force of35

evolution (Darwin, 1859). Identifying genomic regions that have been the targets of natural selec-36

tion is one of the most important challenge in modern population genetics (Vitti et al., 2013). To37

this aim, examining the variation in allele frequencies between populations is a frequently applied38

strategy (Cavalli-Sforza, 1966). More specifically, by sampling a large number of single nucleotide39

polymorphisms (SNPs) throughout the genome, loci that have been affected by diversifying selec-40

tion can be identified as outliers in the upper tail of the empirical distribution of FST (Lewontin &41

Krakauer, 1973; Beaumont & Nichols, 1996; Akey et al., 2002; Weir et al., 2005). For selectively42

neutral SNPs, FST is determined by migration and genetic drift, which affect all SNPs across the43

genome in a similar way. In contrast, natural selection has locus-specific effects that can cause44

deviations in FST values at selected SNPs and at linked loci.45

Outlier tests based on the empirical distribution of FST across the genome requires that the46

sample is subdivided into K subsamples, each of them corresponding to a distinct genetic group.47

For outlier tests, defining subpopulations may be a difficult task, especially when the background48

levels of FST are weak and when populations are genetically homogeneous (Waples & Gaggiotti,49

2006). For example, Europe is genetically homogeneous for human genomes, and it is characterized50

by gradual variation in allele frequencies from the south to the north of the continent (Lao et al.,51

2008), in which genetic proximity mimics geographic proximity (Novembre et al., 2008). Studying52

evolution in the field, most ecological studies use individual-based sampling along geographic53

transects without using prior knowledge of populations (Manel et al., 2003; Schoville et al., 2012).54

For example, the 1001 genomes project for the plant species Arabidopsis thaliana used a strategy55

in which individual ecotypes were sampled with a large geographic coverage of the native and56

naturalized ranges (Horton et al., 2012; Weigel & Mott, 2009). One last difficulty with FST tests57

arises from the presence of individuals with multiple ancestries (admixture), for which the genome58

exhibits a mosaic of fragments originating from different ancestral populations (Long, 1991). The59

admixture phenomenon is ubiquitous over sexually reproducing organisms (Pritchard et al., 2000).60
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Admixture is pervasive in humans because migratory movements have brought together peoples61

from different origins (Cavalli-Sforza et al., 1994). Striking examples include the genetic history62

of African American and Mestizo populations, for which the contributions of European, Native63

American, and African populations had been studied extensively (Bryc et al., 2010; Tang et al.,64

2007).65

Most of the concerns raised by definitions of subpopulations are commonly answered by the66

application of clustering or ancestry estimation approaches such as structure or principal com-67

ponent analysis (PCA) (Pritchard et al., 2000; Patterson et al., 2006). These approaches rely on68

the framework of factor models, where a factor matrix, the Q-matrix for structure and the score69

matrix for PCA, is used to define individual ancestry coefficients, or to assign individuals to their70

most probable ancestral genetic group (Engelhardt & Stephens, 2010). To account for geographic71

patterns of genetic variation produced by complex demographic histories, spatially explicit ver-72

sions of the structure algorithm can include models for which individuals at nearby locations73

tend to be more closely related than individuals from distant locations (François & Durand, 2010).74

In this study, we propose new tests to identify outlier loci in admixed and in continuous75

populations by extending the definition of FST to this framework (Long, 1991). Our tests are76

based on the computation of ancestry coefficient and ancestral allele frequency, Q and F , matrices77

obtained from ancestry estimation programs. We develop a theory for the derivation of this new78

FST statistic, defining it as the proportion of genetic diversity due to allele frequency differences79

among populations in a model with admixed individuals. Then we compute our new statistic80

using the outputs of two ancestry estimation programs: snmf which is used as fast and accurate81

version of the structure algorithm, and tess3 a fast ancestry estimation program using genetic82

and geographic data (Frichot et al., 2014; Caye et al., 2016). Using simulated data sets and SNPs83

from human and plants, we compared the results of genome scans obtained with our new FST84

statistic with the results of PCA-based methods (Hao et al., 2016; Duforet-Frebourg et al., 2016;85

Chen et al., 2016; Galinsky et al., 2016; Luu et al., 2016).86
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2 F -statistics for populations with admixed individuals87

In this section, we extend the definition of FST to populations containing admixed individuals,88

and for which no subpopulations can be defined a priori. We consider SNP data for n individuals89

genotyped at L loci. The data for each individual, i, and for each locus, `, are recorded into a90

genotypic matrix Y . The matrix entries, yi`, correspond to the number of derived or reference91

alleles at each locus. For diploid organisms, yi` is an integer value 0, 1 or 2.92

A new definition of FST. Suppose that a population contains admixed individuals, and the93

source populations are unknown. Assume that individual ancestry coefficients, Q, and ancestral94

population frequencies, F , are estimated from the genotypic matrix Y by using an ancestry esti-95

mation algorithm such as structure (Pritchard et al., 2000). Consider a particular locus, `, and96

let fk be the reference allele frequency in ancestral population k at that locus. We set97

f =
K∑

k=1

qkfk ,

where qk is the average value of the population k ancestry coefficient over all individuals in the98

sample, and the ancestral allele frequencies are obtained from the F matrix. Our formula for FST99

is100

FST = 1−
∑K

k=1 qkfk(1− fk)

f(1− f)
. (1)

The above definition of FST for admixed populations is obviously related to the original defi-101

nition of Wright’s fixation index. Assuming K predefined subpopulations, Wright’s definition of102

FST writes as follows (Wright, 1951)103

FST = 1− HS

HT
,

where HS =
∑K

k=1 nkfk(1− fk)/n, HT = f(1− f), nk is the sample size, fk is the allele frequency104

in subpopulation k, and f is the allele frequency in the total population. For admixed samples,105

the estimates of the sample sizes, nk, are obtained by setting nk = nqk, and the sampled allele106

frequencies are replaced by their ancestral allele frequencies. The interpretation of the new FST107

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2016. ; https://doi.org/10.1101/054585doi: bioRxiv preprint 

https://doi.org/10.1101/054585
http://creativecommons.org/licenses/by-nc-nd/4.0/


statistic is thus similar to the interpretation of Wright’s fixation index. The main distinction is its108

application to ‘idealized’ ancestral populations inferred by structure or a similar algorithm. For109

recently admixed populations, our new statistic represents a measure of population differentiation110

due to population structure prior to the admixture event. Mathematically rigorous arguments for111

this analogy will be given in a subsequent paragraph.112

Admixture estimates. While many algorithms can compute the Q and F matrices, our ap-113

plication of the above definition will focus on ancestry estimates obtained by nonnegative matrix114

factorization algorithms (Frichot et al., 2014). Frichot et al. (2014)’s algorithm runs faster than115

the Monte-Carlo algorithm implemented in structure and than the optimization methods im-116

plemented in faststructure or admixture (Alexander et al., 2009; Raj et al., 2014). Estimates117

of Q and F matrices obtained by the snmf algorithm can replace those obtained by the program118

structure advantageously for large SNP data sets (Wollstein & Lao, 2015).119

The snmf algorithm estimates the F matrix as follows. Assume that the sampled genotype120

frequencies can be modelled by a mixture of ancestral genotype frequencies121

δ(yi`=j) =
K∑

k=1

QikGk`(j), j = 0, 1, . . . , p,

where yi` is the genotype of individual i at locus `, the Qik are the ancestry coefficients for122

individual i in population k, the Gk`(j) are the ancestral genotype frequencies in population123

k, and p is the ploidy of the studied organism (δ is the Kronecker delta symbol indicating the124

absence/presence of genotype j). For diploids (p = 2), the relationship between ancestral allele125

and genotype frequencies can be written as follows126

Fk` = Gk`(1)/2 +Gk`(2).

The above equation implies that the sampled allele frequencies, xi`, satisfy the following equation127

xi` = yi`/2 =

K∑
k=1

QikFk` ,

which makes the estimates consistent with the definition of FST.128
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Population differentiation tests. The regression framework explained in the next paragraph129

leads to a direct approximation of the distribution of FST under the null-hypothesis of a random130

mating population (Sokal & Rohlf, 2012). In this framework, we define the squared z-scores as131

follows132

z2 = (n−K)
FST

1− FST
.

Assuming random mating at the population level, we have133

z2/(K − 1) ∼ F (K − 1, n−K) ,

where F (K − 1, n − K) is the Fisher distribution with K − 1 and n − K degrees of freedom.134

In addition, we assume that the sample size is large enough to approximate the distribution of135

squared z-scores as a chi-squared distribution with K − 1 degrees of freedom.136

A naive application of this theory would lead to an increased number of false positive tests due137

to population structure. In genome scans, we adopt an empirical null-hypothesis testing approach138

which recalibrates the null-hypothesis. The principle of test calibration is to evaluate the levels139

of population differentiation that are expected at selectively neutral SNPs, and modify the null-140

hypothesis accordingly (François et al., 2016). Following GWAS approaches, this can be achieved141

after computing the genomic inflation factor, defined by the median of the squared z-scores divided142

by the median of a chi-squared distribution with K−1 degrees of freedom (genomic control, Devlin143

& Roeder (1999)).144

Software. The methods described in this section were implemented in the R package LEA (Fri-145

chot & François, 2015). A short tutorial on how to compute the FST statistic and implement the146

tests is available at http://goo.gl/OsRhLQ.147

Mathematical theory. A classical definition for the fixation index, FST, corresponds to the148

proportion of the genetic variation (or variance) in sampled allele frequency that can be explained149

by population structure150
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FST =
σ2
T − σ2

S

σ2
T

(2)

where, in the analysis of variance terminology, σ2
T is the total variance and σ2

S is the error vari-151

ance (Weir, 1996). This definition of FST, which uses a linear regression framework, can be152

extended to models with admixed individuals in a straightforward manner. Suppose that a pop-153

ulation contains admixed individuals, and assume we have computed estimates of the Q and F154

matrices. For diploid organisms, a genotype is the sum of two parental gametes, taking the values155

0 or 1. In an admixture model, the two gametes can be sampled either from the same or from156

distinct ancestral populations. The admixture model assumes that individuals mate randomly at157

the moment of the admixture event. Omitting the locus subscript `, a statistical model for an158

admixed genotype at a given locus can be written as follows159

y = x1 + x2

where x1 and x2 are independent Bernoulli random variables modelling the parental gametes. The160

conditional distribution of x1 (resp. x2) is such that prob(x1 = 1|Anc1 = k) = fk where fk is the161

allele frequency in ancestral population k, Anc is an integer value between 1 and K representing162

the hidden ancestry of each gamete. The sampled allele frequency is defined as x = y/2 (x taking163

its values in 0, 1/2, 1). Thus the expected value of the random variable x is given by the following164

formula165

f = E[x] =
K∑

k=1

qkfk ,

where qk = prob(Anc = k). The total variance of x satisfies166

2σ2
T = 2Var[x] = f(1− f).

Using the Q and F matrices, qk can be estimated as the average value of the ancestry coefficients167

over all individuals in the sample, and the ancestral allele frequencies can be estimated as fk = Fk.168

To compute the error variance, σ2
S , we consider that the two gametes originate from the same169

ancestral population. Assuming Hardy-Weinberg equilibrium in the ancestral populations, the170
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error variance can be computed as follows171

2σ2
S =

K∑
k=1

qkfk(1− fk) ,

and the use of equation (2) for FST concludes the proof of equation (1).172

3 Simulation experiments and data sets173

Simple simulation models. In a first series of simulations, we created replicate data sets174

close to the underlying assumptions of population differentiation tests (Lewontin & Krakauer,175

1973; Beaumont & Nichols, 1996). While relying on simplified assumptions, those easily repro-176

ducible simulations have the advantage of providing a clear ‘proof-of-concept’ framework which177

connects our new statistic to the classical theory. Admixed genotypes from a unique continuous178

population were obtained from two ancestral gene pools. In this continuous population, individ-179

ual ancestry varied gradually along a longitudinal axis. The samples contained 200 individuals180

genotyped at 10,000 unlinked SNPs. Ancestral polymorphisms were simulated based on Wright’s181

two-island models. Two values for the proportion of loci under selection were considered (5% and182

10%). To generate genetic variation at outlier loci, we assumed that adaptive SNPs had migration183

rates smaller than the migration rate at selectively neutral SNPs. In this model, adaptive loci184

experienced reduced levels of ancestral gene flow compared to the genomic background (Bazin185

et al., 2010). The effective migration rate at a neutral SNP was equal to one of the four values186

4Nm = 20, 15, 10, 5. The effective migration rate at an adaptive SNP was equal to one of the four187

values 4Nms = 0.1, 0.25, 0.5, 1. A total number of 32 different data sets were generated by using188

the computer program ms (Hudson, 2002).189

The model for admixture was based on a gradual variation of ancestry proportions across190

geographic space (Durand et al., 2009). Geographic coordinates (xi, yi) were created for each191

individual from Gaussian distributions centered around two centroids put at distance 2 on a192

longitudinal axis (standard deviation [SD] = 1). As it happens in a secondary contact zone, we193

assumed that the ancestry proportions had a sigmoidal shape across space (Barton & Hewitt,194

1985),195
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p(xi) =
1

(1 + e−xi)
.

For each individual, we assumed that each allele originated in the first ancestral population with196

probability p(xi) and in the second ancestral population with probability 1−p(xi) (Durand et al.,197

2009).198

Complex simulation models. To evaluate the power of tests in realistic landscape simulations,199

we used six publicly available data sets previously described by Lotterhos & Whitlock (2015).200

In those scenarios, the demographic history of a fictive species corresponded to nonequilibrium201

isolation by distance due to expansion from two refugia. The simulations mimicked a natural202

population whose ranges have expanded since the last glacial maximum, potentially resulting in203

secondary contact (Hewitt, 2000). The study area was modelled as a square with 360 × 360204

demes. Migration was determined by a dispersal kernel with standard deviation σ = 1.3 demes,205

and the carrying capacity per deme was 124. The data sets consisted of 9900 neutral loci and 100206

selected loci. Twenty unrelated individuals were sampled from thirty randomly chosen demes. For207

each replicate data set, a selective landscape was randomly generated based on spherical models208

described as ‘weak clines’ (details in Lotterhos & Whitlock (2015)). All selected loci adapted to209

this landscape.210

Computer programs We performed genome scans for selection using three factor methods:211

snmf (Frichot et al., 2014), tess3 (Caye et al., 2016), pcadapt (Luu et al., 2016; Duforet-Frebourg212

et al., 2016). A fourth method used the standard FST statistic where subpopulations were obtained213

from the assignment of individuals to their most likely genetic cluster. Like for snmf, the tess3214

estimates of the Q and G matrices are based on matrix factorization techniques. The main215

difference between the two programs is that tess3 computes ancestry estimates by incorporating216

information on individual geographic coordinates in its algorithm whereas the snmf algorithm is217

closer to structure (Caye et al., 2016). The default values of the two programs were implemented218

for all their internal parameters. Each run of the two programs was replicated five times, and219

the run with the lowest cross-entropy value was selected for computing FST statistics according220
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to formula (1). We compared the results of snmf and tess3 with the results of the program221

pcadapt (Luu et al., 2016). The test statistic of the latest version of pcadapt is the Manhanalobis222

distance relative to the z-scores obtained after regressing the SNP frequencies on theK−1 principal223

components. As for snmf and for tess3, test calibration in pcadapt was based on the computation224

of the genomic inflation factor. For genome scans based on the FST statistic where subpopulations225

are obtained from the assignment of individuals to their most likely genetic cluster, we used a226

chi-squared distribution with K − 1 of freedom after recalibration of the null-hypothesis using227

genomic control. Before applying the methods to the simulated data sets, the SNPs were filtered228

out and only the loci with minor allele frequency greater than 5% were retained for analysis.229

Real data sets. To provide an application of our method to natural populations, we reanalyzed230

data from the model plant organism Arabidopsis thaliana. This annual plant is native to Europe231

and central Asia, and within its native range, it goes through numerous climatic conditions and232

selective pressures (Mitchell-Olds & Schmitt, 2006). We analyzed genomic data from 120 European233

lines of A. thaliana genotyped for 216k SNPs, with a density of one SNP per 500 bp (Atwell et al.,234

2010). To reduce the sensitivity of methods to an unbalanced sampling design, fourteen ecotypes235

from Northern Scandinavia were not included in our analysis. Those fourteen ecotypes represented236

a small divergent genetic cluster in the original data set. In addition to the plant data, we analyzed237

human genetic data for 1,385 European individuals genotyped at 447k SNPs (Nelson et al., 2008).238

Candidate lists. After recalibration of the null-hypothesis using genomic inflation factors, his-239

tograms of test significance values were checked for displaying their correct shape. Then, False240

Discovered Rate (FDR) control algorithms were applied to significance values using the Storey241

and Tibishirani algorithm (Storey & Tibshirani, 2003). For simulated data, lists of outlier loci242

were obtained for an expected FDR value of 10%. The same nominal level was applied for the243

analysis of the human data set. For A. thaliana, an expected FDR value of 1% was applied, and244

a consensus list of loci was obtained by including all peak values present in Manhattan plots for245

snmf and tess3.246
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4 Results247

Simple simulation models. We evaluated the performances of genome scans using tests based248

on snmf, tess3, pcadapt, and FST, in the presence of admixed individuals. For snmf and for249

tess3, we used K = 2 ancestral populations. This value of K corresponded to the minimum of250

the cross-entropy criterion when K was varied in the range 1 to 6, and it also corresponded to the251

true number of ancestral populations in the simulations. We used pcadapt with its first principal252

component. Considering expected FDR values between 0.01 and 0.2, we computed observed FDR253

values for the lists of outlier loci produced by each test. The observed FDR values remained254

generally below their expected values (Figure 1 for data sets with 5% of loci under selection,255

Figure S1 for data sets with 10% of loci under selection). These observations confirmed that the256

use of genomic inflation factors leads to overly conservative tests (François et al., 2016). Since257

similar levels of observed FDR values were observed across the 4 tests, we did not implement other258

calibration methods than genomic control.259

Next, we evaluated the sensitivity (power) of the four tests in each simulation scenario. Our260

experiments confirmed that the use of approaches that estimate ancestry coefficients is appropriate261

when no subpopulation can be predefined (Figure 2A for ancestry coefficient estimates). As we262

expected from the simulation process, the tests had higher power when the relative levels of263

selection intensity were higher. For 4Nm = 5 and 4Nms = 0.1, 0.25, 0.5, and 1, the power of264

tests for snmf, tess3, pcadapt was close to 27% for data sets with 5% of outliers (Figure 2B,265

expected FDR equal to 10%). The FST test based on assignment of individuals to their most266

likely cluster failed to detect outlier loci (power value equal to 0%). For 4Nm = 10 , the power of267

the tests ranged between 40% and 45% for snmf, tess3, pcadapt, and it was equal to 26% for the268

FST test (Figure 2B). For 4mN ≥ 15, corresponding to the highest selection rates, the power was269

approximately equal to 50% for all methods considered. The relatively low power values confirmed270

that the tests were conservative, and truly-adaptive loci were difficult to detect. To provide an271

upper bound on the power of outlier tests in the context of admixed populations, we applied an272

FST test to the samples obtained prior to admixture, estimating allele frequencies from their true273

ancestral populations. For 4Nm = 5 and 10, the power of the tests for snmf, tess3, pcadapt was274

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2016. ; https://doi.org/10.1101/054585doi: bioRxiv preprint 

https://doi.org/10.1101/054585
http://creativecommons.org/licenses/by-nc-nd/4.0/


similar to the power obtained when we applied outlier tests to the data before admixture (Figure275

2B). The results for data sets with 10% of selected loci were similar to those obtained with 5% of276

selected loci (Figure S2).277

Complex simulation models. We compared the power of factor methods to the power of278

tests based on assignment of individuals to their most likely cluster in realistic landscape simula-279

tions (Lotterhos & Whitlock, 2015). As a consequence of isolation by distance, the cross-entropy280

curve for snmf decreased with the value of the number of clusters, but the curve did not exhibit281

a minumum. A plateau reached at K = 6 indicated that this value of K could be the best choice282

for modelling the mixed levels of ancestry in the data (Figure 3A). In agreement with this result,283

pcadapt consistently found 5 axes of variation in the data. For values of K = 4 − 7 and for an284

expected level of FDR of 10%, the power of tests based on factor methods ranged between 0.82 and285

0.87 (Figure 3B). Although SNP rankings were not different for pcadapt, the pcadapt tests were286

less conservative than the tests based on the default values of snmf (values not reported). Classical287

tests that assigned individuals to their most likely cluster had power ranging between 0.44 and288

0.48. The power values for classical FST tests were substantially lower than those obtained with289

the new tests.290

Arabidopsis data. We applied snmf, tess3 and pcadapt to perform genome scans for selection291

in 120 European lines of Arabidopsis thaliana (216k SNPs). Each ecotype was collected from a292

unique geographic location, and there were no predefined populations. To study adaptation at293

the continental scale, a small number ecotypes from Northern Scandinavia, which were grouped294

by clustering programs, were removed from the original data set of Atwell et al. (2010). For snmf295

and tess3, the cross-entropy criterion indicated that there are two main clusters in Europe, and296

that finer substructure could be detected as a result of historical isolation-by-distance processes.297

For K = 2, the western cluster grouped all lines from the British Isles, France and Iberia and the298

eastern cluster grouped all lines from Germany, and from Central and Eastern Europe (Figure299

4). For implementing genome scans for selection, we used two clusters in snmf and tess3, and300

one principal component in pcadapt. The genomic inflation factor was equal to λ = 11.5 for the301
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test based on snmf, and it was equal to λ = 13.1 for the test based on tess3. The interpretation302

of these two values is that the background level of population differentiation that was tested in303

snmf and tess3 is around 0.09 (François et al. 2016). For the three methods, the Manhattan304

plots exhibited peaks at the same chromosome positions (Figure 5). For an expected FDR level305

equal to 1%, the Storey and Tibshirani algorithm resulted in a list of 572 chromosome positions306

for the snmf tests and 882 for the tess3 tests. Figure S3 displays a Manhattan plot for the307

plant genome showing the main outlier loci detected by our genome scans for selection for K = 2.308

Unlike for simulated data, the tests based on PCA were more conservative than the tests based on309

genetic clusters. Generally, the differences between test significance values among methods could310

be attributed to the estimation of the genomic inflation factor and test calibration issues rather311

than to strong differences in SNP ranking. The results of genome scans for selection were also312

investigated for values of K greater than 2. The higher values of K revealed additional candidate313

genomic regions that were consistently discovered by the three factor methods (Figures S4-S6).314

Table 1 reports a list of 33 candidate SNPs for European A. thaliana lines in the 10% top hits,315

based on the peaks detected by the factor methods. For chromosome 1, the list contains SNPs in316

the gene AT1G80680 involved in resistance against bacterial pathogens. For chromosome 2, the317

list contains SNPs in the gene AT2G18440 (AtGUT15), which can be used by plants as a sensor318

to interrelated temperatures, and which has a role for controlling growth and development in319

response to a shifting environment (Lu et al., 2005). For chromosome 3, the list contains SNPs in320

the gene AT3G11920 involved in cell redox homeostasis. Fine control of cellular redox homeostasis321

is important for integrated regulation of plant defense and acclimatory responses (Mühlenbock322

et al., 2007). For chromosome 4, we found SNPs in the gene AT4G31180 (IBI1) involved in323

defense response to fungi. The most important list of candidate SNPs was found in the fifth324

chromosome. For example, the list of outlier SNPs contained SNPs in the gene AT5G02820,325

involved in endoreduplication, that might contribute to the adaptation to adverse environmental326

factors, allowing the maintenance of growth under stress conditions (Chevalier et al., 2011), in327

the genes AT5G18620, AT5G18630 and AT5G20620 (UBIQUITIN 4) involved in response to328

temperature stress (Kim & Kang, 2005), and in the gene AT5G20610 which is involved in response329
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to blue light (DeBlasio et al., 2005). Several additional candidates were found with values of K330

greater than two for the snmf tests. For K = 3 and K = 4 those additional outlier regions331

included one SNP in the flowering locus FRIGIDA and four SNPs in COP1-interacting protein332

4.1 on chromosome 4 (Horton et al. (2012), Figure S6). For the tests with K = 4, outlier regions333

included two SNPs in the FLOWERING LOCUS C (FLC) and five SNPs in the DELAY OF334

GEMINATION 1 (DOG1) locus (Horton et al. (2012), Figure S6).335

Human data. We applied the snmf and pcadapt tests to 1,385 European individuals from the336

POPRES data set (447k SNPs in 22 chromosomes). We used K = 2 ancestral populations in337

snmf and one principal component for PCA. For snmf, the genomic inflation factor was equal to338

λ = 9.0, indicating a background level of population differentiation around 0.006 between northern339

and southern European populations (Figure 6). For an expected FDR equal to 10%, we found340

205 outlier loci using snmf tests, and 165 outlier loci with pcadapt. For chromosome 2, the most341

important signal of selection was found at the lactase persistence gene (LCT) (Bersaglieri et al.,342

2004). For chromosome 4, 5 SNPs were found at the ADH1C locus that is involved in alcohol343

metabolism (Han et al., 2007), close to the ADH1B locus reported by Galinsky et al. (2016). For344

chromosome 6, a signal of selection corresponding to the human leukocyte antigen (HLA) region345

was identified. For chromosome 15, there was an outlier SNP in the HERC2 gene, which modulates346

human pigmentation (Visser et al. (2012), Figure 6).347

5 Discussion348

When no subpopulation can be defined a priori, analysis of population structure commonly349

relies on the computation of the Q (and F ) ancestry matrix obtained through the application of350

the program structure or one of its improved versions (Pritchard et al., 2000; Tang et al., 2005;351

Chen et al., 2007; Alexander et al., 2009; Raj et al., 2014; Frichot et al., 2014; Caye et al., 2016).352

In this context, we proposed a definition of FST based on the Q and F matrices, and we used353

this new statistic to screen genomes for signatures of diversifying selection. By modelling admixed354

genotypes, our definition of FST was inspired by an analysis of variance approach for the genotypic355

data (Weir & Cockerham, 1984; Holsinger & Weir, 2009).356
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The estimator for FST presented here is related to the estimator proposed by Long (1991) for357

population data. Long’s estimator was obtained from the variance of allele frequencies with respect358

to their expectations based on an admixture model, that enables estimating the effect of genetic359

drift and the effective size of the hybrid population. In order to obtain Long’s estimate, multiple360

locus samples are required from the hybrid population and from all contributing parental popu-361

lations. For the method proposed in our manuscript, information on ancestral genetic diversity is362

evaluated with less prior assumptions by the application of ancestry estimation programs.363

Ancestry coefficients computed by structure or similar programs are conceptual abstrac-364

tions that do not always reflect demographic history correctly (Kalinowski, 2011; Puechmaille,365

2016; Falush et al., 2016). Assuming that a large number of SNPs are genotyped across multiple366

populations, the calibration of statistical tests of neutrality do not require assumptions about pop-367

ulation demographic history. Our simulations of admixed populations provided evidence that the368

tests based on this new statistic had an increased power compared to tests in which we assigned369

individuals to their most probable cluster. Interestingly, the power of those tests was only slightly370

lower than standard FST tests based on the truly ancestral allele frequencies. Going beyond sim-371

plified simulation scenarios, we evaluated the power of our tests in range expansion scenarios with372

complex patterns of isolation by distance. In those scenarios, genetic correlation among samples373

inflates the variance of population differentiation statistics (Bierne et al., 2013). We observed that374

inflation factor corrections reduced this problem when using numbers of clusters (K) greater than375

2. Although a ‘true’ value for K did not exist, we found that the power of our tests was optimal for376

K estimated from a PCA or by cross-validation using our factor model. In this case, the ancestry377

coefficients disagreed with the known demographic history (simulated organisms expanded from378

two refugia), but the gain in performance in favor of the new tests was even higher than in the379

simple proof-of-concept simulations tailored to the new method.380

Our reanalysis of European A. thaliana genetic polymorphisms provided a clear example of the381

usefulness of our FST statistic to detect targets of natural selection in plants. European ecotypes of382

Arabidopsis thaliana are continuously distributed across the continent, with population structure383

influenced by historical isolation-by-distance processes (Atwell et al., 2010; Hancock et al., 2011;384
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François et al., 2008). The application of our FST statistic to the SNP data suggested several new385

candidate loci involved in resistance against pathogens, in growth and development in response386

to a shifting environment, in the regulation of plant defense and acclimatory responses, in the387

adaptation to adverse environmental factors, in allowing the maintenance of growth under stress388

conditions, in response to temperature stress or response to light.389

An alternative approach to investigating population structure without predefined populations is390

by using principal component analysis (Patterson et al., 2006). Statistics extending the definition391

of FST were also proposed for PCA (Hao et al., 2016; Duforet-Frebourg et al., 2016; Galinsky392

et al., 2016; Chen et al., 2016). The performances of PCA statistics and our new FST statistic393

were highly similar. The small differences observed for the two tests could be ascribed to the394

chi-squared distribution approximation and to the estimation of inflation factors to calibrate the395

null-hypothesis. The idea of detecting signatures of selection in an admixed population has a396

considerable history and has been explored since the early seventies (Blumberg & Hesser, 1971;397

Adams & Ward, 1973; Tang et al., 2007). The connection between our definition of FST and398

previous works shows that the methods studied in this study, including PCA or ancestry programs,399

are extensions of classical methods of detection of selection using admixed populations (Long,400

1991). Our results allow us to hypothesize that the age of selection detected by PCA and by401

our new method is similar. Thus it is likely that the selective sweeps detected by PCA and FST402

methods correspond to ancient selective sweeps already differentiating in ancestral populations. A403

comparison of our results for Europeans from the POPRES data sets and the genome-wide patterns404

of selection in 230 ancient Eurasians provides additional evidence that the signals detected by our405

FST were already present in the populations that were ancestral to modern Europeans (Mathieson406

et al., 2015).407

While only minor differences between the ranking of p-values with 4 methods were observed, the408

results might be still sensitive to the algorithm used to estimating the ancestry matrices. Wollstein409

& Lao (2015) performed an extensive comparison of 3 recently proposed ancestry estimation410

methods, admixture, faststructure, snmf (Alexander & Lange, 2011; Raj et al., 2014; Frichot411

et al., 2014), and they concluded that the accuracy of the methods could differ in some simulation412
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scenarios. In practice, it would be wise to apply several methods and to combine their results by413

using a meta-analysis approach as demonstrated in François et al. (2016).414

Data Accessibility415

Simulated data are available from Lotterhos KE, Whitlock MC (2015) Data from: The relative416

power of genome scans to detect local adaptation depends on sampling design and statistical417

method. Dryad Digital Repository:418

http://dx.doi.org/10.5061/dryad.mh67v.419

The Atwell et al. (2010) data are publicly available from420

https://github.com/Gregor-Mendel-Institute/atpolydb.421

The POPRES data were obtained from dbGaP (accession number phs000145.v1.p1).422
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6 Figures and Tables618

Figure 1. FDR for simulations of admixed populations. Simulation of ancestral popu-
lations based on 2-island models with various levels of population differentiation and selection.
Sixteen data sets contained 5% of truly selected loci. Observed false discovery rates for an ex-
pected level of FDR equal to 0.1. (A) FST tests based on snmf Q and F matrices, (B) FST tests
based on tess3 Q and F matrices, (C) Luu et al.’s (2016) pcadapt statistic, (D) Standard FST

test based on assignment of individuals to their most likely genetic cluster.
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Figure 2. Power in simulations of admixed populations. Simulations of ancestral pop-
ulations based on 2-island models with various levels of selection and background of levels of
population differentiation (4Nm). Sixteen data sets contained 5% of truly selected loci. (A)
Individual ancestry coefficients estimated from neutral loci using snmf with K = 2. (B) Power
estimates for tests based on factor methods (grouping snmf, tess3 and pcadapt), for FST tests in
which individuals were assigned to their most likely cluster, and for FST tests prior to admixture.
Power values were computed by considering an expected FDR value equal to 0.1. For 4Nm = 5
(relatively weak selection intensity), the FST test based on assignment failed to detect outlier loci.
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Figure 3. Power in simulations of range expansions. (A) Individual ancestry coefficients
estimated using snmf with K = 6 ancestral populations. (B) Power estimates for tests based on
factor methods and for FST tests in which individuals were assigned to their most likely cluster.
Power values were computed by considering an expected FDR value equal to 0.1. Factor methods
included snmf and pcadapt.
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Figure 4. Ancestry coefficients for Arabidopsis thaliana. Coefficients estimated using snmf

with K = 2 ancestral populations interpolated on a geographic map of Europe.
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Figure 5. Manhattan plots of minus log10(p-values) for A. thaliana. Tests using (A)
snmf, (B) tess3 and (C) pcadapt. The tests based on pcadapt were more conservative than the
tests based on the other methods.

31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2016. ; https://doi.org/10.1101/054585doi: bioRxiv preprint 

https://doi.org/10.1101/054585
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6. Manhattan plots of minus log10(p-values) for Europeans (POPRES data
set). Tests using (A) snmf and (B) pcadapt. Candidate loci detected by genome scans for
selection are colored in red for an expected FDR level of 10%. The inserted figure displays
population structure estimated with snmf with K = 2 populations.
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Chromosome Position (kb) Gene Unknown References

1 132330 AT1G01340 Salt tolerance Guo et al. (2008)

490925 AT1G02410 Plant growth and pollen germination Radin et al. (2015)

2191723 AT1G07140(SIRANBP) Encodes a putative ran-binding protein Wang et al. (2008)

10779171 AT1G30470 Unknown

26503961 AT1G70340 Unknown

29516989 AT1G78450 Unknown

30324008 AT1G80680 Defense response Roth & Wiermer (2012)

2 7995729 AT2G18440 (AtGUT15) Encodes a noncoding RNA

3 2048905 AT3G06580 (GAL1) Galactose metabolic process Wang et al. (2008)

3772311 AT3G11920 Cell redox homeostasis

5476074 AT3G16170 (AAE13) Fatty acid biosynthetic process Chen et al. (2011)

18595731 AT3G50150 Unknown

18362443 AT3G49530 Response to cold Chawade et al. (2007)

4 15155879 AT4G31180 (IBI1) Defense response Rajjou et al. (2006)

5 642558 AT5G02820 Endoreduplication

644279 AT5G02830 Unknown

6092682 AT5G18400 (ATDRE2) Apoptotic process Wang et al. (2008)

6195917 AT5G18620 Response to cold Kim & Kang (2005)

6202633 AT5G18630 Lipid metabolic process Wang et al. (2008)

6947843 AT5G20540 Unknown

6952417 AT5G20550 Oxidation-reduction process

6956660 AT5G20570 (ATRBX1) Protein ubiquitination Ascencio-Ibáñez et al. (2008)

6958628 AT5G20580 Unknown

6963438 AT5G20590 Cell wall organization or biogenesis Xin et al. (2007)

6968690 AT5G20610 Response to blue light DeBlasio et al. (2005)

6973071 AT5G20620 (UBIQUITIN 4) Cellular protein modification process Sun & Callis (1997)

8500476 AT5G24770 Defense response Catinot et al. (2015)

8773789 AT5G25280 Unknown

8823283 AT5G25400 Carbohydrate transport Wang et al. (2008)

10856791 AT5G28830 Unknown

26161831 AT5G65460 (KAC2) Photosynthesis He et al. (2005)

26176021 AT5G65480 Unknown Wang et al. (2008)

26225832 AT5G65630 (GTE7) Defense response Wang et al. (2008)

Table 1. List of 33 candidate SNPs for European ecotypes of A. thaliana. The list was
based on the list of p-values obtained by using an expected FDR of 1% for snmf and tess3 tests.
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Figure S1. FDR for simulations of admixed populations (10% of outliers). Simulation
of ancestral populations based on 2-island models with various levels of population differentiation
and selection. Sixteen data sets contained 10% of truly selected loci. Observed false discovery
rates for an expected level of FDR equal to 0.1. (A) FST tests based on snmf Q and F matrices,
(B) FST tests based on tess3 Q and F matrices, (C) Luu et al.’s (2016) pcadapt statistic, (D)
Standard FST test based on assignment of individuals to their most likely genetic cluster.
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Figure S2. Power in simulations of admixed populations (10% of outliers). Simulations
of ancestral populations based on 2-island models with various levels of selection and background
of levels of population differentiation (4Nm). Sixteen data sets contained 10% of truly selected
loci. (A) Individual ancestry coefficients estimated from neutral loci using snmf with K = 2. (B)
Power estimates for tests based on factor methods (grouping snmf, tess3 and pcadapt), for FST

tests in which individuals were assigned to their most likely cluster, and for FST tests prior to
admixture. Power values were computed by considering an expected FDR value equal to 0.1. For
4Nm = 5 (weak selection intensity), the FST test based on assignment failed to detect outlier loci.
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Figure S3. Manhattan plot of minus log10(p-values) for A. thaliana. The candidate
regions are colored in red. Those regions correspond to an expected FDR level of 1% for snmf and
tess3 having more than 5 SNPs in each region.

36

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2016. ; https://doi.org/10.1101/054585doi: bioRxiv preprint 

https://doi.org/10.1101/054585
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S4. Geographic map of ancestry coefficients for Arabidopsis thaliana using snmf

with K = 3 ancestral populations.
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Figure S5. Geographic map of ancestry coefficients for Arabidopsis thaliana using snmf

with K = 4 ancestral populations.
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Figure S6. Manhattan plots of minus log10(p-values) for A. thaliana. Tests using (A)
snmf with K = 2 ancestral populations and pcadapt with 1 principal component, (B) snmf with
K = 3 ancestral populations and pcadapt with 2 principal components, (C) snmf with K = 4
ancestral populations and pcadapt with 3 principal components.
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