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Abstract

Mass cytometry or CyTOF is an emerging technology for high-dimensional multiparameter sin-

gle cell analysis that overcomes many limitations of fluorescence-based flow cytometry. New

methods for analyzing CyTOF data attempt to improve automation, scalability, performance, and

interpretation of data generated in large studies. Assigning individual cells into discrete groups of

cell types (gating) involves time-consuming sequential manual steps, untenable for larger stud-

ies. We introduce DeepCyTOF, a standardization approach for gating, based on deep learning

techniques. DeepCyTOF requires labeled cells from only a single sample. It is based on domain

adaptation principles and is a generalization of previous work that allows us to calibrate between

a target distribution and a source distribution in an unsupervised manner. We show that Deep-

CyTOF is highly concordant (98%) with cell classification obtained by individual manual gating

of each sample when applied to a collection of 16 biological replicates of primary immune blood

cells, even when measured accross several instruments. Further, DeepCyTOF achieves very high

accuracy on the semi-automated gating challenge of the FlowCAP-I competition as well as two

CyTOF datasets generated from primary immune blood cells: (i) 14 subjects with a history of in-

fection with West Nile virus (WNV), (ii) 34 healthy subjects of different ages. We conclude that

deep learning in general, and DeepCyTOF specifically, offers a powerful computational approach

for semi-automated gating of CyTOF and flow cytometry data.

Key words: FCM, CyTOF, automatic gating, deep learning, domain adaptation
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1 Introduction

Flow cytometry (FCM) is routinely used in cellular and clinical immunology. Current fluorescence-based FCM ex-

periments provide up to 15 numeric parameters for each individual cell from blood samples in a high-throughput

fashion. This allows efficient multiparameter characterization of single cell states. Interpretation of such data from

hundreds-of-thousands to millions of cells is paramount to understanding the pathogenesis of a broad range of human

diseases. Mass cytometry (CyTOF) is an emergent technological development for high-dimensional multiparameter

single cell analysis. By using heavy metal ions as labels and mass spectrometry as readout, many more markers can

be simultaneously measured. Current CyTOF instruments allow users to probe over 40 antibody specificities and

thus provide a significant improvement in analyzing the underlying cell sub-populations of a system [1, 2]. CyTOF

provides unprecedented multidimensional immune cell profiling and has recently been applied to characterizing pe-

ripheral blood cells, Natural Killer cells in viral infections, skin cells, cells in celiac disease, responding phenotypes

in cancer, and even holds the promise of examination of solid tumors [3, 4, 5, 6, 7, 8, 9, 10]. Cellular characterization

by FCM and CyTOF will improve our understanding of disease processes [11].

Gating (assigning individual cells into discrete groups of cell types) is one of the important steps and a bottleneck of

analyzing FCM and CyTOF data. It involves time-consuming sequential manual steps, untenable for larger studies

[12, 13, 14, 15, 16, 17, 18, 19]. The time it takes to manually analyze a cytometry experiment depends on the number

of blood samples as well as the number of markers [20]. Specifically, gating is performed by drawing polygons in

the plane of every two markers. This implies that the time required for gating is roughly quadratic in the number of

markers. In addition, the manual procedure, combined with the increase in the number of markers, make this process

prone to human errors. Technical variation naturally arises due to the variation between individual operators [21].

The subjectivity of manual gating introduces variability into the data and impacts reproducibility and comparability

of results, particularly in multi-center studies [22]. Thus the slow processing time and the inherent subjectivity of

manual analysis should be considered as primary reasons for using computational assistance methods.

The FlowCAP consortium aims to boost user confidence in the viability of automated gating methods [23]. Many of

the pipelines described therein are tailored for exploratory, discovery-oriented data analysis. New methods for ana-

lyzing cytometry data continue to emerge; these methods attempt to improve automation, scalability, performance,

and interpretation of data generated in large studies. These computational methods can be categorized as unsuper-

vised or supervised approaches. Both types of approaches use a variety of simple linear transformations, density

estimations, hierarchical clustering, and nonlinear projection methods, that together allow extracting features that

can be used to study differences between samples1. However, most current tools are less suitable for routine use

where analysis must be standardized, reproducible, interpretable, and comparable [24]. In general, no automated

1Throughout this manuscript, we use the terms sample and subject as follows: a sample is a collection of mea-
surements of cells, belonging to a single subject.
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gating algorithm or approach that would solve all specific computational problems has been accepted as the gold

standard for replacing manual gating [23, 25].

Additionally, in the last few years, deep learning methods have achieved outstanding performance in various compu-

tational tasks, such as image analysis, natural language processing, and pattern recognition [26]. These approaches

have also been shown to be effective for extracting natural features from data in general settings [27, 28, 29]. More-

over, recent efforts to use deep learning approaches in genomics and biomedical applications show their flexibility

for handling complex problems [30, 31, 32, 33, 34]. However, deep learning typically requires very large numbers of

training instances and thus its utility for many genomic, proteomic and other biological applications is questionable.

While in most genomics applications, the number of instances (e.g., number of gene expression arrays) is typically

smaller than the number of variables (e.g., genes), in each FCM and CyTOF run we typically collect approximately

105 to 106 cells, so that the number of instances (cells) is several orders of magnitude larger than the number of

variables (up to 50 markers). Therefore, developing deep learning approaches to analyze cytometry data is very

promising.

However, in FCM and CyTOF experiments, variation in both biological and technical sources can make automatic

gating challenging. Instrument calibration causes variation across samples, such a situation is often referred to “batch

effect”. In order to avoid gating each dataset separately (which therefore requires labeled samples from each dataset),

a domain adaptation procedure is used. Domain Adaptation is a set of techniques that allow the use of a learning

scheme (or model) trained on data from a source domain with a given distribution, which can then be applied to a

target domain with a related but not equivalent distribution. The objective of domain adaptation is to minimize the

generalization error of instances from the target domain [35, 36].

We present DeepCyTOF, an integrated deep learning domain adaptation framework, which employs one manually

gated reference sample and utilizes it for automated gating of the remaining samples in a study. We first include two

preprocessing options to use a denoising autoencoder (DAE) to handle missing data and use multiple distribution-

matching residual networks (MMD-ResNets) [37] to calibrate an arbitrary number of source samples to a fixed

reference sample, and then perform a domain adaptation procedure for automatic gating.

We demonstrate DeepCyTOF for automatic gating of three CyTOF datasets consisting of 56, 136 and 16 samples

respectively, and obtain almost identical results to those obtained by manual gating. In particular, the collection of 16

samples were obtained from the same subject and measured on multiple CyTOF instruments, a setting where batch

effects are strong. We demonstrate that by using DeepCyTOF’s preprocessing options to account for the missing

data and the batch effects, one is able to utilize manual gating of a single source sample to perform high quality

automatic gating of the remaining samples, and significantly reduce the time and effort that are currently required for

manual gating. In addition, we compare DeepCyTOF to the other competing supervised approaches benchmarked on

each dataset of the 4th challenge of the FlowCAP-I competition [23], and show that DeepCyTOF outperforms each

dataset’s respective winning algorithm, achieving state-of-the-art accuracy.
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The structure of this manuscript is as follows: in Section 2 we describe the datasets and algorithms used in this

research. Experimental results are given in Section 3. In Section 4 we explain the theoretical justification of Deep-

CyTOF as a domain adaptation procedure. Section 5 concludes this manuscript.
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2 Materials and Methods

2.1 Datasets

2.1.1 FlowCAP-I datasets

We employ five collections of FCM datasets from FlowCAP-I [23]: (1) Diffuse large B-cell lymphoma (DLBCL), (2)

Symptomatic West Nile virus (WNV), (3) Normal donors (ND), (4) Hematopoietic stem cell transplant (HSCT), and

(5) Graft-versus-host disease (GvHD). With the results from manual gates produced by expert analysis, the goal of

FlowCAP-I challenges is to compare the results of assigning cell events to discrete cell populations using automated

gates. In particular, we consider Challenge 4: supervised approaches trained using human-provided gates. We use

the manual gating provided from FlowCAP-I to evaluate the neural nets predictions.

2.1.2 Mass Cytometry Datasets

We analyze two collections of CyTOF datasets measured on one instrument in the Montgomery Lab. The datasets

consist of primary immune cells from blood of (1) N = 14 subjects (8 asymptomatic and 6 severe) with a history

of infection with West Nile virus (WNV), and (2) N = 34 healthy subjects of different ages (20 young and 14 old).

Each blood sample is labeled with d = 42 antibody markers [5], 12 of which are used in our analysis as they are

the relevant markers for the task of classification described below: HLA-DR, CD4, CD8, CD3-UCH1, CD16, CD33,

CD19, CD14, CD56, DNA1, DNA2, Cisplatin. Each sample is subjected to four CyTOF experiments including a

baseline state and three different stimuli (PMA/ionomycin, tumor cell line K562, and infection with WNV). The goal

is to classify each cell to one of six cell type categories: (1) B cell, (2) CD4+ T cell, (3) CD8+ T cell, (4) Monocytes,

(5) Natural killer (NK) cells, and (6) unlabeled. There are 56 and 136 samples in the first two datasets, and we

manually gate each single cell to evaluate the neural nets predictions.

We analyze an additional third collection of 16 CyTOF samples, which are all drawn from a single subject. These

samples are measured in two different times and instruments as a part of a multi-center study [38]. The first 8 samples

are collected at the same time, and the last 8 samples are collected two months apart from the first 8. Additionally,

each consecutive two samples are measured by the same instrument. Each of the 16 samples contains 26 markers, out

of which eight correspond to the following protein markers: CCR6, CD20, CD45, CD14, CD16, CD8, CD3, CD4;

we perform our classification experiments on this 8-dimensional data as these eight markers are the relevant ones for

the task of classification: classify each cell to one of five cell type categories: (1) B cell, (2) CD4+ T cell, (3) CD8+

T cell, (4) Monocytes, and (5) unlabeled. We manually gate each single cell to evaluate the neural nets predictions.

2.1.3 Pre-processing

For FlowCAP-I datasets, we apply a logarithmic transform, followed by rescaling, as described in Appendix A.
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For Mass Cytometry datasets, we first manually filter all samples to remove debris and dead cells. In addition,

different samples are measured at different times; fine changes in the state of the CyTOF instrument between these

runs introduce additional variability into the measurements (batch effects). The specific nature of these changes is

neither known nor modeled. To tackle this problem and apply a gating procedure, we follow most practitioners in

the field, and calibrate the samples by applying an experimental-based normalization procedure2. This procedure

involves mixing samples with polystyrene beads embedded with metal lanthanides, followed by an algorithm which

enables correction of both short-term and long-term signal fluctuations [39]. Once the data is normalized, we apply

a logarithmic transform, and rescaling.

2.2 DeepCyTOF Algorithm

DeepCyTOF integrates between three different tasks needed to achieve automated gating of cells in multiple target

samples3 based on manual gating of a single reference source sample. The tasks include sample denoising, calibration

between target samples and a single reference source sample and finally cell classification. We implement each of

these tasks using the following three neural nets: (1) a denoising autoencoder (DAE) for handling missing data; (2) an

MMD-ResNet for calibrating between the target samples and a reference source sample; (3) a depth-4 feed-forward

neural net for classifying/gating cell types trained on a reference source sample. DeeopCyTOF has options to run

with or without denoising, and with or without calibration. In examples shown in the Results section DeepCyTOF

was employed to classify cells without denoising and without calibration (Section 3.1), without calibration but with

the denoising preprocessing step (Section 3.2) and with the denoising and with the calibration preprocessing steps

(Section 3.3).

2.2.1 Removing Zeros using Denoising Autoencoder

All samples in our Mass Cytometry dataset contain large proportions of zero values across different markers. This

usually does not reflect biological phenomenon, but rather, occurs due to instabilities of the CyTOF instrument. To

tackle this, we include an option in DeepCyTOF to remove the zeros by training a denoising autoencoder (DAE) [40]

on the cells with no or very few zero values. A DAE is a small neural net that is trained to reconstruct a clean input

from its corrupted version. Unlike [40], who use Gaussian noise to corrupt the inputs, we use dropout noise, i.e., we

randomly zero out subset of the entries of each cell, to simulate the machine instabilities. We train a DAE for each

batch, by combining all samples from that batch, selecting the cells with no zeros and using them as training set.

For each DAE, we set the dropout probability to be the proportion of zeros in the measurement of the corresponding

batch. Once a DAE is trained, we pass all samples from its batch through it to denoise the data.

2Our results in Section 3.3 show that this normalization procedure does not always eliminate the batch effects
between different instruments, and further calibration is needed.

3the usage of the terms “source” and “target” in this manuscript is opposite than in [37], in order to be consistent
with the domain adaptation terminology.
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2.2.2 MMD-ResNet

To account for machine based technical bias and variability, we include a preprocessing option in DeepCyTOF to

calibrate each batch to a reference using the MMD-ResNet approach. MMD-ResNet [37] is a deep learning approach

to learn a map that calibrates the distribution of a source sample to match that of a target sample. It is based on

a residual net (ResNets) architecture [41, 42] and has Maximum Mean discrepancy (MMD) [43, 44] as the loss

function. ResNet is a highly successful deep networks architecture, which is based on the ability to learn functions

which are close to the identity. MMD is a measure for a distance between distributions, which had been shown to be

suitable for training of neural nets-based generative models [45, 46]. If F is a reproducing kernel Hilbert space with

a (universal) kernel function k(·, ·), the (squared) MMD between distributions p, q over a space X is defined as

MMD2(F , p, q) = Ex,x′∼pk(x, x′)− 2Ex∼p,y ∼qk(x, y) + Ey,y′∼qk(y, y′),

where x and x′ are independent, and so are y and y′.

For calibration purposes, we want to find a map that brings the distribution of the source sample close to that of the

target sample; we further assume that this map should be close to the identity. In a previous work [37], we have shown

that MMD-ResNets are successful in learning such maps, and used them for calibration of CyTOF data and single

cell RNA sequencing data. We refer the reader to [37] for a more comprehensive description of MMD-ResNets.

In this manuscript, we follow the approach of [37] and use ResNets consisting of three blocks, which are trained to

minimizing the loss

L(w) =

√
MMD2(f̃(X), Y )

=

√√√√ 1

n2

∑
xi,xj∈X

k(f̃(xi), f̃(xj))−
2

nm

∑
xi∈X,yj∈Y

k(f̃(xi), yj) +
1

m2

∑
yi,yj∈Y

k(yi, yj)

where f̃ is the map computed by the network, w are the network parameters, and X = {x1, · · · , xn}, Y =

{y1, · · · , ym} are two finite samples from the source and target distributions, respectively. An example of a MMD-

ResNet is shown in Figure 2.

2.2.3 Cell Classifier

To choose which sample will be used as reference source sample, for each sample i we first compute the d × d

covariance matrix Σi, where d is the number of markers (dimensionality) of these samples. For every two samples

i, j we then compute the Frobenius norm of the difference between their covariance matrices ‖Σi − Σj‖F , and

we select the sample with the smallest average distance to all other samples to be the reference sample. Once the
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reference sample is chosen, we use manual gating to label its cells; the gating is used as ground truth labels to train

the classifier. This is the only label information DeepCyTOF requires, regardless of the total number of samples we

want to gate.

To classify cell types, we trained depth-4 feed-forward neural nets, each consisting of three softplus hidden layers

and a softmax output layer. Further technical details regarding the architecture and training are given in Section 3.4.

An example of such classifier is shown in Figure 1.

2.3 Evaluation

To compare DeepCyTOF approach to algorithms from the 4th challenge of the FlowCAP-I competition, 25% of the

cells of each subject from the FCM datasets in FlowCAP-I are labeled by manual gating and used to train a cell type

classifier based on the procedure of Section 2.2.3, which is then used to predict the labels of the remaining 75% cells.

Here the DAE option is disabled because there are no missing values and the MMD-ResNet option is also disabled

because the training and test sets are from the same run and thus do not require calibration.

To perform semi-automated gating of all samples of each of the first two CyTOF datasets based on the procedure

of Section 2.2, we select a single baseline reference sample as in Section 2.1.2. We manually gate this sample, and

use it to train a classifier for predicting the cell type class of each cell. The other baseline samples and additional

samples that undergo three different stimuli (PMA/ionomycin, tumor cell line K562, and infection with WNV) are

left for testing. Batch effects in these two datasets were not substantial allowing classification of cells into major

cell populations without employing a calibration step as in Section 2.2.2 prior for to the cell classification of the test

samples.

To perform semi-automated gating of the samples in the third multi-center CyTOF dataset , we follow the procedure

of Section 2.2, i.e., we choose a single reference sample, train a collection of MMD-ResNets to calibrate all the

remaining samples to it, train a cell type classifier on manually gated data of the reference sample, and use it to

classify the cells of the calibrated samples. We compare the classification performance between two options of

running DeepCyTOF. One option is with calibration of the target samples by MMD-ResNets and the other option is

without calibration.

We use the F-measure statistic (the harmonic mean of precision and recall) for the evaluation of our methods as

described in [23]. The F-measure for multiple classes is defined as the weighted average of F-measures for each cell

type, i.e.,

F =
∑
i

ci
N
Fi

9

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 20, 2017. ; https://doi.org/10.1101/054411doi: bioRxiv preprint 

https://doi.org/10.1101/054411


Gating mass cytometry data by deep learning Li et al.

where ci is the number of cells with type i, N is the total number of cells, Fi is the F-measure for the ith cell type

versus all other types (including unknown types):

Fi =
precision× recall
precision + recall

An F-measure of 1.0 indicates perfect agreement with the labels obtained by manual gating. For any given vector of

F-measure values on a given dataset, we create several vectors of F-measure values (by sampling with replacement),

compute the mean F-measure and 95% bootstrap percentile confidence interval for the mean.
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3 Results

In this section, we present results from three experiments: (1) cell classification of five FCM datasets from

the FlowCAP-I competition by applying DeepCyTOF without denoising (DAE) and without calibration (MMD-

ResNets), as they are not needed as explained above, (2) cell classfication of two CyTOF datasets by applying

DeepCyTOF with the denoising option (DAE) , but without calibration (MMD-ResNets) of the target samples, (3)

cell classfication of a multi-center CyTOF dataset by applying DeepCyTOF with the denoising option (DAE), and

with calibration (MMD-ResNets) of the target samples to the source sample.

3.1 Evaluation of classification performance from FlowCAP-I

Table 1 presents the performance of DeepCyTOF when applied to the five datasets from the 4th challenge of

FlowCAP-I competition. The performance is compared to the respective winner of each of the five collections in

this competition. As can be seen, our predictions are better than the competition winner in four out of the five

collections and similar on the HSCT collection.

3.2 Application of DeepCyTOF to CyTOF datasets in the Absence of Strong Batch Effects

In this experiment, for each of the two different collections (which contain 14 and 34 baseline samples, respectively),

we chose a reference sample, used it to train DeepCyTOF using the options that omits the calibration step, which was

then used to predict the cell types in all the other samples in that collection (55 samples from the Asymptomatic vs.

Severe WNV dataset and 135 samples from the Old vs. Young dataset), without any calibration.

Figure 3 shows an example of embedding of labeled cells in a three dimensional space, obtained from the top hidden

layer of a neural net cell type classifier, as the ones used for this experiment. As can be seen, most of the labeled

cells concentrate in separated clusters representing specific cell types. Table 2 summarizes the results, and provides

a comparison to a shallow, linear classifier (softmax). Table 2 illustrates some interesting points: first, nearly perfect

performance on the test data is achieved, despite the fact that it was only given labels from the reference sample.

Second, DeepCyTOF performs significantly better than softmax regression, which may be a result of the depth and

the non-linearity of the network. Third, whether or not the data is normalized does not affect the performance of

DeepCyTOF. Fourth, we also applied DeepCyTOF choosing the option that includes a preprocessing calibration

step in which MMD-ResNets are used to calibrate the source samples to the reference sample. However, this yields

a modest improvement in the results. This may be due to the fact that the datasets did not significantly differ in

distribution. A different scenario, where significant differences exist in the data, is considered in Section 3.3.
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3.3 Overcoming Strong Batch Effects using DeepCyTOF

The multi-center dataset consists of samples of the same subject, which were measured on different CyTOF machines

in different locations. It is therefore reasonable that the different instrument conditions will result in calibration

differences, which need to be accounted for. A domain adaptation framework like DeepCyTOF might be valuable in

such scenario.

As in section 2.2, we first chose a reference subject (sample 2) as the source. For each target sample, we then trained

a MMD-ResNet to calibrate it to the reference sample. Subsequently, we trained a cell classifier using labeled data

from the reference sample, and used it to classify cells from all the remaining calibrated 15 samples. We compared

the performance of DeepCyTOF to a similar procedure where we skip the calibration step so that the input to the

cell classifier is the data from the un-calibrated target samples. Figure 4 shows the F-measure scores for each sample

before and after calibration. As can be seen, the F-measure scores of samples 9-16 are significantly higher when a

calibration step is included in the gating process. For samples 1-8 we observed that the scores are very high even

without a calibration step. Overall, applying DeepCyTOF with a calibration step results in an weighted average

F-measure of 0.985 with 95% confidence interval (0.979, 0.990), which is significantly higher compared to the

weighted average F-measure obtained by applying DeepCyTOF without calibration, which was 0.925 with 95%

confidence interval (0.890, 0.956).

Figure 6 shows t-SNE embedding [47] of the cells of a representative sample selected from samples 1-8 (sample 7)

and a representative sample from the other eight samples (sample 15) versus the cells of the reference sample, before

and after calibration. On both samples the MMD-ResNet calibration seem to correct the batch effect appropriately, as

after the calibration same cell types are embedded in the same clusters. To understand why the calibration almost did

not change the accuracy on the last eight samples (while improving it dramatically on the last eight), Figure 7 in the

supplementary material shows the MMD between the source sample and each of the target samples4. As we can see,

in all samples (with the exception of sample 2, which is the source sample, and sample 1 which was measured on the

same instrument as sample 2), the MMD-ResNet calibration reduces the MMD between the distributions. However,

before calibration the MMD between each the first eight target samples and the reference sample is relatively small,

possibly making the classifier generalize well to these distributions even without calibration.

In the supplementary material, we also provide additional results from this experiment. A more detailed perspec-

tive on the effect of the calibration on the classification accuracy for the samples 9-16 is given in Figure 5, which

shows the confusion matrix of a representative sample (sample 15), obtained before and after the calibration. For

this sample, the F-measure obtained by applying DeepCyTOF with and without a calibration step are, 0.9614 and

0.6603 respectively. In order to demonstrate the quality of calibration not only in a macroscopic level, but also when

restricting the attention to a specific cell population, Figure 8 in the appendix shows the t-SNE plot of CD8+T cells

from sample 15 before and after calibration. The results are consistent with the ones given above.

4the MMD values were computed using random batches of size 1000 from each of the distributions.
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Finally, to demonstrate the effect of denoising on the quality of calibration, Figure ?? shows the MMD between the

reference sample and each of the other samples with and without denoising. We see that with denoising the MMD is

smaller than without denoising.

3.4 Technical Details

All cell type classifiers used in this work, were depth 4 feed-forward nets, with softplus hidden units and a softmax

output layer, where the hidden layer sizes have been set to 12, 6, and 3. All MMD-ResNets were identical and

consisted of three blocks, as can be seen in Figure 2. The first weight matrix was of size 25 × 8, and the second

weight matrix was of size 8×25. The DAE hidden layer consisted of 25 ReLU units. All networks were trained using

RMSprop [48]. We use the default learning rate (10−2) to train the DAE. The learning rate schedule for training the

classifiers and MMD-ResNets was defined as follows:

µ(t) = µ(0) · δb
1+t
T
c

where µ(t) was the learning rate at epoch t, µ(0) was the initial learning rate, δ was a constant, and T was the

schedule. For training the classifiers, we have µ(0) = 10−3, δ = .5, and T = 50. For training the MMD-ResNets,

we have µ(0) = 10−3, δ = .1, and T = 15.

We used mini-batches of size 128 for the cell type classifiers and the DAE, and 1000 for the MMD-ResNets. For

each net, a subset 10% of the training data is held out for validation, to determine when to stop the training. In

the DAE and cell type classifiers, a penalty of 10−4 on the l2 norm of the network weights is added to the loss for

regularization. In the MMD-ResNets we used for this purpose a penalty of 10−2.

The kernel used for MMD-ResNets is a sum of three Gaussian kernels

k(x, y) =

3∑
i=1

exp

(
−‖x− y‖

2

σi

)
,

We set the scales for the Gaussian kernels of the MMD-ResNets to be σis to be m
2
,m, 2m, where m is the median

of the average distance between a point in the target sample to its 25 nearest neighbors.

DeepCyTOF, implemented in Keras, is publicly available at https://github.com/hl475/DeepCyTOF.

git.
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4 Theoretical Justification for the Calibration Step of DeepCyTOF

In the classical domain adaptation setting [49], a domain is a pair (D, f), where D is a distribution on an input space

X and f : X → {0, 1} is a labeling function. A hypothesis is a function h : X → {0, 1}. Given a domain (D, f),

any hypothesis is associated with an error

ε(h) = Ex∼D[|h(x)− f(x)|].

Given a hypothesis, a source domain (Ds, fs) and a target domain (Dt, ft), one is interested in expressing the target

error

εt(h) = Ex∼Dt [|h(x)− ft(x)|]

in terms of the source error

εs(h) = Ex∼Ds [|h(x)− fs(x)|].

This corresponds to expressing the error of a classifier, trained on the source data, on the target data.

LetH be hypothesis class of finite VC dimension. Ben David et al. [49] prove that for every h ∈ H, with a probability

of at least 1− δ,

εt(h) ≤ εs(h) + dH(Ds,Dt) + C,

where

dH(Ds,Dt) = 2 sup
h∈H
| Pr
x∼Ds

[h(x) = 1]− Pr
x∼Dt

[h(x) = 1]|,

and C is a constant which does not depend on h.

By consideringH to be the class of Parzen window classifiers, it can be shown [50, 51] that

dH(Ds,Dt) . MMDH(Ds,Dt).

This implies that calibrating the data by minimizing the MMD between the source and target distribution, the target

error will get close to the source error. This is precisely the procedure DeepCyTOF performs.
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5 Discussion

In this work, we show that deep learning machinery can be very effective in classification of cell types; the perfor-

mance substantially surpasses the predictive accuracy of the methods presented in the 4th challenge of the FlowCAP-I

competition. In addition, we introduce DeepCyTOF, an automated framework for gating cell populations in cytom-

etry samples. DeepCyTOF integrates deep learning and domain-adaption concepts. The labels obtained by manual

gating of the reference sample are utilized in a domain-adaptation manner. These steps enable DeepCyTOF to in-

herently calibrate the major cell populations of multiple samples with respect to the corresponding cell populations

of the reference sample. We analyze 208 CyTOF samples and observed nearly identical results to those obtained by

manual gating (with mean F-measure ≥ 0.98).

In practice, run-to-run variations in CyTOF experiments both in the same instrument and between instruments are

very common. These variations lead to significant batch effects in the datasets with samples collected at different

runs. As a result, noticeable differences between the data distributions of the training data (manually gated reference

sample) and the remaining unlabeled test data (the remaining samples) are observed, and an approach such as domain-

adaptation is required to remove these biases. Bead-normalization is an approach introduced to mass cytometry as

a pre-processing step to diminish the effect of such variations [39]. Interestingly, application of DeepCyTOF to

unnormalized and bead-normalized data did not show an advantage of using the latter for the task of automated

gating. Our domain-adaptation approach allows us to effectively normalize different distributions for the (supervised

learning) task of automated gating via introduction of intermediate representations of cytometry data, each consisting

of instances from the reference (gated) distribution mixed with instances from a given un-gated distribution.

Flow cytometry and mass cytometry experiments provide us with multivariate data with dimensionality ranging

between 10-40. Transforming the raw multivariate data to other representations may offer advantages for tasks such

as automated gating or calibration. Finding good representations can be done either by manual investigation (hand

crafting) or automated approaches. In recent years deep learning approaches have been shown to be suitable for

learning useful representations of data in the sense that they provide new sets of features that makes subsequent

learning easier. Furthermore, it has been shown that pre-training unsupervised steps such the ones we implemented

in DeepCyTOF can improve the learning tasks [52], especially, when labeled training data is scarce. Cytometry

experiments provide us with large datasets of unlabeled cells, which makes the unsupervised pre-training steps in the

construction of a deep neural network applicable.

As cytometry analyses become widely used in research and clinical settings, automated solutions for analyzing the

high dimensional datasets are urgently needed. Current practice in which samples are first subjected to manual

gating are slowly substituted by automatic gating methods [53]. Major contributions to between-sample variations

in cytometry experiments arise not only due to biological or medical differences but due to machine biases. Here

we demonstrate that a novel machine learning approach based on deep neural networks and domain adaptation can

substitute manual gating as they both produce indistinguishable results. In future work, we will demonstrate that
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deep learning approaches could address other challenges in analyzing cytometry data. This includes tasks such as

further development of unsupervised calibration of samples, and feature extraction for classification or visualization

of multiple samples.
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A Data Pre-processing

Given a blood samples A, we first perform an elementary logarithmic transformation

Ai,j ← log(1 +Ai,j) (1)

In addition, we standardize each column of A to have zero mean and and unit variance.
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Table 1: Summary of results for the FlowCAP-I cell identification
challenge. The numbers in parentheses represent 95% confidence in-
tervals

F = precision×recall
precision+recall DeepCyTOFa Competition’s winner

GvHDb 0.986 (0.979,0.991) 0.92 (0.88,0.95)

DLBCL 0.985 (0.976, 0.993) 0.95 (0.93, 0.97)

HSCT 0.991 (0.988, 0.993) 0.98 (0.96, 0.99)

WNV 0.999 (0.998, 0.999) 0.96 (0.94, 0.97)

ND 0.988 (0.987, 0.989) 0.94 (0.92, 0.95)

a DeepCyTOF without denoising (DAE) and without calibration

(MMD-ResNets).
b FlowCAP-I collections: graft-versus-hist disease (GvHD); diffuse

large B-cell lymphoma (DLBCL); symptomatic West Nile virus

(WNV); normal donors (ND); hematopoietic stem cell transplant

(HSCT).

Table 2: Summary of results for the two CyTOF collections. The numbers in parentheses represent 95% confidence
intervals.

F = precision×recall
precision+recall AnS-UNa AnS-N OnY-UN OnY-N

DeepCyTOFb 0.990 (0.987, 0.993) 0.991 (0.987, 0.994) 0.993 (0.990, 0.997) 0.993 (0.989, 0.996)

Softmax regression 0.966 (0.955, 0.975) 0.967 (0.957, 0.976) 0.963 (0.946, 0.977) 0.963 (0.946, 0.977)

a Datasets: unnormalized Asymptomatic&Severe (AnS-UN); normalized Asymptomatic&Severe (AnS-N); normal-

ized Old&Young (OnY-N); unnormalized Old&Young (OnY-UN).
b DeepCyTOF without using MMD-ResNets for calibration of the target samples.
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Figure 1: A neural net for classifying cell types.

Figure 2: MMD-ResNet with 3 blocks.
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Figure 3: Third hidden layer representation of a blood sample (the unlabeled cells are omitted), obtained from
DeepCyTOF without a calibraition step. Each color corresponds to a cell type. Different cell types are concentrated
in different regions of the code space.
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Figure 4: F-measure scores of 16 samples in the multi-center dataset before (blue) and after (red) calibration.
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Figure 5: Confusion matrix for visualizing the performance of DeepCyTOF when applied to sample 15 without (left)
and with (right) a calibration step (the unlabeled cells are omitted). The rows represent the actual cell type label
and the columns represent the predicted cell type label. The F measure associated with the left panel (0.8857) is
significantly lower than the F measure associated with the right panel (0.9609).
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Figure 6: Top: t-SNE plots of the joint distribution of sample 7 (dark crosses) and the target sample (light circles)
before (left) and after (right) calibration (the unlabeled cells are omitted). Bottom: Similarly to the upper panel but
plots correspond to to the joint distribution of sample 15 and the target sample. Different cell types have different col-
ors: B cells (light and dark blue), CD4+ T cells (light and dark green), CD8+ T cells (light and dark red), Monocytes
cells (light and dark orange). After calibration, same cell types are clustered together.
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Figure 7: MMD between the source (sample 2) and each of the of other 15 samples in the multi-center dataset before
(blue) and after (red) calibration. The MMD values were computed based on random batches of size 1000 from each
sample.
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Figure 8: t-SNE plot of CD8+ T cell from sample 15 before (top) and after (bottom) with DeepCyTOF.
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