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ABSTRAT 
Genomic prediction shows promise for personalised medicine in which diagnosis and 
treatment are tailored to individuals based on their genetic profiles. Genomic 
prediction is arguably the greatest need for complex diseases and disorders for which 
both genetic and non-genetic factors contribute to risk. However, we have no 
adequate insight of the accuracy of such predictions, and how accuracy may vary 
between individuals or between populations. In this study, we present a theoretical 
framework to demonstrate that prediction accuracy can be maximised by targeting 
more informative individuals in a discovery set with closer relationships with the 
subjects, making prediction more similar to those in populations with small effective 
size (Ne). Increase of prediction accuracy from closer relationships is achieved under 
an additive model and does not rely on any interaction effects (gene × gene, gene × 
environment or gene × family). Using theory, simulations and real data analyses, we 
show that the predictive accuracy or the area under the receiver operating 
characteristic curve (AUC) increased exponentially with decreasing Ne. For example, 
with a set of realistic parameters (the sample size of discovery set N=3000 and 
heritability h2=0.5), AUC value approached to 0.9 (Ne = 100) from 0.6 (Ne = 10000), 
and the top percentile of the estimated genetic profile scores had 23 times higher 
proportion of cases than the general population (with Ne = 100), which increased from 
2 times higher proportion of cases (with Ne = 10000). This suggests that different 
interventions in the top percentile risk groups maybe justified (i.e. stratified 
medicine). In conclusion, it is argued that there is considerable room to increase 
prediction accuracy for polygenic traits by using an efficient design of a smaller Ne 
(e.g. a design consisting of closer relationships) so that genomic prediction can be 
more beneficial in clinical applications in the near future.   
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INTRODUCTION 
The genomics era has demonstrated the polygenic nature of complex genetic traits, 
and genomic prediction shows much promise for personalised medicine in which 
diagnosis and treatment are tailored to individuals based on the profiles recorded in 
their genome. This creates the opportunity for ‘stratified medicine’1 in which 
individuals are classified into higher and lower risk groups and intervention or 
treatment relevant sub-categories based on profiles that incorporate information from 
both genomic and environmental risk factors. The utility of this approach, of course, 
will depend on the reliability of these risk predictions. 

A key feature of risk predictors is that their use does not necessarily require an 
understanding of the aetiology of disease1. Usefulness of such prediction is 
demonstrated by success in genetic selection programs in animals and plants. Risk 
prediction in human medicine can also have an important impact even in absence of a 
full understanding of the underlying biology of diseases and disorders. Aggregate 
effects from causal variants tagged by single nucleotide polymorphisms (SNPs) 
across the genome can quantify and assess individual risk for a particular disease or 
disorder, deemed “genomic prediction”. 

Genomic prediction has recently been tested and shown to be promising for 
diseases of which genetic variance is largely explained by a number of major genes2-4. 
However, for polygenic diseases and disorders caused by numerous genes with small 
effect, which is the case for most complex traits, the accuracy of genomic prediction 
has been considered too low to be useful in actual clinical applications5-9. Most of 
these studies employed population-based prediction based on unrelated individuals. 
Several studies have reported a considerable increase in prediction accuracy when the 
training data set included individuals that were closely related to target sample, from 
data on humans10-13 as well as from other species14-16. Some have argued that the use 
of close relatives may inflate estimated genetic variance due to common 
environmental effects, or gene-environment or gene-gene interaction17-19, and 
therefore such effects may also bias genomic risk prediction. However, theoretical 
work from previous studies20-22 has shown that genomic predictions are more accurate 
in populations of smaller effective size, i.e. where individuals tend to be more closely 
related. In such cases there are effectively fewer chromosome segments to estimate 
across the genome, which allows a higher prediction accuracy from the same size of 
data20-22. This suggests that subjects that are closely related could be a valuable 
resource for genomic risk prediction. For predicting human diseases, the area under 
the receiver operating characteristic curve (AUC) or odds ratio (OR) of case-control 
status contrasting the higher or lower risk group is a typical measure of prediction 
accuracy. However, we have no adequate insight in predicting the improvement in 
AUC or OR when using more related subjects, and how this accuracy may vary 
between individuals or between populations. 

In this study, we revisit the theory on genomic prediction accuracy as 
presented previously20-22, and derive an improved method linking effective population 
size (Ne) and effective number of chromosome segments (Me) to prediction accuracy. 
We also use simulated as well as real data to demonstrate that prediction accuracy can 
be increased when predicting from more related subjects. We extend this work to a 
case-control data set, which is a typical design for human diseases, so that the 
outcomes of this study are applicable to a clinical program for human diseases.  
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RESULTS 
 
Effective number of chromosome segments and prediction accuracy 
We validated the theory about estimating Me (Eq. (10) and (11) in Methods) using the 
stochastic coalescence gene-dropping method (see simulation I in Methods). The 
expected Me (from Eq. (10) or (11)) was compared to the estimated Me from the 
variation in genomic relationships for the subset between discovery and target 
samples, i.e. using the elements in the off-diagonal block relating to target × 
discovery sample, and derived from the simulated genotypes using Eq. (12) 
(Supplementary Figures 1A-3A). Furthermore, the expected prediction accuracy from 
theory (Eq. (1)) and the observed accuracy from the simulated genotypes and 
phenotypes were compared (Supplementary Figures 1B-3B). 

The estimated Me from the genomic relationships (using Eq. (12)) agreed with 
the expected Me from Eq. (10) or (11) whether using a small or large sample size 
(supplementary Figure 1A and 2A). From the estimated Me, the expected prediction 
accuracy could be obtained from Eq. (1). The expected prediction accuracy was 
within the confidence interval of the actual observed prediction accuracy over 100 
replicates (Supplementary Figure 1B and 2B). With a larger number of chromosomes 
the estimated Me from the GRM was close to the expected Me from Eq. (10) and (11) 
that accounts for the correlation between chromosomes, and the expected prediction 
accuracy from Eq. (1) coincided with the confidence interval of the observed 
prediction accuracy over 100 replicates (Supplementary Figure 3). 

 
Theoretical prediction accuracy in relation to Ne as a key design parameter  
We theoretically quantified prediction accuracy. Using the theory (Eq. (2), (10) and 
(11)) that was validated in simulation I, the prediction accuracy for a quantitative trait 
was quantified in relation to Ne, using h2 = 0.5, 30 chromosomes each with a genomic 
length of L=1 Morgan and N = 3000 (number of records for the discovery sample) 
that mimics a typical GWAS. Figure 1 shows that when Ne was smaller, the 
correlation between the estimated genetic profile scores and phenotypes for the target 
samples was increased, approaching the square root of the heritability. With Ne = 
10,000, this correlation was only 0.18, but the accuracy became larger rapidly with 
smaller Ne. For example, the correlation was 0.65 with Ne = 100. 

The prediction accuracy was also derived for case-control data using the same 
parameters as above for an underlying quantitative trait. A disease or disorder with 
population lifetime prevalence of K=0.1 and a proportion of cases in the sample of 
P=0.5 was used. With these parameters, we obtained the expected values for AUC 
(Eq. (3)), the odds ratio of case-control status contrasting the top and bottom 20% of 
the genetic profile scores (Eq. (4)) and that contrasting the top 1% of the genetic 
profile scores and the general population (Eq. (5)). The expected values were verified 
by comparison with the observed values from simulation II, showing that the 
expectation and observation were in excellent agreement (Supplementary Figures 4, 5 
and 6). Furthermore, we tested the prediction accuracy with a rare disease or disorder 
with population lifetime prevalence of K=0.01, which also showed a good agreement 
between the expectation and observation (Supplementary Figures 7 and 8).  

When using Ne=10,000, the value for AUC was just 0.60, rising to a value of 
0.85 with Ne=100 (Figure 2). The odds ratio of the case-control status, contrasting the 
top and bottom 20% according to estimated genetic profile scores, ranged from 2.7 
with Ne=10,000 to 131.9 with Ne=100 (Figure 3). The odds ratio of the case-control 
status contrasting the top 1% of estimated genetic profile scores and normal 
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population was 2.3 with Ne=10,000, and 23.0 with Ne=100 (Figure 4). With a larger N 
or higher h2, the prediction accuracy was further dramatically increased 
(Supplementary Table 4). 
 
Real data application 
We applied the approach to a real data set, the Framingham heart study (see 
Methods). In 100 cross-validation replicates, the real data was randomly divided into 
two sets - one for discovery and the other for target, where sampling was either family 
wise to create a larger Ne or within family to create a low Ne. The discovery set had an 
average of 3394 individuals and the target set had an average of 849 individuals over 
100 cross-validation replicates (Table 1). The estimated Me from the genomic 
relationship between the discovery and target samples was 4,434 and 31,080 (from 
Eq. (12)) when generating a smaller and a larger Ne, respectively. The distribution of 
variance of relationships, calculated for each target individual when paired with 
discovery individuals is shown in Supplementary Figure 9 for designs with smaller 
and larger Ne values. Table 1 shows that the average correlation between the estimated 
genetic profile scores and the phenotypes (height) in the target set was 0.549 (SD 
0.021) and 0.091 (SD 0.043) when using a design with small and large Ne, 
respectively, clearly indicating the advantage of using a design with a smaller Ne.  

Interestingly, the results were consistent with the estimated heritability from 
family-based studies (i.e. h2=0.823-25) or population-based studies (i.e. h2=0.4526,27), 
which is numerically illustrated in Supplementary Table 5. When using h2=0.8 and 
Me=4,434, the expected accuracy of genomic prediction was 0.551 (from Eq. 2), 
which was close to the observed accuracy of 0.549 (Table 1). By contrast, using 
h2=0.45 and Me=31,080 would give an expected accuracy of genomic prediction of 
0.145, approximately similar to the observed accuracy of 0.091 (Table 1).   

Mimicking case-control data, the top 10% of the phenotypes were selected and 
treated as cases (i.e. K=0.1), and 11.1% of the remaining 90% of phenotypes were 
chosen to be controls. Therefore, the case-control ratio was 1:1 (i.e. P=0.5). The two 
sampling strategies used in cross-validation for the quantitative traits, were also used 
for the case-control data generating higher and lower variance of relationships 
between discovery and target sets (smaller and larger Ne, respectively). The discovery 
set had an average of 680 individuals and the target set had an average of 150 
individuals over 100 cross-validation replicates (Table 1). The estimated Me from the 
genomic relationship between the discovery and target samples was 3,247 and 29,479 
from Eq. (12) for smaller and larger Ne, respectively. In Table 1, the average AUC for 
the two scenarios was 0.687 (SD 0.037) and 0.535 (SD 0.038), indicating that the 
AUC was considerably higher with a smaller Ne than with larger Ne. The observed 
AUC values were very similar to the expected values, based on Eq. (3), for the small 
Ne design (0.682 with Me=3247 and h2=0.823-25) and the large Ne design (0.537 with 
Me=29,479 and h2=0.4526,27), respectively (Supplementary Table 5). 

The odds ratio of case-control status comparing each 20 percentile to the 
bottom 20% of the ranked genetic profile scores demonstrates that the contrasting 
power was substantially higher with a smaller Ne than with a larger Ne. (Figure 5). 
The observed odds ratio of case-control status contrasting the top and bottom 20% of 
the genetic profile scores was similar to the expected odds ratio from Eq. (5) for the 
small Ne design with Me=3,247 and h2=0.823-25 and the large Ne design with 
Me=29,479 and h2=0.4526,27, respectively (Supplementary Table 5). 

We additionally analysed BMI phenotypes, which gave a similar result in that 
the prediction accuracy was considerably higher with a smaller Ne than with larger Ne, 
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and that the observed and expected values agreed with each other (Supplementary 
Table 6).  

When using the GERA dataset that does not have a clear family structure, the 
prediction accuracy for hypertension phenotypes is significantly higher for 25% of the 
target sample with the highest variance of pair-wise relationships with the discovery 
sample (Figure 6 and Supplementary Figure 10). The prediction accuracy was 0.118 
(0.114 – 0.123) for the top 25% and 0.106 (0.104 – 0.107) for the entire target sample. 
Moreover, the prediction accuracy was significantly decreased to 0.097 (0.095 – 
0.099) (Figure 7) when higher relationships were removed from the sample (> 
relatedness of 0.025), therefore increasing Me (Supplementary Figure 11). These 
results demonstrate that a higher variance of pair-wise relationships, hence smaller 
Me, results in a higher prediction accuracy even when using data from an extensive 
population-based sample. We also confirmed these results by using the real genotype 
data (GERA) and simulating phenotypes with the total variance being fully explained 
by the SNPs in order to support the results from the real data analysis (Figure 6 and 7) 
by showing that higher prediction accuracy for the top 25% group and the lower 
accuracy for cut-off high relatedness was not due to non-genetic confounding factors 
such as artefact batch effects (Supplementary Figure 12 and 13).  

We also analysed dyslipidemia phenotypes and found a consistent result 
showing that the prediction accuracy was significantly increased for 25% of the target 
sample with the highest variance of pair-wise relationships with the discovery sample 
(Supplementary Figure 14), and that it was decreased (although non-significant) when 
higher relationships were removed from the sample (Supplementary Figure 15).    

 
 

DISSCUSSION 
In this study, we have shown, by simulation and analysis of real data, that genomic 
prediction that includes closely related individuals leads to higher prediction 
accuracy. The accuracy can be predicted from the variation in relationships of the 
target individual with the individuals in the discovery data set. The variation in 
relationship can be linked back to the number of effective chromosome segments to 
be estimated, which in turn is a result of a certain effective population size, i.e. the 
size of a homogeneous unstructured population where the amount of chromosome 
segment sharing is similar, leading to the same accuracy of prediction. We showed 
that there is merit in designing the discovery population such that variation of genetic 
relationships is maximized 

Current studies for polygenic diseases or disorders have reported that the 
accuracy of genomic prediction is not useful for actual clinical practice5-9 due to low 
prediction accuracies. However, it is common practice to use samples from the 
population that are genetically distant resulting in Ne values of more than a few 
thousand and a resulting Me across the genome in the tens of thousands, even when 
predictions are just within populations of pure European descent. The effective 
number of chromosome segments is a key parameter on which prediction accuracy 
depends20-22. A desirable design for genomic prediction should have a discovery set 
that is well related to the target set of individuals, resulting in a smaller Ne, hence 
lower Me. It was shown that the prediction accuracy (AUC and ORs) increased with a 
design of a smaller Ne, compared to that with a larger Ne, using theory, simulations 
and real data analyses.   

The utility of genomic prediction was illustrated with an example where the 
top percentile of the estimated genetic profile scores had a substantially higher 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 20, 2016. ; https://doi.org/10.1101/054494doi: bioRxiv preprint 

https://doi.org/10.1101/054494


	
   7	
  

proportion of cases than a random population sample (23-fold) especially when using 
a design with a smaller Ne, and even when using a moderate sample size in the 
discovery set (N=3,000) and a heritability of 0.5 (Figure 4). This could be increased to 
32-fold with a larger sample size (N=24,000), or 176-fold with a higher heritability 
(h2=0.8) (Supplementary Table 4). This demonstrates that different interventions in 
the highest risk group could be effectively utilised in a clinical program (i.e. stratified 
medicine).  

Even for a data set of unrelated individuals based on a random population 
sample, such as the case in the GERA data set, when using the discovery individuals 
that are more related to the target individuals, the genomic prediction accuracy 
increased (Figures 6 and 7; Supplementary Figures 12 and 13), because of the larger 
variance of pair-wise relationships to the target sample (implying lower Me and Ne). 
This may have important implications when only considering population-based 
samples in genomic risk prediction for human complex traits and diseases.    

One challenge with this approach is that a large number of records or samples 
need to be collected within a local community or from extended families. However, 
increasingly databases are built with phenotypic and genotypic information from 
closer relatives28. In practice, a composite discovery population combining 
population- and family-based samples may be an alternative and desirable design, as 
demonstrated here for the Framingham study as well as in other studies29,30. In fact, 
personalised medicine based on family-based databases are in line with the very 
concept of family medicine31,32. 

In many previous studies, it was observed that family-based estimates are 
considerably higher than population-based estimates for the heritability25,33,34. There 
are plausible explanations for this phenomenon, including inflation due to family 
effects, gene-gene (G × G) or gene-environment interactions (G × E) 17-19,35, or 
imperfect linkage disequilibrium (LD)11 and this has led to many studies discarding 
information from more closely related individuals. However, the theory and 
simulation in this study has shown that even in absence of these inflatory effects there 
will be an increase in prediction accuracy (Figures 1-4). The results from real data 
showed that designing the discovery data set to include individuals that are closely 
related to those in the target sample could give substantially higher prediction 
accuracy for the target sample. In the real data, this is unlikely to be driven by 
population stratification, as 10 PCs were included in the analysis model. However, it 
is possible that non-additive genetic effects could contribute to the increase in 
prediction accuracy, but one could argue that this is not unwarranted when predicting 
individual risk. A further study about the possible role of non-additive genetic factors, 
and whether they can be estimated separately, may be needed.   

In the near future, tens of thousands of people will be available for a reference 
sample to predict genetic risk for a target individual, e.g. all newborn babies could be 
genotyped and there are improved data bases for recording phenotypes. Using Eq. (1) 
and (12), we show that either adding more relatives or more genetically distant 
individuals increased the prediction accuracy substantially (Supplementary Figure 
16). The number of relatives required to get the same high accuracy is much lower 
than that of distant individuals, implying that the information from relatives is of 
much higher value in an efficient design.  

When using case-control data by selecting 10% of the highest phenotypes, the 
estimated Me was slightly reduced (Table 1). Specifically, Me was diminished from 
4,434 to 3,247 with a smaller Ne and from 31,080 to 29,479 with a larger Ne. This 
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would be expected because selection on the heritable traits might lower Ne
36, therefore 

Me was therefore decreased.  
In this study, it is argued that there is considerable room to increase prediction 

accuracy for polygenic phenotypes so that genomic prediction can be useful for 
clinical applications in the near future.   
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METHODS 
 
Accuracy of genomic prediction 
Genomic prediction uses phenotypes alongside genome-wide SNPs or sequence data 
to estimate the effects of observed variants that are projected onto independent 
subjects and to estimate the subjects’ individual genetic profile scores (i.e. breeding 
values in the context of animal and plant breeding). The accuracy of the genomic 
prediction depends on the captured genetic variance as a proportion of the total 
variance, the number of phenotypic observations and the number of independent 
genomic regions expressed as the effective number of chromosome segments20-22, that 
is        
 

rg,ĝ =
bh2

bh2 +Me / N
 

 
where rgĝ   is the correlation coefficient between the true and estimated genetic profile 
scores, h2 is the heritability of the trait, Me is the effective number of chromosome 
segments, N is the number of phenotypic observations and b is the proportion of 
genetic variance captured by observed variants (e.g. SNPs) that can be written as20-22  
 
b = M / (Me +M)    
 
where M is the number of observed variants. Owing to dense SNP genotypes or 
sequence data available, b is often close to unity. Therefore, with dense markers, the 
genomic prediction accuracy can be rewritten as37  
 

rg,ĝ =
h2

h2 +Me / N
.         (1) 

 
The correlation coefficient between phenotypes and estimated genetic profile scores 
in a target data set is 
  
ry,ĝ = h2rg,ĝ

2 .          (2) 
 
When using case-control studies for human diseases, the correlation coefficient 
between true and estimated genetic profile scores can be written as38,39   
 

ru,û =
h2z2

h2z2 +[K(1−K )]2 ⋅Me / [P(1−P) ⋅N ]
 

 
where u is a genetic profile score on the 0,1 disease scale38,40, K is the population 
lifetime prevalence for the disease, P is the proportion of cases in the total sample N 
of cases and controls, and z is the height at the threshold on the normal distribution 
that truncates the proportion of disease prevalence K in the liability threshold model. 
The AUC as a measure of the accuracy of genomic prediction in a target data set for 
case-control studies is41,42   
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AUC ≈ Φ
(i− i2 )h

2ru,û
2

h2ru,û
2 (1− h2ru,û

2 i(i− t))+ (1− h2ru,û
2 i2 (i2 − t)){ }

$

%

&
&

'

(

)
)
    (3) 

 
where i is the mean liability for cases, i2 is the mean liability for controls, t is the 
threshold on the normal distribution that truncates the proportion of disease 
prevalence K and Φ is the cumulative density function of the normal distribution.  
 
Another approach to assess the predictive utility of a continuous risk score of 
diseases, which is common in epidemiology studies, is to stratify individuals into 
percentiles according to ranked values of the genetic profile scores and estimate the 
odds ratio of case-control status by contrasting the top percentile with the bottom 
percentile5, that is 
 

ORtop|bottom =
P(case | top) / [1−P(case | top)]

P(case | bottom) / [1−P(case | bottom)]
     (4) 

 
where the probability of being a case in the top/bottom percentile is  
 

P(case | top) ≈ 1−Φ (ttop − itophru,û ) / σ top
2 + (1− h2ru,û

2 )$
%

&
'

$
%(

&
')

 

and  

P(case | bottom) ≈ 1−Φ (tbottom − ibottomhru,û ) / σ top
2 + (1− h2ru,û

2 )$
%

&
'

$
%(

&
')
   

 
where itop and ibottom are the mean genetic profile scores for the top and bottom 
percentiles, respectively, ttop and tbottom are the thresholds on the normal distribution 
that truncates the proportion of the top and bottom percentiles (for detailed derivation, 
see Supplementary Note).  
 
In more general terms, it is of interest to obtain the odds ratio of case-control status by 
contrasting the top percentile against the general population, that is  
 

ORtop|population =
P(case | top) / [1−P(case | top)]

K / [1−K ]
 .     (5) 

 
Effective number of chromosome segments  
The effective number of chromosome segments (Me) is a key parameter for 
determining the accuracy of the genomic prediction as fewer segments require fewer 
independent parameters to be estimated from the same data, i.e. a higher accuracy. Me 
depends on the effective population size (Ne) and the length of genomic region (L)20-

22. There are several studies that derive Me based on population parameters but there 
are some inconsistencies between these20-22. We revisit the theory and provide another 
derivation of Me as a function of Ne and L, using the theory of SNP squared 
correlation matrix43.  
 
Considering a genomic region spaning 1 Morgan with M SNPs that are equally 
distributed over the region, one can construct an M × M squared correlation matrix S 
in which the elements are the squared correlation coefficients between each pair of 
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SNPs (r2)43. The squared correlation coefficients can be approximated as r2 = 1 / (1 + 
4Ne × c) where Ne is the effective population size and c is the distance in Morgan 
between each pair of SNPs44. Unless the off-diagonal elements in S are all zero, the 
effective number of SNPs (or chromosome segments) is less than M. In order to 
obtain the effective number of SNPs, each SNP can be weighted and the weights can 
be obtained as43  
 
Sw = e 
 
and 
 
w = S-1e  
 
where w is an M vector of SNP weights derived from the correlation structure among 
the SNPs and e is a vector of length M with all elements equal to one. In fact, the 
effective number of chromosome segments is calculated from the sum of the SNP 
weights as 
 

Me = wi
i=1

M

∑

         

   (6) 

 
The underlying linear system of order M can be written as   
 

w1 r1,2
2 w2 ! r1,M−1

2 wM−1 r1,M
2 wM =1

r2,1
2 w1 w2 ! r2,M−1

2 wM−1 r2,M
2 wM =1

" " # " " "
rM−1,1
2 w1 rM−1,2

2 w2 ! wM−1 rM−1,M
2 wM =1

rM ,1
2 w1 rM ,2

2 w2 ! rM ,M−1
2 wM−1 wM =1

 

 
where ri, j

2  is a correlation coefficient between the ith and jth SNPs in the matrix S. 
This linear system can be simplified as  
 
t1w1 + t2w2.+...+ tM−1wM−1 + tMwM =M  
 

where ti = rj,i
2

j=1

M

∑ .   

 
As t and w are independent random variables, it can be approximated as   
 
t (w1 +w2 +...+wM−1 +wM ) =M .     
 
From Eq. (6), the term w1 +w2 +...+wM−1 +wM  can be replaced with Me, resulting in 
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Me =
1

ri, j
2

j=1

M

∑
i=1

M

∑ M 2

  .         (7) 

 
This agrees with Goddard (2009)20 who derived this same expression from the 
covariance statistic between two linked variants while we derived it from the SNP 
squared correlation matrix theory43.  
 
It is noted that the pattern of the same values is repeated in the matrix S because of 
the SNPs being equally distributed. For example, the values for ri, j

2  are the same for 

all combinations for which |i-j| is the same, e.g. r2,1
2 = r3,2

2 = r4,3
2 ,...,= rM−2,M−1

2 = rM−1,M
2 . 

Therefore, the sum in Eq. (7) can be written as 
 

ri, j
2

j=1

M

∑
i=1

M

∑ =1 [1+ 4Ne(0 /M )]⋅ (M − 0)+ 1 [1+ 4Ne (i /M )]⋅2(M − i)
i=1

M−1

∑  

 
where the first part of each term refers to the estimated r2 based on the distance, and 
the second part refers to the frequency of SNP pairs with such an r2 value. When 
scaling the equation by M, this can be rewritten as 
 

ri, j
2

j=1

M

∑
i=1

M

∑ M =1+ 1 [1+ 4Ne (i /M )]⋅2(1− i /M )
i=1

M−1

∑  

 
For the right hand side with M approaching infinity, the expression can be 
transformed to a function of x having an interval of infinity data points between 0 and 
1, which can be written as 
 
f (x) =1/[1+ 4Ne ⋅ x]⋅2(1− x) . 

 
The mean of the function f(x) in the variable x ranging from 0 to 1 is defined by an 

integration. Therefore the denominator in Eq. (7), ri, j
2

j=1

M

∑
i=1

M

∑ M 2  can be obtained as  

 
f (x)dx

0

1
∫ = [ln(4Ne +1)+ 4Ne(ln(4Ne +1)−1)] / 8Ne

2 . 

 
It is straightforward to extend this formula to a genomic region with length L rather 
than 1 Morgan (see Supplementary Note). For an L Morgan region, this is    
 

f (x)dx
0

1
∫ = [ln(4NeL +1)+ 4NeL(ln(4NeL +1)−1)] / (8Ne

2L2 ).  

 
Therefore,  
 
Me = 8Ne

2L2 / [ln(4NeL +1)+ 4NeL(ln(4NeL +1)−1)].       (8) 
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When accounting for mutation45, therefore using the correlation coefficients between 
SNPs from the formula 1 / (2 + 4Ne × c), Eq. (8) is slightly modified to   
 
Me = 4Ne

2L2 / [ln(2NeL +1)+ 2NeL(ln(2NeL +1)−1)].       (9) 
 
The equivalence between Eq. (6) and (7), and the approach linking Eq. (7) and (8) (or 
(7) and (9)) were validated with actual analyses of the squared correlation matrix 
(Supplementary Tables 1 and 2). 
 
Eq. (8) and (9) are improved from the previous derivations20-22 (Supplementary Table 
3). Moreover, previous studies20-22 ignored the correlation between chromosomes, 
however this is not negligible. Following Goddard (2009)20 but based on the 
individual level (rather than the gametic level), the probability of a random pair of 
individuals having the same parents (i.e. full sibs) in the last generation is (2/Ne)2 and 
that of having one parent in common (i.e. half sibs) is 4/Ne - (2/Ne)2. This generates a 
variance of the relationships among the pairs, which can be analytically approximated 
as 1/(4Ne). For the previous generations, the variance is 1/(16Ne), 1/(32Ne), 1/(64Ne) 
and so on. Summing all these variances gives 1/(3Ne), therefore, the covariance of the 
pairwise relationships between two chromosomes is 1/(3Ne). Hence, with some 
rearrangement, Eq. (8) and (9), the expected Me when accounting for multiple 
chromosomes, can be expressed as 
 

Me =
Nchr

[ln(4NeL +1)+ 4NeL(ln(4NeL +1)−1)] / (8Ne
2L2 )+ (1 / 3Ne ) ⋅ (Nchr −1)

            (10) 

and 

Me =
Nchr

[ln(2NeL +1)+ 2NeL(ln(2NeL +1)−1)] / (4Ne
2L2 )+ (1 / 3Ne ) ⋅ (Nchr −1)

              (11) 

 
where Nchr is the number of chromosomes each with length L. 
 
Me from the genomic relationship matrix 
Me can be empirically obtained when a genomic relationship matrix (GRM) is 
given21, which can be interpreted as an observed Me from the genotype data on which 
the GRM is based, which can be written as21   
 
Me =1 var Aij( )         (12) 
 
where Aij is the genomic relationship between individual i from the target and j from 
the discovery sample. More details are in the Supplementary Note.  
 
Estimated genetic profile scores 
The MTG2 software9,46 was applied to a discovery data set to estimate SNP effects 
jointly, thereby accounting for linkage disequilibrium (LD) between SNPs. The 
estimated SNP effects were projected onto the target samples, resulting in a genomic 
best linear unbiased prediction (GBLUP)47 of the genetic profile score for each target 
individual in the target data set. Dudbridge (2013)39 showed that the standard genetic 
profile score method8,48 and GBLUP have the same power and accuracy using theory 
that assumed all causal variants are unlinked and observed. However, in real 
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situations where there are complex LD structures among SNPs, GBLUP is a preferred 
method, therefore, we used GBLUP in this study.  
 
Simulation I 
Eq. (10) and (11) were validated with a stochastic coalescence simulation and 
genomic prediction approach. A stochastic gene-dropping method49,50 was used to 
simulate 20,000 SNPs across a single chromosome of L=1 Morgan with Ne = 500, 
1000, 2000 and 4000 for 500, 1000, 2000 and 4000 generations, respectively. 
Recombinations occurred across the genomic region according to the genetic distance 
between SNPs that were equally distributed across the region. The mutation rate was 
1e-08 per site per generation51. Random mating and selection were used. In the final 
generation, as a discovery data set, we generated 2000 or 5000 individuals having 
genotype data for 10,000 causal SNPs, a subset of the 20,000 SNPs, of which the 
minor allele frequency was more than 1%. For the discovery data set, phenotypes 
were simulated such that the variance explained by the SNPs was 1% of the total 
phenotypic variance where SNP and residual effects were drawn from normal 
distributions. For the target data set, another set of 1000 or 2500 individuals was 
chosen to estimate the observed accuracy of genomic prediction, i.e. the correlation 
between true and estimated genetic profile scores. We also conducted simulations of 5 
chromosomes each being L=1 Morgan long, with a total number of 50, 000 SNPs, 
resulting in variance explained by the SNPs being 5% of the total phenotypic 
variance.  
  
Using the genotype data of the discovery data set, a GRM was constructed and Me 
was estimated from Eq. (12) as the observed Me from the simulated data. We used 
equations (10) and (11) to get the expected Me given Ne and L. The observed and 
expected Me values were compared. In addition, the expected accuracy of the genomic 
prediction was obtained from equation (1) using the observed Me, which was 
compared to the correlation (as the observed accuracy) between true and estimated 
genetic profile scores (GBLUP) in the target data set.    
 
Simulation II 
In order to confirm the theory in deriving AUC and odds ratios (Eq. (3), (4) and (5)), 
we simulated disease data (binary responses) using a liability threshold model with a 
population prevalence of 10% (K=0.1). In the discovery data set, cases were over-
sampled such that the ratio of cases and controls was equal (P=0.5), mimicking a 
typical case-control design. The total number of samples in the discovery set was 
N=3000. We simulated Me independent SNPs, the effects of which were normally 
distributed, and a residual effect such that the heritability on the liability scale was 
h2=0.5. We used 5 different values for Me = 254, 1188, 4506, 10891 and 21248, 
reflecting the expected values for Ne = 100, 500, 2000, 5000 and 10000, respectively 
when using a genomic length of 30 Morgan (30 chromosomes each with 1 Morgan 
long) and the coalescence formula 1 / (2 + 4Ne × c) (Eq. (9)). SNP effects were 
estimated in the discovery data set and these estimates were used to predict genetic 
profile scores in an independent population sample of N=30000 as the target data set. 
For the target sample, we used a large population sample to reduce empirical 
sampling error and mimic a realistic situation, e.g. screening newborn babies. We 
obtained AUC from the genetic profile scores predicting the disease status in the 
target data set. Additionally, we obtained the odds ratio contrasting the top and 
bottom 20% of the normal population sample according to the genetic profile scores. 
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We also obtained the odds ratio contrasting the top 1% according to the genetic 
profile scores and the normal population. These observed AUC and odds ratios from 
the simulated data were compared to the expected values from the theory (Eq. (3), (4) 
and (5)).    
 
Real data 
Framingham heart study 
Publicly available data from the Framingham heart study (phs000007.v26.p10.c1)52 
were used. Stringent quality control (QC) was applied to the available genotypes, 
including SNP call rate > 0.95, individual call rate > 0.95, HWE p-value > 0.0001, 
MAF > 0.01 and individual population outliers < 6 SD from the first and second 
principal components (PC). After QC, 6920 individuals and 389,265 SNPs remained. 
Among them, 4243 individuals from 628 families were phenotyped for height and 
body mass index (BMI). The mean number of members per family was 6.76 (SD 
12.77). Phenotypes were adjusted for birth year, sex, and the first 10 PCs. We 
calculated the ancestry PCs from the POPRES reference sample53-55 because direct PC 
analysis on the sample could be confounded with family structure54,56    
 
In order to contrast designs with smaller and larger Ne (and Me) values, two kinds of 
cross-validation schemes were implemented. For a design with larger Ne, 80% of the 
628 families were selected as the discovery data set, with the remaining 20% of 
families used as the target data set. Therefore, the discovery and target sample shared 
distant common ancestors, hence a larger Ne and Me. In contrast, for a design with 
smaller Ne, each member in every family was assigned an 80% chance to be a 
discovery sample and the rest was in the target sample. Therefore, the discovery and 
target sample shared recent common ancestors, hence a smaller Ne and Me. 
 
Using the real genotype data, the genomic relationships between the discovery and 
target sample were constructed, and Me was estimated from Eq. (11). The correlation 
between the phenotypes (that were not used in the analyses) and estimated genetic 
profile scores in the target data set was estimated.  
 
Genetic epidemiology research on adult health and aging cohort 
As a second real data set, we used genetic data from the European ancestry 
participants of the Kaiser Permanente genetic epidemiology research on adult health 
and aging (GERA) cohort57, an extensive population sample. The same QC process 
was applied to the available genotypes. After QC, 62,318 individuals each with 
575,760 SNP genotypes remained. We used the trait “hypertension” and 
“dyslipidemia” for the prediction analyses. Phenotypes were adjusted for birth year, 
sex, and the first 10 PCs that were inferred from the POPRES reference sample53-55. 
 
Unlike the Framingham data, GERA does not have an explicit family structure, i.e. 
the proportion of pair-wise relationship more than 0.2 was only 0.0002%. Therefore, 
the family-wise cross-validation schemes used in the Framingham data could not be 
used. Instead, we randomly selected 46,000 individuals, and randomly assigned 80% 
and 20% to a discovery data set (N=36,800) and a target data set (N=9,200), 
respectively, in 100 cross-validation replicates. We calculated the variance of pair-
wise relationships with the individuals in the discovery data set for each individual in 
the target data set, and identified the top 25% of the target individuals with the highest 
variance of the relationships. Then, we tested if the prediction accuracy for the top 
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group (N = 2,300) was higher than that for the entire target sample, to show if a larger 
variance, hence smaller Me, resulted in a higher prediction accuracy even when using 
a population-based sample without a substantial family structure. In addition, we 
obtained the prediction accuracy from a subset of the sample that excluded higher 
relationships (>0.025). We first applied the relatedness cut-off to all individuals, and 
then selected 46,000 individuals that were subsequently divided into the discovery 
(N=36,800) and target data sets (N=9,200). It is noted that for each target individual, 
the variance of pair-wise relationships with the discovery individuals was reduced due 
to the relatedness cut-off. In any case, we used the same number of discovery samples 
(N=36,800) in order to have the same power and for fair comparisons.  
  
 
 
SOFTWARE 
 
Theory, simulation models and GBLUP used in this study have been fully 
implemented in publicly available software, MTG2.  
 
https://sites.google.com/site/honglee0707/mtg2  
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Table 1. The accuracy of genomic prediction from a design with smaller or larger Ne 
values when using height phenotypes from the Framingham data.  
 

	
   Small	
  Ne	
   Large	
  Ne	
  
Quantitative	
  traits	
  (height)	
  -­‐	
  3394	
  discovery,	
  849	
  target	
  	
  

Me	
   4434	
   31080	
  
Expected	
  accuracy	
   0.551a	
   0.145b	
  
Observed	
  accuracy	
   0.549	
  (0.021)	
   0.091	
  (0.043)	
  

	
   	
   	
  
Case-­‐control	
  (10%	
  selection);	
  680	
  discovery,	
  170	
  target	
  (K=0.1	
  and	
  P=0.5)	
  

Me	
   3247	
   29480	
  
Expected	
  AUC	
   0.682a	
   0.537b	
  
Observed	
  AUC	
   0.687	
  (0.037)	
   0.535	
  (0.038)	
  

 
aExpected accuracy from Eq. (2) using the value for Me and h2=0.823-25 that is 

from family studies. bExpected accuracy from Eq. (2) using the value for Me and 
h2=0.4526,27 that is from population studies. SD over 100 cross-validation replicates is 
in the bracket.  
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Figure 1. Expected correlation between the phenotypes and estimated genetic profile 
scores representing the accuracy of genomic prediction of a target sample for 
quantitative traits when varying Ne=10000, 5000, 2000, 1000 and 100. The number of 
records (N) in the discovery data set is 3000, the true heritability is 0.5 and the 
number of chromosome is 30 each with a genomic length of 1 Morgan.  
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Figure 2. Expected AUC of estimated genetic profile scores in a target sample for 
case-control data when varying Ne=10000, 5000, 2000, 1000 and 100. The number of 
records (N) is 3000, the true heritability is 0.5, the number of chromosome is 30 each 
with a genomic length of 1 Morgan, the population prevalence is K=0.1 and the 
proportion of cases in the sample is P=0.5. 
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Figure 3. Expected odds ratios of case-control status contrasting the top and bottom 
20% of the genetic profile scores in a target sample when varying Ne=10000, 5000, 
2000, 1000 and 100. The number of records (N) is 3000, the true heritability is 0.5, 
the number of chromosome is 30 each with a genomic length of 1 Morgan, the 
population prevalence is K=0.1 and the proportion of cases in the sample is P=0.5.
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Figure 4. Expected odds ratios of case-control status contrasting the top 1% of the 
genetic profile scores and a random sample from population in a target sample when 
varying Ne=10000, 5000, 2000, 1000 and 100. The number of records (N) is 3000, the 
true heritability is 0.5, the number of chromosome is 30 each with a genomic length 
of 1 Morgan, the population prevalence is K=0.1 and the proportion of cases in the 
sample is P=0.5.
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Figure 5. The odds ratio of the case-control status contrasting the top and bottom 20% 
of the ranked genetic profile scores estimated from a design with a smaller or larger 
Ne, in the Framingham data 
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Figure 6. The prediction accuracy is significantly increased when using the top 25% 
of the target sample according to the variance of pair-wise relationships with the 
discovery sample (therefore decreasing Me from 58000 to 37000). GERA data with 
hypertension phenotypes are used. The error bar is 95% confidence interval of the 
observed prediction accuracy over 100 replicates.  
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Figure 7. The prediction accuracy is significantly decreased when excluding higher 
relationships from the sample that results in increasing Me (from 58000 to 67000). 
GERA data with hypertension phenotypes are used. The same number of discovery 
and target sample is used for both tests. The error bar is 95% confidence interval of 
the observed prediction accuracy over 100 replicates.  
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