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Abstract

The topologies of evolutionary trees are shaped by the nature of the evolutionary process, but
comparisons of trees from different processes are hindered by the challenge of completely describing
tree topology. We present a full characterization of the topologies of rooted branching trees in a
form that lends itself to natural tree comparisons. The resulting metric distinguishes trees from
random models known to produce different tree topologies. It separates trees derived from tropical
vs USA influenza A sequences, indicating that the different epidemiology of tropical and seasonal
flu leaves strong signatures in the tree topology. Our approach allows us to construct addition
and multiplication on trees, and to create a convex metric on tree topologies which formally allows
computation of average trees.

1 Introduction

The availability and declining cost of DNA sequencing mean that data on the diversity, variation and
evolution of organisms is more widely available than ever before. Increasingly, thousands of organisms
are being sequenced at the whole-genome scale [1, 2, 3]. This has had particular impact on the study of
pathogens, whose evolution occurs rapidly enough to be be observed over relatively short periods. As the
numbers of sequences gathered annually grow to the tens of thousands in many organisms, comparing
this year’s evolutionary and diversity patterns to previous years’, and comparing one location to another,
has become increasingly challenging. Despite the fact that evolution does not always occur in a tree-like
way due to the horizontal movements of genes, phylogenetic trees remain a central tool with which we
interpret these data.

The topologies of phylogenetic trees are of long-standing interest in both mathematics and evolution
[4, 5, 6, 7, 8, 9, 10, 11]. A tree’s topology refers to the tree’s connectivity structure, without reference
to the lengths of its branches. A key early observation was that trees reconstructed from evolutionary
data are more asymmetric than simple models predict. This spurred an interest in ways to measure tree
asymmetry [8, 12, 13, 14, 15], in the power of asymmetry measures to distinguish between random models
[16, 8, 17], and in constructing generative models of evolution that produce imbalanced trees [13, 18, 10].
Tree topologies carry information about the underlying evolutionary processes, and distributions of tree
topologies under simple null models can be used to test hypotheses about evolution [9, 10, 19, 7, 11].
Recent work also relates fitness, selection and a variety of ecological processes to tree topology [20,
21, 22, 23, 24, 18]. An additional motivation for studying the topologies of phylogenetic trees is that
reconstructing branch lengths is challenging, particularly deep in a tree; there may be weak support for
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a molecular clock, and coalescent inference procedures may produce trees with consistent topology but
differing root heights.

Tree topology is well established as carrying important information about macroevolutionary processes,
but also carries information about evolution in the short term. In the context of pathogens, diversity
patterns represent a combination of neutral variation that has not yet become fixed, variation that is
under selection, complex demographic processes (host behaviour and contact patterns), and an array of
ecological interactions. The extent to which tree topologies are informative of these processes is not well
understood, though there have been studies on the frequency of cherries and tree imbalance [25, 26, 27]
and simulation studies aiming to explore the question [29, 28, 30, 31].

A key limitation in relating tree topologies to evolution and ecology has been the limited tools with
which trees can be quantified and compared. Comparing tree topologies from different models of evo-
lution or from different datasets requires comparing unlabelled trees, whereas most established tree
comparison methods (eg the Robinson-Foulds [32] and Billera-Holmes-Vogtmann [33] metrics) compare
trees with one particular set of organisms at the tips (ie one set of taxa, with labels). The tools at
our disposal to describe and compare tree topologies from different sets of tips are limited, and have
focused on scalar measures of overall asymmetry [5, 34, 17, 14, 12, 15, 35, 36] and on the frequencies
of small subtree topologies such as cherries [37, 31, 25] and r-pronged nodes [38]. Recently, kernel [39]
and spectral [40] approaches also have been used.

Here we give a simple and complete characterization of all possible topologies for a rooted tree. Our
scheme gives rise to natural metrics (in the sense of true distance functions) on unlabelled tree topologies.
It provides an efficient way to count the frequencies of sub-trees in large trees, and hence can be used
to compare empirical distributions of sub-tree topologies. It is not limited to binary trees and can be
formulated for any maximum size multifurcation, as well as for trees with internal nodes with only one
descendant (sampled ancestors). The resulting topology-based tree metrics separate trees derived from
different random tree models. We use the approach to compare trees from human influenza A (H3N2);
it can distinguish between trees from influenza sampled in the tropics vs that sampled in the USA. Trees
derived from global influenza sequences pre- and post-2010 have a partial overlap.

2 Results

Briefly, with details in Materials and Methods, our approach is to label any possible tree topology,
traversing the tree from the tips to the root and assigning labels as we go. The simplest case is to
assume a binary tree, in which all internal nodes have two descendants. We give a tip the label 1. For
every internal node, we list its descendants’ labels (k, j). Using lexicographic sorting, list all possible
labels (k, j): (1), (1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), ... We define the label of a tree topology whose
root node has descendants (K, J) to be the index at which (K, J) appears in this list. Accordingly, a
“cherry” (a node with two tip descendants) is labelled 2 because its descendants are (1, 1), which is the
second entry in the list. A node with a cherry descendant and a tip descendant (a (2, 1), or a pitchfork)
has label 3. The tree topology (k, j) (a tree whose root has a descendant with label k and one with
label j) has label φ2(k, j) = 1

2
k(k − 1) + j + 1. The scheme takes a different explicit form if there are

multifurcations or internal nodes with a single descendant (see Supporting Information), but proceeds in
the same way. We continue until the root of the tree has a label.

Figure 1 illustrates the labels at the nodes of two binary trees. The label of the root node uniquely
defines the tree topology. Indeed, tree isomorphism algorithms use similar labelling [41, 42, 43, 44, 45].
If Ra and Rb are the root nodes of binary trees Ta and Tb, the tree topologies are the same if and only
if φ2(Ra) = φ2(Rb). The map between trees and labels is bijective: every positive integer corresponds
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Figure 1: Illustration of the labels of the nodes of binary trees. Tips have the label 1. Labels of internal
nodes are shown in black. The only difference between the trees in (a) and (b) is that in (b), the
bottom-most tip from (a) has been removed. As a consequence, most of the labels are the same.

to a unique tree topology and vice versa.
Metrics are an appealing way to compare sets of objects; defining a metric defines a space for the

set of objects – in principle allowing navigation through the space, study of the space’s dimension and
structure, and the certainty that two objects occupy the same location if and only if they are identical.
The labelling scheme gives rise to several natural metrics on tree topologies, based on the intuition
that tree topologies are similar when they share many subtrees with the same labels. In the context
of relating tree topologies to underlying evolutionary processes, a useful metric will be one that both
distinguishes trees from processes known to produce distinct topologies, and that fails to distinguish
trees from processes known to produce the same distribution of tree topologies.

There are several ways to sample random trees, known to produce trees of different topologies. These
include models capturing equal vs different speciation rates, continuous time birth-death processes with
different rates and others (see Methods). We used the metric arising from our labelling scheme to
compare these. Figure 2 shows a visualization of the tree-tree distances between trees from different
random models. The metric groups trees from each process together and distinguishes between them
well. Summary statistics such as tree imbalance also distinguish some of these groups well (particularly
the PDA, Aldous, Yule and biased speciation model), but imbalance does not substantially differ between
the continuous-time branching models.

We also compared trees inferred from sequences of the HA protein in influenza A H3N2 sequences.
Influenza A is highly seasonal outside the tropics [46], with the majority of cases occurring in winter. In
contrast, there is little seasonal variation in transmission in the tropics. In addition, over long periods
of time, influenza evolves in response to pressure from the human immune system, undergoing evolution
particularly in the surface HA protein. This drives the ’ladder-like’ shape of long-term influenza phyloge-
nies [47, 25, 48, 49], but would not typically be apparent in shorter-term datasets. With this motivation,
we compared tropical samples to USA samples, and recent (2010-2015) global samples to early samples
(pre-2010). Figure 3 shows that the tropical and USA flu trees are well separated by the metric. In
contrast, the five-year (post-2010) and pre-2010 global samples occupy different regions of the projected
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Figure 2: Top: Six sample trees, one from each of six different random processes. Bottom: Multi-
dimensional scaling (MDS) plots showing that trees from each process are grouped together in the
metric. Bottom left: trees with 700 tips under a birth-death model with different values of R0 = λ/µ.
Bottom right: trees derived from the Yule, proportional to distinguishable arrangements (PDA), Aldous
and biased models, each with 500 tips.

tree space, but have some overlap. In these groups of trees, the underlying processes are similar, but the
time frames and sampling density differ.

Natural metrics associated with the labelling scheme are all based on the bijective map φ between
the tree space T and the natural numbers N. Composing φ with bijective maps between N and other
countable sets like the integers (Z), the positive rational numbers (Q+), or the rationals (Q) opens up
further possibilities because we can take advantage of the properties (addition, multiplication, distance,
etc) of integer and rational numbers. If ψ is a bijective map between N and one of these sets, then the
composition ψ ◦φ is also bijective, and we can use it to define addition and multiplication operations on
trees:

T1 +T T2 = ψ−1
(
φ(T1) + φ(T2)

)
,

T1 ·T T2 = ψ−1
(
φ(T1) · φ(T2)

)
,

(1)

where + and · are the usual addition and multiplication. Now the space of trees together with these
definitions of addition and multiplication,

(
T,+T , ·T

)
, inherits all the algebraic properties of the set it is

mapped into. For instance,
(
T,+T , ·T

)
is a commutative ring if ψ : N→ Z. These constructions allow

algebraic operations in the tree space T. However the choice of the map ψ determines whether these
operations are “meaningful” or “helpful” for applications of branching trees in biology or other fields. It
turns out that the selection of a meaningful map is challenging.
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Flu setting ● ●Global 2010−2015 Global pre 2010

Figure 3: Comparisons between trees from H3N2 flu virus samples. Left: isolates from the tropics (red)
and from the USA (blue) are separated. Right: isolates from 1979-2010 (blue) are distinct from those
of 2010-2015 but there is some overlap.

For example, we can use the labelling scheme to map tree topologies to the (positive and negative)
integers. We first extend φ with φ(0) = ∅, i.e. the the empty tree no tips. Consider the following
well-known map between N and Z:

ψZ : n→

{
n
2

if n is even

−n+1
2

if n is odd
.

ψZ is clearly bijective: each tree topology is mapped to a unique integer and each integer corresponds to
a unique tree topology. A representation of ten trees is provided in Figure S1. To ”add” or ”multiply”
trees, we can add or multiply their corresponding integers and then invert, as in Eq (1). This may seem
intuitive for small trees; for example the sum of tree number 3 and tree number -1 gives tree number
2 which has one fewer tip than tree number 3. For larger trees, however, addition and multiplication
operations are less intuitive and do not follow the numbers of tips.

Mapping tree topologies to other sets of numbers can help us to capture the space of tree topologies in
new ways. A particularly nice property of a metric space is convexity - if given two trees T1 and T2, there
exists a tree T3 lying directly between them, i.e. d(T1, T3) + d(T3, T2) = d(T1, T2). Convex metrics are
appealing because in a convex metric on tree topologies we can find the average tree topology for a set
of trees, define a centre of mass topology, and further develop statistics on the space of tree topologies.

We use the labelling scheme and a pairing of maps to construct a convex metric on tree topologies.
To do this, we map tree topologies to the rational numbers, where the usual absolute value function is
a convex metric (as there is always a rational number directly in between any two others). We use the
prime decomposition, i.e. the unique product of prime factors of a number (e.g. 10 = 2 · 5). For a tree
topology corresponding to integer n, we apply ψZ to the exponents of all the prime factors of n + 1,
and multiply the result (see Methods). For example ψQ+(19) = 2ψZ(2)5ψZ(1) = 2−151 = 5/2. We denote
this map ψQ; it takes each integer to a unique rational number, and vice versa (bijective). Applying
ψQ+ ◦ φ to tree topologies maps them bijectively to the non-negative rational numbers. We can add or
multiply trees’ corresponding rational numbers to perform operations in the space of tree topologies. In
particular, we can use the usual absolute value distance function to define a convex metric space of tree
topologies

(
T, dT

)
:

dT (T1, T2) =
∣∣ψQ+

(
φ(T1)

)
− ψQ+

(
φ(T1)

)∣∣ .
5
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In this space we can find the average tree of a group of trees, and a ‘direct path’ between two trees.
Given n trees, the average tree is:

Tm = φ−1 ◦ ψ−1Q+

(∑n
i=1 ψQ+ ◦ φ(Ti)

n

)
.

In other words, the average of a set of trees is the tree corresponding to the average of the trees’ rational
numbers under the map we have defined. Figure 4 illustrates this operation.

Tree number 4/17 Tree number 5/17 Tree number 7/17 Tree number 8/17

Average tree: 6/17

1

Figure 4: Trees associated to the rationals 4/17, 5/17, 7/17, 8/17, using the map in Example 2. Because
the natural distance is convex in Q+, it is possible to find the “average” tree, which is the one mapped
into 6/17. Moreover, trees mapped to 5/17, 6/17 and 7/17 are part of the direct path between the
trees mapped to 4/17 and 8/17

There are infinitely many ways that we could map tree topologies to rational numbers. Any of them
would give rise to a convex metric on the set of tree topologies. It would be most desirable if the
resulting metric had some intuitive features - for example, if the trees lying directly between trees T1 and
T2 (with n1 and n2 tips) had an intermediate number of tips between n1 and n2. The convex metric we
have constructed does not have this particular intuitive property. This convex metric also relies on the
prime factorisation of the tree labels, which is a challenge if large labels are encountered.

3 Discussion

The labelling scheme we present comprises a complete characterization of rooted tree topologies, not
limited to fully bifurcating trees. Trees from processes known to produce different topologies are well
separated in the metric that arises naturally from the scheme. This suggests applications in inferring
evolutionary processes and to detecting tree shape bias [50, 24, 4]. The structure and simplicity of this
comparison tool carry a number of advantages. Metrics have good resolution in comparing trees because
the distance is only zero if tree topologies are the same. Empirical distributions of sub-tree topologies
can easily be found and compared. And as we have shown, the approach can be extended to convex
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metrics on tree topologies, allowing averaging as well as algebraic operations (addition, etc) in tree
space. However, this approach does not seem likely to give rise to analytically tractable distributions of
tree-tree distances, and in some cases, may not offer more useful resolution than a well-chosen collection
of summary statistics.

Scalar measures of asymmetry are insufficient to characterize tree topologies. Here, imbalance mea-
sures do not distinguish between the continuous-time birth-death models with R0 = 2, 5 but are quite
different between the random processes, whereas the metric distinguishes all cases. Matsen [51] devel-
oped a method to define a broad range of tree statistics. Genetic algorithms uncovered tree statistics
that can distinguish between the reconstructed trees in TreeBase [52] and trees from Aldous’ β-splitting
model, whereas imbalance measures do not [10]. However, the search-and-optimize approach is vulner-
able to over-fitting, as the space of tree statistics is large. It is also reasonable to believe that due to
ongoing decreases in the cost of sequencing, studies will increasingly analyze large numbers of sequences
and reconstructed trees will have many tips. Any single scalar measure will likely be insufficient to cap-
ture enough of the information in these large trees to perform inference, motivating the development of
metric approaches.

Large trees present a problem for many approaches to inference, including phylodynamic methods that
rely on computationally intensive inference methods. In contrast, our scheme is better able to distinguish
between groups of large trees than small ones (fewer than 100 tips). The tip-to-root traversal means
that it is very efficient to construct the label set on very large trees (and the same traversal could, with
little additional computation time, compute other properties that are naturally computed from tip to
root, such as clade sizes, some imbalance measures and many of Matsen’s statistics [51]). However, due
to the large number of tree topologies, the labels themselves become extremely large even for relatively
small trees. Our implementation used MD5 hashing to solve this problem, but hashing removes the
ability to reconstruct the tree from its label. Also, there are 2128 ≈ 3 ·1038 possible hashed strings, which
while large is less than the number of possible tree topologies, even restricting to 500 tips. Alternative
labelling schemes may partially alleviate this, for example by subtracting from the label the minimum
label for n tips, and only comparing trees of size n or greater. A related approach was used by Furnas
[53] in developing algorithms to sample trees.

The large size of the labels is also a challenge when they are mapped to Z, Q+ or Q to define a
tree algebra or a convex metric. Small changes in the label value can determine visible changes in the
topologies. Because the bijective maps are sensitive to small perturbations, the implementation requires
the full label, with no hashing compression. However, for trees with 500 tips, we encountered labels
of about one million digits. Handling such large numbers with full accuracy required heavy and slow
computation. The search for the average tree as found in Figure 4 was only possible for small trees, as
the map requires the prime factorization of the label.

Perhaps as it should be, the dominant difference in our scheme between a tree with ten tips and one
with one hundred tips is the size of the tree. In this work we have chosen to detect differences that
are not simply a reflection of the size of the tree. If we relax this constraint, the largest contribution
to the distances will result from comparing the number of instances of the label 1 (tip) in two trees;
this is necessarily larger than any other label copy number, and furthermore, a tree with more tips can
have more cherries, pitchforks and any other subtree than a tree with fewer tips. It is straightforward to
modify the metric d2 to be relatively insensitive to tree size (see Supporting Information).

Our scheme captures only the topology of the trees; there does not appear to be a natural way
to incorporate branch lengths. One option is to add one or several terms to the distance function to
incorporate more information (see Supporting Information). Linear combinations of our distances and
other tree comparisons may turn out to be the most powerful approach to comparing unlabeled trees,
allowing the user to choose the relative importance of scalar summaries, tree topology, spectra and so
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on while retaining the discriminating power of a metric. Ultimately, discriminating and informative tools
for comparing trees will be essential for inferring the driving processes shaping evolutionary data.

4 Methods

4.1 Definitions

A tree topology is a tree (a graph with no cycles), without the additional information of tip labels and
branch lengths. We use the same terminology as Mooers and Heard [9]. We consider rooted trees, in
which there is one node specified to be the root. Tips, or leaves, are those nodes with degree 1. A rooted
tree topology is a tree topology with a vertex designated to be the root. We use ”tree topology”, as we
assume rootedness throughout. Typically, edges are implicitly understood to be directed away from the
root. A node’s descendants are the node’s neighbors along edges away from the root. A multifurcation,
or a polytomy, is a node with more than two descendants, and its size is its number of descendants
(> 2). Naturally, a rooted phylogeny defines a (rooted) tree topology if the tip labels and edge weights
are discarded. Phylogenies typically do not contain internal nodes with fewer than two descendants
(sampled ancestors), but we allow this possibility in the tree topologies.

4.2 Labelling scheme

We label each tree topology according to the labels of the two clades descending from the root. In the
simplest case (full binary trees), we call this label function φ2:

φ2(k, j) = 1
2
k(k − 1) + j + 1. (2)

The subscript 2 specifies that each node has a maximum of two descendants; the scheme can be extended
to any fixed maximum number M of descendants, but then the explicit form of the label (φM) is different.

4.3 Metrics on the space of rooted unlabelled shapes

There are several natural metrics suggested by our characterisation of tree topologies. Given two binary
trees Ta and Tb, we can write

d0(Ta, Tb) = |L(Ra)− L(Rb)|. (3)

Clear d0 is symmetric and non-negative. The tree isomorphism algorithm and the above labelling clearly
show that d0 = 0 ⇔ Ta = Tb and the absolute value obeys the triangle inequality. However, it is not
a particularly useful metric, in the sense that a large change in root label can result from a relatively
“small” change, in intuitive terms, in the tree topology (such as the addition of a tip).

While each tree is defined by the label of its root, it is also defined (redundantly) by the labels of all
its nodes. If the tree has n tips, the list of its labels contains n 1s, typically multiple 2s (cherries) and
so on. Let La denote the list of labels for a tree Ta: La = {1, 1, 1, ..., 2, 2, ..., φ2(Ra)}. The label lists
are multisets because labels can occur multiple times. Define the distance d1 between Ta and Tb to be
the number of elements in the symmetric set difference between the label lists of two trees:

d1(Ta, Tb) = |La∆Lb|. (4)

Intuitively, this is the number of labels not included in the intersection of the trees’ label lists. Formally,
the symmetric set difference A∆B = (A∪B)\(A∩B) is the union of A and B without their intersection.
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If A and B are multisets with A containing k copies of element x and B containing m copies of x, with
k > m, we consider A∩B to contain m copies of x (these are common to both A and B). A∆B has the
remaining k−m copies. Each tree’s label list contains more 1s (tips) than any other label. Accordingly,
this metric is most appropriate for trees of the same size, because if trees vary in size, the metric can be
dominated by differences in the numbers of tips. For example, if La = {1, 1, 1, 1, 2, 2} (four tips joined
in two cherries) and Lb = {1, 1, 1, 2, 3} (three tips, i.e. a pitchfork), then La∆Lb = {1, 2, 3}, because
there is a 1 and a 2 in La in excess of those in Lb, and a 3 in Lb that is not matched in La.

Like d0, d1 is a metric: positivity and symmetry are clear from the definition. The cardinality of the
symmetric difference is 0 if and only if the two sets are the same, in which case the root label is the
same and the tree topologies are the same. That the symmetric difference obeys the triangle inequality
is readily seen from the property A∆C ⊂ (A∆B) ∪ (B∆C).

Another natural metric that the labelling scheme induces is the L2 norm of the difference between
two vectors counting the numbers of occurrences of each label. Let va be a vector whose k′th element
va(k) is the number of times label k occurs in the tree Ta. Define the metric

d2(Ta, Tb) = ||va − vb||. (5)

Positivity, symmetry and the triangle inequality are evident, and again d2 can only be 0 if Ta and Tb have
the same number of copies of all labels (including the root label), which is true if and only if Ta and Tb
have the same topology. This has a similar flavour to the statistic used to compare trees to Yule trees
in [10], where the numbers of clades of a specific size were compared. We have used metric d2 in the
analyses presented in the Results.

4.4 Mapping tree topologies to the integers and rationals

Figure S1 illustrates tree topologies together with their labels under the map ψZ. We use this map and
a map to the rational numbers to define a convex metric on tree topologies.

Define the following map from N to Q: ψQ+ : n→
∏∞

i=1 p
ψZ(ai)
i if n > 0, or 0 if n = 0. Here, pi are

all the prime numbers and
∏∞

i=1 p
ai
i is the unique prime decomposition of n+ 1. ψZ is as defined above,

mapping the positive integers to all integers. For example ψQ+(11) = 2ψZ(2)3ψZ(1) = 2−131 = 3/2. ψQ+

is injective, from the uniqueness of the prime factorization and the injectivity of ψZ. Therefore it is
also bijective, because N and Q+ have the same cardinality. Therefore ψQ+ ◦ φ maps tree topologies
bijectively to the non-negative rational numbers. In turn, T inherits all of the properties and structure
of Q+. A distance metric dT on T can be defined from the usual distance | · | of Q:

dT (T1, T2) =
∣∣ψQ+

(
φ(T1)

)
− ψQ+

(
φ(T1)

)∣∣ .
Because the absolute value is a convex metric in Q, this is a convex metric on unlabelled tree topologies.
It can be used to find averages of a set of trees as outlined in the Results.

4.5 Simulations

We compared trees from different random processes and models. One of the most natural random pro-
cesses modelling phylogenetic trees is the continuous-time homogeneous birth-death branching process,
in which each individual gives rise to a descendant at a constant rate in time, and also risks removal
(death) at a constant rate. With birth rate λ and death rate µ, the ratio λ/µ specifies the mean number
of offspring of each individual in this process, and affects the topologies and branching times of the
resulting branching trees. In the epidemiological setting, the link to branching times has been used
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Tree number −5 Tree number −4 Tree number −3 Tree number −2 Tree number −1

Tree number 1 Tree number 2 Tree number 3 Tree number 4 Tree number 5

1

Figure S1: Some trees and their associated integers using the map ψZ of Example 1. The numbering
goes from -5 to 5, with the exception of 0 which corresponds to the “empty tree”.

to infer the basic reproduction number R0 from sequence data [54, 55]. We computed the distances
between trees derived from constant-rate birth-death (BD) processes simulated in the package TreeSim

in R [56]. One challenge is that the number of tips in the BD process after fixed time is highly variable
and depends on λ/µ. We aimed to detect shape differences that were not dominated by differences in
the number of tips. Accordingly, we conditioned the processes to have 1500 taxa and then pruned tips
uniformly at random to leave 700 tips remaining.

There are several other random models for trees. The Yule model is a model of growing trees in which
lineages divide but do not die; in terms of tree topology it is the same as the Kingman coalescent and
the equal rates Markov models. In the ’proportional to distinguishable arrangements’ (PDA) model, each
unlabelled topology is sampled with probability proportional to the number of labelled trees on n tips
with that unlabelled topology [57, 9]. The “biased” model is a growing tree model in which a lineage with
speciation rate r has descendant lineages with speciation rates pr and (1− p)r. The Aldous’ branching
model that we use here is Aldous’ β-splitting model with β = −1 [58]; in this model a β distribution
determines the (in general asymmetric) splitting densities upon branching. The Yule, PDA, biased and
Aldous β = −1 models are available in the package apTreeshape in R [59]. We used p = 0.3 for the
biased model, and sampled trees with 500 tips.

4.6 Data

We aligned data of HA protein sequences from human influenza A (H3N2) in different settings reflecting
different epidemiology. Data were downloaded from NCBI on 22 Jan 2016. In all cases we included
only full-length HA sequences for which a collection date was available. The USA dataset (n = 2168)
included USA sequences collected between March 2010 and Sept 2015. The tropical data (n = 1388)
included sequences from the tropics collected between January 2000 and October 2015. The global set
(n = 8100) included all (full-length HA, with date); dates ranged from July 1979 - Sept 2015. We also
selected global sequences (from anywhere) within a five-year window (August 2010 - December 2015;
n = 2892). Accession numbers are included in the Supporting Information. Fasta files were aligned with
mafft. Within each dataset, we sampled 500 taxa uniformly at random (repeating 200 times) and inferred
a phylogenetic tree with the program FastTree. Where necessary we re-aligned the 500 sequences before
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tree inference. This resulted in 200 trees, each with 500 tips, from four datasets: global (pre-2010),
USA, tropical and the five-year sample (global 2010-2015).

5 Supporting Information

5.1 Extension to multifurcations and sampled ancestors

A polytomy, or multifurcation, is an internal node with more than two descendants. In extending the
scheme to handle polytomies we also extend it to allow for internal nodes with only one descendant.

We first explicitly work out the case where the maximum-size multifurcation is 4. Let 0 be the empty
tree. Nodes may have 0, 1, 2, 3, or 4 descendants, and we write a general tree as (k, j, l,m), where k, j,
l and m are the labels of the four trees descending from the root. Some of these may be empty (0) as not
every node is a four-fold polytomy. As in the binary case, we use the convention that k ≥ j ≥ l ≥ m, and
sort the length-four strings lexicographically. Every possible tree T with a maximum-size multifurcation
of four has a unique label L4(T ) in this list. We seek to find an explicit expression for the label L4(T )
– the order in the list – for the tree (k, j, l,m).

The number of possible labels in the scheme with four characters, starting with k and sorted lexi-
cographically, is

(
k+3
k

)
. To see this, note that each (k, j, l,m) with k ≥ j ≥ l ≥ m can be thought

of as a path on a lattice, starting on the left at height k and descending to height 0 after three hor-
izontal steps. The path has a total length of k + 3 steps, and of these, three must be steps to the
right and k must be downward. The number of such paths is the number of ways of placing three
rightwards steps amongst k + 3 steps, ie.

(
k+3
k

)
. Extending this, we obtain the label L4 of the tree

(k + 1, 0, 0, 0), noting that L4(k, k, k, k) is the sum of the numbers of labels beginning with 1, 2, ... k.
L4(k + 1, 0, 0, 0) = 1 + L4(k, k, k, k) (and we write 1 as

(
3
3

)
):

L4(k + 1, 0, 0, 0) =
k∑
x=0

(
x+ 3

3

)
.

Rewriting the sum and making use of the identity
∑k+c

y=0

(
y
c

)
=
(
k+c+1
c+1

)
, we have

L4(k + 1, 0, 0, 0) =
k∑
x=0

(
x+ 3

3

)
=

k+3∑
y=3

(
y

3

)
=

k+3∑
y=0

(
y

3

)
=

(
k + 4

4

)
.

To obtain L4(k, j, l,m), we note that

L4(k, j, l,m) = L4(k, 0, 0, 0) + L3(j, 0, 0) + L2(l,m).

Following the same logic, this is

L4(k, j, l,m) =

(
k + 3

4

)
+

(
j + 2

3

)
+

(
l + 1

2

)
+m.

As in the binary case, the labels will grow unfeasibly large, but in principle this is a bijective map between
trees whose maximum-size polytomy is four and the non-negative integers.

Naturally, there is nothing special about size-four polytomies. If the maximum size is c, the scheme is

Lc(xc, xc−1, xc−2, .., .x1) =
c∑
i=1

(
xi + i− 1

i

)
.
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5.2 Extensions of the metric

As noted in the main text, the metrics d1 and d2 will be dominated by differences in the sizes of trees.
It may be desirable to construct unlabelled metrics that are useful in comparing trees of different sizes
with respect to their proportional frequencies of sub-trees. This is straightforward. We based the metric
d2 on vectors whose ith components were the number of sub-trees of label i; we can divide these vectors
by the number of tips in the tree: v̂a = 1

na
va and define a new metric

d̂2(Ta, Tb) = ||v̂a − v̂b||+ ε|na − nb|

where ε > 0. With small ε, d̂ will be small when the proportional frequencies of sub-tree are very similar,
but will only be 0 if the trees have identical vectors and the same number of tips.

Furthermore, if there are particular labels i that are of interest - for example those with relatively
few tips, for a ”tip-centric” tree comparison, weights w can be chosen and applied to the vectors to
emphasize some entries more than others :

dw(Ta, Tb) = ||w · va − w · vb||.

The same weighting can of course be applied to v̂ in d̂2.
The labelling schemes induce natural metrics on tree topologies, which we have applied to random

tree-generating processes known to give rise to different shapes, and to data from human influenza
A. The metric’s use of a bijective mapping to N+ means that it extends to a convex metric in Q+.
However, the nature of the scheme means that it does not capture the lengths of branches. These are
biologically relevant in many examples, because they reflect the (inferred) amount of time or genetic
distance between evolutionary events, although particularly for branches deep in the tree structure they
may be difficult to infer accurately.

To date, we are unaware of a metric (in the sense of a true distance function) on unlabelled trees that
captures branch lengths, but there are several non-metric approaches to comparing unlabelled trees. In
particular, Poon’s kernel method [39] compares subset trees that are shared by two input trees, after first
”ladderizing” the trees (arranging internal nodes in a left-right order with branching events preferentially
to one side). Using a kernel function, this approach can quantify similarity between trees. One challenge
is that where branch length is included, differences in overall scaling or units of the branch lengths can
overwhelm structural differences. Lengths can be re-scaled (for example such that the height of both
trees becomes 1), but rescaling methods may be sensitive to outliers or to the height of the highest tip
in the tree. Lengths could also be set to 1 to compare topologies only. Recently, Lewitus and Morlon
(LM) [40] used the spectrum of a matrix of all the node-node distances in the tree to characterise trees;
this is naturally invariant to any node and tip labels. They used the Kullback-Leibler divergence between
smoothed spectra as a measure of distance. If the spectrum uniquely defined a tree this would be a
metric, as it is non-negative and obeys the triangle inequality. As it uses all node-node distances, this
approach, requiring the spectrum of a non-sparse 2n−1×2n−1 matrix for a tree of n tips, will become
infeasible for large trees. Finally, it is always possible to compare summary features of trees, including
the number of lineages through time, diversity measures, density of tip-tip distances, imbalance measures
and other features of the topology.

These approaches can be combined with our metric to create novel metrics on unlabelled trees; as
our metric satisfies d(T1, T2) = 0 ⇐⇒ T1 = T2, any distance function of the form

d̂(T1, T2) = w1di(T1, T2) + w2C(T1, T2)

where C(T1, T2) is the LM tree difference, a kernel-based tree difference (not similarity), a distance
between vectors of summary features, or a weighted sum of these, and wi are positive, will be a metric.
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In this way we can extend the metric to incorporate branch lengths and to emphasize features of interest
(ie those believed to be informative of an underlying process of interest), while retaining the advantages
of a true distance metric.

5.3 Implementation

We have used R throughout and are developing an R package. Code is available on github at https://github.com/carolinecolijn/treetop.
The implementation assumes full binary trees and includes metrics d1 and d2 with the option of weighting.
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