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Abstract

Mass cytometry or CyTOF is an emerging technology for high-dimensional multiparameter sin-
gle cell analysis that overcomes many limitations of fluorescence-based flow cytometry. New
methods for analyzing CyTOF data attempt to improve automation, scalability, performance, and
interpretation of data generated in large studies. However, most current tools are less suitable for
routine use where analysis must be standardized, reproducible, interpretable, and comparable.
Assigning individual cells into discrete groups of cell types (gating) involves time-consuming se-
quential manual steps untenable for larger studies. The subjectivity of manual gating introduces
variability into the data and impacts reproducibility and comparability of results, particularly in
multi-center studies. The FlowCAP consortium was formed to address these issues and it aims to
boost user confidence in the viability of automated gating methods. We introduce DeepCyTOF, a
standardization approach for gating based on a multi-autoencoder neural network. DeepCyTOF
requires labeled cells from only a single sample. It is based on domain adaptation principles
and is a generalization of previous work that allows us to calibrate between a source domain
distribution (reference sample) and multiple target domain distributions (target samples) in a su-
pervised manner. We apply DeepCyTOF to two CyTOF datasets generated from primary immune
blood cells: (i) 14 subjects with a history of infection with West Nile virus (WNV), and (ii) 34
healthy subjects of different ages. Each blood sample was labeled with 42 antibody markers,
12 of which were used in our analysis, at baseline and three different stimuli (PMA/ionomycin,
tumor cell line K562, and infection with WNV). In each of these datasets we manually gated a
single baseline reference sample to automatically gate the remaining uncalibrated samples. We
show that DeepCyTOF cell classification is highly concordant with cell classification obtained
by individual manual gating of each sample with over 99% concordance. Additionally, we apply
a stacked autoencoder, which is one of the building blocks of DeepCyTOF, to cytometry datasets
used in the 4th challenge of the FlowCAP-I competition and demonstrate that it over performs
relative to all gating methods introduced in this competition. We conclude that stacked autoen-
coders combined with a domain adaptation procedure offers a powerful computational approach
for semi-automated gating of CyTOF and flow cytometry data such that manual gating of one
reference sample is sufficient for accurately gating the remaining samples.
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1 Introduction

Flow cytometry (FCM) is routinely used in cellular and clinical immunology. Current fluorescence-based FCM ex-
periments provide up to 15 numeric parameters for each individual cell from blood samples in a high-throughput
fashion. This allows efficient multi-parameter characterization of single cell states. Interpretation of such data from
hundreds-of-thousands to millions of cells is paramount to understanding the pathogenesis of a broad range of human
diseases. Mass cytometry (CyTOF) is an emergent technological development for high-dimensional multi-parameter
single cell analysis. By using heavy metal ions as labels and mass spectrometry as readout, many more markers can
be simultaneously measured. Current CyTOF instruments allow users to probe over 40 antibody specificities and
thus provide a significant improvement in analyzing the underlying cell sub-populations of a system [1, 2]. CyTOF
provides unprecedented multidimensional immune cell profiling and has recently been applied to characterizing pe-
ripheral blood cells, Natural Killer cells in viral infections, skin cells, cells in celiac disease, responding phenotypes
in cancer, and even holds the promise of examination of solid tumors [3, 4, 5, 6, 7, 8, 9, 10]. Cellular characterization
by FCM and CyTOF will improve our understanding of disease processes [11].

Gating (assigning individual cells into discrete groups of cell types) is one of the important steps and a bottleneck of
analyzing FCM and CyTOF data. It involves time-consuming sequential manual steps untenable for larger studies
[12, 13, 14, 15, 16, 17, 18, 19]. The time it takes to manually analyze a cytometry experiment depends on the number
of experimental units as well as the number of markers [20]. If the gating strategy is complex, the analysis time might
increase dramatically. Technical variation naturally arises due to the variation between individual operators [21]. The
subjectivity of manual gating introduces variability into the data and impacts reproducibility and comparability of
results, particularly in multi-center studies [22]. Thus the slow processing time and the inherent subjectivity of
manual analysis should be considered as primary reasons for using computational assistance methods.

The FlowCAP consortium aims to boost user confidence in the viability of automated gating methods [23]. Many of
the pipelines described therein are tailored for exploratory, discovery-oriented data analysis. New methods for analyz-
ing cytometry data continue to emerge; these methods attempt to improve automation, scalability, performance, and
interpretation of data generated in large studies. These computational methods can be categorized as unsupervised or
supervised approaches. Both types of approaches use a variety of simple linear transformations, density estimations,
hierarchical clustering, and nonlinear projection methods, that together allow extracting features that can be used
to study differences between samples. However, most current tools are less suitable for routine use where analysis
must be standardized, reproducible, interpretable, and comparable [24]. In general, no automated gating algorithm or
approach that would solve all specific computational problems has been accepted as the gold standard for replacing
manual gating [23, 25].

In the last few years, deep learning methods have achieved outstanding performance in various computational tasks,
such as image analysis, natural language processing, and pattern recognition [26]. These approaches have also been
shown to be effective for extracting natural features from data in general settings [27, 28, 29]. Moreover, recent
efforts to use deep learning approaches in genomics and biomedical applications show their flexibility for handling
complex problems [30, 31, 32, 33, 34]. However, deep learning typically requires very large number of training
instances and thus its utility for many genomic, proteomic and other biological applications is questionable. While
in most genomics applications, the number of instances (e.g., number of gene expression arrays) is typically smaller
than the number of variables (e.g., genes), in each FCM and CyTOF run we typically collect approximately 105 to
106 cells, so that the number of instances (cells) is several orders of magnitude larger than the number of variables
(up to 50 markers). Therefore, developing deep learning approaches to analyze cytometry data is very promising.

In the 4th challenge of the FlowCAP-I competition [23], the goal was to automatically gate 75% of cells in each
sample based on manual gating of the remaining 25% of cells. We compare neural nets which were trained as
stacked autoencoders to the other supervised competing approaches included in this challenge, and show that the
neural nets outperform the competition winner and achieve state-of-the-art accuracy.

In addition, we present DeepCyTOF, an integrated deep learning neural network and domain adaptation framework,
which employs one manually gated reference sample and utilizes it for automated gating of the remaining samples
in a study. The net we construct is a generalization of DLID, a domain adaptation approach proposed by Chopra et
al. [35], for the case of arbitrary number of samples, and is based on combining a collection of autoencoders into
a single neural network. We used DeepCyTOF for automatic gating of two CyTOF datasets consisting of 56 and
136 samples respectively, and obtained almost identical results to those obtained by manual gating. We demonstrate
that by utilizing manual gating of a single reference sample in each of these datasets, DeepCyTOF can achieve high
quality automatic gating for the remaining samples and significantly reduce the time and effort that are currently
required for manual gating. Finally, by simulating multiple uncalibrated samples through various transformations
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of one CyTOF sample, we demonstrate that DeepCyTOF is capable of calibrating the simulated samples and that
automated gating of these samples is highly accurate.

The structure of this manuscript is as follows: in Section 2 we describe the datasets and algorithms used in this
research. Experimental results are given in Section 3. Section 4 concludes this manuscript. Experimental details are
given in an appendix.

2 Materials and Methods

Throughout this manuscript, we use the terms sample and subject as follows: a sample is a collection of measurements
of cells, belonging to a single subject.

2.1 Datasets

2.1.1 FlowCAP-I Datasets

We employed five FCM datasets from FlowCAP-I [23]: (1) Diffuse large B-cell lymphoma (DLBCL), (2) Symp-
tomatic West Nile virus (WNV), (3) Normal donors (ND), (4) Hematopoietic stem cell transplant (HSCT), and (5)
Graft-versus-host disease (GvHD). With the results from manual gates produced by expert analysis, the goal of
FlowCAP-I challenges was to compare the results of assigning cell events to discrete cell populations using auto-
mated gates. In particular, we consider Challenge 4: supervised approaches trained using human-provided gates. We
use the manual gating provided from FlowCAP-I to evaluate the predictions of our algorithm in Section 2.2.1.

2.1.2 Mass Cytometry Datasets

We employed two CyTOF datasets generated in the Montgomery Lab. The datasets consist of primary immune cells
from blood of (1) N = 14 subjects (8 asymptomatic and 6 severe) with a history of infection with West Nile virus
(WNV), and (2) N = 34 healthy subjects of different ages (20 young and 14 old). Each blood sample was labeled
with d = 42 antibody markers [5], 12 of which were used in our analysis (see Table 1) as they were the relevant
markers for the task of classification described below. Each sample was subjected to four CyTOF experiments
including a baseline state and three different stimuli (PMA/ionomycin, tumor cell line K562, and infection with
WNV). The goal is to classify each cell to one of 6 cell type categories: (1) unlabeled, (2) B cell, (3) CD4+ T cell, (4)
CD8+ T cell, (5) Monocytes, and (6) Natural killer (NK) cells. This task is challenging as it must be accompanied
by a procedure that calibrates between samples. Specifically, different samples were measured at different times;
fine changes in the state of the CyTOF instrument between those times thus introduce additional variability into
the measurements. The specific nature of these changes is neither known nor modeled. To tackle this problem and
apply a gating procedure, most practitioners in the field calibrate the samples by applying an experimental-based
normalization procedure. This procedure involves mixing samples with polystyrene beads embedded with metal
lanthanides, followed by an algorithm which enables correction of both short-term and long-term signal fluctuations
[36]. Once the data is normalized, most practitioners in the field apply a manual gating procedure.

Table 1: 12 markers used for cell classification

Marker type Measured marker

Lineage HLA-DR, CD3-UCHT1, CD16, CD33, CD19, CD14, CD56
Surface CD4, CD8
Other DNA1, DNA2, Cisplatin

2.1.3 Simulated Datasets

Starting from a single manually gated CyTOF dataset, we generated 50 simulated samples where each simulated
sample corresponds to a (different) change in the calibration of the CyTOF machine. This collection of datasets was
used to test whether DeepCyTOF is capable of overcoming substantial calibration differences between samples. A
detailed mathematical formulation of the data generation process appears in Appendix C.
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Figure 1: Stacked autoencoder for gating cell populations

2.1.4 Pre-processing

The only pre-processing performed on the FlowCAP-I , the Mass Cytometry datasets and the simulated datasets are
a logarithmic transform, followed by rescaling, as described in Appendix B.

2.2 Algorithms

2.2.1 Stacked autoencoders

An autoencoder is a single hidden layer neural network, which is trained to reconstruct its input [37]. The number of
units in any hidden layer of the autoencoder is typically smaller than the input dimension, hence a trained autoencoder
can be viewed as a tool for nonlinear dimensionality reduction. The map from the input representation to the hidden
representation is usually called encoder. The map from the hidden layer to the output layer (which is a reconstruction
of the input) is called decoder. It is widely known that the reconstruction of the data from the code space is often
“cleaner” than its original representation [38]; hence the autoencoder can also be viewed as a denoising tool.

A stacked autoencoder is a multi-layer neural net, which is trained bottom-up in an iterative fashion, where in each
iteration, a single layer is trained as an autoencoder [39]. Once the layer is trained, one uses it to compute a new
representation for the data. This representation is then used to train the following layer and so on. Once a stacked
autoencoder is trained, one may add a classifier on top of it (a softmax is a popular choice), and then fine-tune the
entire neural net using standard backpropagation [40]. Such approach has been widely popular in deep learning
applications e.g., [41]. Notably, autoencoders are trained in an unsupervised fashion [42, 43, 44], hence they do
not require labeled data. The final fine-tuning step for the specific classification task naturally requires labeled data.
However, it was empirically shown that the number of labeled examples can be relatively small, where the data
contains regularities which are captured by the autoencoders. Hence, such an approach is particularly useful in
applications where the number of unlabeled examples is large while the number of labeled ones is small [28].

The full architecture of our stacked autoencoders consists of three fully connected hidden layers with sigmoid non-
linearity, and a softmax regression layer on top. The number of hidden nodes in each layer has been set to 12, 6, and
3, which we found to work well in practice. A scheme of such stacked autoencoder is shown in Figure 1.

2.2.2 DeepCyTOF

Domain Adaptation is a set of techniques that allow to use a learning scheme (or a model) trained on data from a
source domain with a given distribution and can also be applied to a target domain with a related but not equiva-
lent distribution. The objective of domain adaptation is to minimize the generalization error of instances from the
target domain [45],[46]. In FCM and CyTOF experiments, variation in both biological and technical sources makes
automatic gating challenging. Health condition and instrument calibration cause variation across samples; hence, in
order to avoid gating each dataset separately (which therefore requires labeled samples from each dataset), a domain
adaptation procedure might be helpful.

DLID [35] is a deep learning domain adaptation approach that is based on creating “intermediate” datasets, in each
of which the source and target distributions are mixed. The original approach is formulated for the case of two
distributions. In this approach a classifier is trained using labeled data from the source distribution and operates well
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Figure 2: A star graph representing multiple autoencoders. Autoencoders are constructed for the reference sample
(r), for each sample in the study as shown in the outer circle (i = 2, · · · , N ), as well as for a mixture of each sample
in the study with the reference sample as shown in the inner circle (where each mixture consists of 50% randomly
selected cells from the sample in the same branch of the star graph and 50% the cells from the reference sample)
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Figure 3: Unsupervised pre-training steps of DeepCyTOF: three stacked autoencoders are applied to reference sample
r (open circles), sample i (red circles), and an intermediate dataset (pink circles), in which the cells from samples r
and i are mixed with equal proportions.

on instances from both source and target distributions. In this work, we generalize the approach to arbitrary number of
datasets corresponding to one source distribution (reference sample) and multiple target distributions (the remaining
samples). In this generalization the autoencoders of the source reference sample, target samples and mixtures of
the target samples with the reference sample can be represented in a generalized star-like topology (see Figure 2).
To determine which of the N samples in a baseline condition is a suitable candidate for being used as a reference
sample, we first compute the d× d covariance matrix for each of these N samples, where d is the dimensionality of
each of the datasets associated with these samples. We denote this reference sample by r and associate it with the
index i = 1. Next, we train autoencoders using the unlabeled data for the reference sample r and for each of the
other samples in the baseline condition i = 2, · · · , N . In addition, for each of the target samples i = 2, · · · , N , we
also train an autoencoder using 50% of its cells mixed with 50% of the cells of the reference sample r (see Figure 3).

Subsequently, we combine these 1 + 2(N − 1) autoencoders to a single large neural net, add a softmax layer on top
and fine-tune the net using labeled data obtained by manual gating from subject r only. During the fine-tuning step,
the two stacked autoencoders in each branch of the star are connected; each branch is also connected to the stacked
autoencoder of the reference sample, as depicted in Figure 4, so that the star graph functions as a single network,
with a classifier as its upper layer.

2.3 Comparison of auto and manual gating

To compare the stacked autoencoders approach of Section 2.2.1 with algorithms from the 4th challenge of the
FlowCAP-I competition, 25% of the cells of each subject from the FCM datasets in FlowCAP-I are labeled by
manual gating and used in the unsupervised pre-training and supervised fine-tuning steps implemented in our algo-
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Figure 4: Connectivity between the autoencoders of each branch of the Star graph in the fine tuning step. The two
stacked autoencoders on every branch of the Star graph are combined to a single neural net. The reference sample
is connected to each branch. A single softmax classifier is connected on top of the last hidden layer of all stacked
autoencoders.

rithm, leaving 75% of the remaining cells for testing. To perform semi-automated gating of all samples of each of the
two CyTOF datasets based on their respective reference samples, we use all the baseline (unlabeled) samples for the
unsupervised pre-training and a single baseline (labeled) reference sample r to fine-tune the net, leaving all samples
that undergo three different stimuli (PMA/ionomycin, tumor cell line K562, and infection with WNV) for testing.

The F-measure statistic (the harmonic mean of precision and recall) is used for the evaluation of our methods as
described in [23]. The F-measure for multiple classes is defined as the weighted average of F-measures for each cell
type against all other classes. An F-measure of 1.0 indicates perfect agreement with the labels obtained by manual
gating. For any given dataset, we create several bootstrap datasets (by sampling with replacement), compute the
F-measure on each and report the mean and standard deviation of the F-measure.

3 Results

In this section, we present results from three experiments. First, we use stacked autoencoders to perform cell classi-
fication on each of the five FCM datasets from the FlowCAP-I competition. Second, we apply DeepCyTOF onto two
CyTOF datasets and demonstrate how combination of deep learning and domain adaptation procedures can effec-
tively eliminate the need for manual gating of all samples in a study. Finally, we use simulated datasets to demonstrate
the ability of DeepCyTOF to overcome substantial calibration differences.

3.1 Evaluation of classification performance from FlowCAP-I

The prediction is performed by training a stacked autoencoder (as described in Section 2.2.1) on each dataset. Each
stacked autoencoder had three fully connected hidden layers and a softmax layer on top. Table 2 presents the perfor-
mance of the stacked autoencoder when applied on the five datasets from the 4th challenge of FlowCAP-I competi-
tion. The performance of stacked autoencoder is compared to the performance of the respective winner of each of
the five datasets in this competition.
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Table 2: Summary of results for the cell identification challenge. The
numbers in parentheses represent 95% confidence intervals

F = precision×recall
precision+recall Stacked autoencoder Competition’s winner

GvHDa 0.98 (0.97,0.99) 0.92 (0.88,0.95)
DLBCL 0.97 (0.95, 0.99) 0.95 (0.93, 0.97)
HSCT 0.98 (0.96, 0.99) 0.98 (0.96, 0.99)
WNV 0.98 (0.97, 0.99) 0.96 (0.94, 0.97)
ND 0.98 (0.96, 0.99) 0.94 (0.92, 0.95)

a Datasets: graft-versus-hist disease (GvHD); diffuse large B-cell
lymphoma (DLBCL); symptomatic West Nile virus (WNV); normal
donors (ND); hematopoietic stem cell transplant (HSCT).

As can be seen in Table 2, the stacked autoencoders performs better in four out of the five datasets and similarly on
the HSCT dataset.

3.2 Evaluation of DeepCyTOF by analysis of two mass cytometry datasets

In this experiment we applied DeepCyTOF separately to two different datasets (which contain 14 and 34 baseline
samples, respectively) as follows: we first constructed a star graph for each of these two datasets by connecting
the stacked autoencoders of the reference sample, target baseline samples and their mixture with the reference to a
single network as in Section 2.2.2, and fine-tuned it using labeled data from the reference sample. We then used
this classifier to classify cells from the non-reference samples (55 samples from the Asymptomatic vs. Severe WNV
dataset and 135 samples from the Old vs. Young dataset) and compared to the performance of a linear classifier
(softmax). Table 3 summarizes the results.

Table 3: Summary of results for the two CyTOF datasets. The numbers in parentheses represent 95% confidence
intervals.

F = precision×recall
precision+recall AnS-UNa AnS-N OnY-UN OnY-N

DeepCyTOF 0.990 (0.984, 0.995) 0.991 (0.987, 0.994) 0.992 (0.986, 0.997) 0.993 (0.987, 0.997)
Softmax regression 0.966 (0.955, 0.975) 0.967 (0.957, 0.976) 0.963 (0.946, 0.977) 0.963 (0.946, 0.977)

a Datasets: unnormalized Asymptomatic&Severe (AnS-UN); normalized Asymptomatic&Severe (AnS-N); normal-
ized Old&Young (OnY-N); unnormalized Old&Young (OnY-UN).

Table 3 illustrates some interesting points: first, DeepCyTOF achieves nearly perfect performance on the test data.
Second, DeepCyTOF performs significantly better than softmax regression, which may be a result of the depth and
the non-linearity of the network. Third, whether or not the data is normalized [36] does not affect the performance of
DeepCyTOF.

Figure 5 shows the embedding of the labeled cells in a three dimensional space, obtained from the top hidden layer
of a stacked autoencoder (after fine-tuning). As can be seen, most of the labeled cells concentrate in well separated
clusters representing specific cell types and only a few cells fall between these clusters.

3.3 Evaluation of classification performance from simulated data

To test the capability of DeepCyTOF to overcome substantial calibration differences, we performed an analysis
based on simulated data. As described in Appendix C, we used a real baseline sample to generate 50 samples, each
of which differs in calibration from the baseline sample, where the calibration difference depends on the sample,
marker and cell type. We first constructed a star graph using all 50 samples where the center of the star is the
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Figure 5: Third hidden layer representation of a blood sample (the unlabeled cells are omitted). Different cell types
are concentrated in different regions of the code space.

reference sample. Then, we connected the stacked autoencoders to a single network as in Section 2.2.2, and fine-
tuned it using labeled data from the reference sample. We used this classifier to classify cells from all 50 samples and
evaluated its performance using the F-measure. The 95% confidence interval of the F-measure is (0.996, 0.999). This
demonstrates how the domain adaptation component of DeepCyTOF allows one to perform automatic gating even in
scenarios where the multi dimensional marker distribution of the labeled reference training data differs significantly
from the corresponding distribution of the unlabeled test data. For comparison, a softmax classifier, trained on the
reference sample, achieves a confidence interval of (0.956, 0.958).

4 Discussion
In this work, we showed that deep learning machinery, and stacked autoencoders in particular, can be very effective in
classification of cell types; the performance substantially surpasses the predictive accuracy of the methods presented
in the 4th challenge of the FlowCAP-I competition. In addition, we introduced DeepCyTOF, an automated frame-
work for gating cell populations in cytometry samples. DeepCyTOF integrates deep learning and domain-adaption
concepts. The labels obtained by manual gating of the reference sample were utilized in a domain-adaptation manner.
These steps enable DeepCyTOF to inherently calibrate the major cell populations of multiple samples with respect to
the corresponding cell populations of the reference sample. We analyzed 192 CyTOF samples and observed nearly
identical results to those obtained by manual gating (with F-measure ≥ 0.99).

In practice, run-to-run variations in CyTOF experiments both in the same instrument and between instruments are
very common. These variations lead to significant batch effects in the datasets with samples collected at different
runs. As a result, noticeable differences between the data distributions of the training data (manually gated reference
sample) and the remaining unlabeled test data (the remaining samples) are observed, and an approach such as domain-
adaptation is required to remove these biases. Bead-normalization is an approach introduced to mass cytometry as
a pre-processing step to diminish the effect of such variations [36]. Interestingly, application of DeepCyTOF to
unnormalized and bead-normalized data did not show an advantage of using the latter for the task of automated
gating. Our domain-adaptation approach allows us to effectively normalize different distributions for the (supervised
learning) task of automated gating via introduction of intermediate representations of cytometry data, each consisting
of instances from the reference (gated) distribution mixed with instances from a given un-gated distribution. A
combined representation that encompasses the representations of all samples and their mixtures with the reference
sample was designed to facilitate the classification of discrete groups of cell populations.

Flow cytometry and mass cytometry experiments provide us with multivariate data with dimensionality ranging
between 10-40. Transforming the raw multivariate data to other representations may offer advantages for tasks such
as automated gating or calibration. Finding good representations can be done either by manual investigation (hand
crafting) or automated approaches. In recent years deep learning approaches have been shown to be suitable for
learning useful representations of data in the sense that they provide new sets of features that makes subsequent
learning easier. Furthermore, it has been shown that pre-training unsupervised steps such the ones we implemented
in DeepCyTOF can improve the learning tasks [47], especially, when labeled training data is scarce. Cytometry

8

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 31, 2016. ; https://doi.org/10.1101/054411doi: bioRxiv preprint 

https://doi.org/10.1101/054411


experiments provide us with large datasets of unlabeled cells, which makes the unsupervised pre-training steps in the
construction of a deep neural network applicable.

As cytometry analyses become widely used in research and clinical settings, automated solutions for analyzing the
high dimensional datasets are urgently needed. Current practice in which samples are first subjected to manual
gating are slowly substituted by automatic gating methods [48]. Major contributions to between-sample variations
in cytometry experiments arise not only due to biological or medical differences but due to machine biases. Here
we demonstrated that a novel machine learning approach based on deep neural networks and domain adaptation can
substitute manual gating as they both produce indistinguishable results. In future work, we will demonstrate that
deep learning approaches could address other challenges in analyzing cytometry data. This include tasks such as
unsupervised calibration of samples, and feature extraction for classification or visualization of multiple samples.
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[30] Dan C Cireşan, Alessandro Giusti, Luca M Gambardella, and Jürgen Schmidhuber. Mitosis detection in breast
cancer histology images with deep neural networks. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2013, pages 411–418. Springer, 2013.
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A Notation

The kth sample is denoted A(k), and is a nk × d real valued matrix, where nk denotes the number of cells and d is
the dimension of the input.

B Data Pre-processing

Given N blood samples A(k) for k = 1, 2, . . . , N , we first perform an elementary logarithmic transformation

A
(k)
i,j ← log(1 +A

(k)
i,j ) (1)

Finally, we rescale each column of A(k) to [0, 1]. This is desirable when sigmoid activations are used for the output
units of an autoencoder.

C Simulation

Starting from a real blood sample A(1), we calculate the mean of each cell population for each marker. Let µ be a 6
by d matrix such that µt,j is the mean intensity of marker j in cell type t.

Let4 be defined as

4 =
1

C
·
[
0, 1, . . . , N − 1

]
(2)

for some positive constant C and let ε be vector of d i.i.d. normal random variables. We now generate N matrices
A(k) with k = 1, 2, . . . , N by perturbing A(1) as follows

A
(k)
i,j = A

(1)
i,j +4k · µt(i),j + εj (3)

where A(k)
i,j is the ith row, jth column of matrix A(k) and t(i) is type of the ith cell in A(1). The difference between

subjects can be controlled by changing the value of C.

In summary, the datasets are generated so that each simulated dataset corresponds to a different data transformation of
a single real dataset. The additive transformations of each marker in each cell type were implemented with different
intensity4k for each simulated dataset. In our study, we choose N = 50 and C = 25.
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