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Abstract 

Background: The robustness of ChIP-seq datasets is highly dependent upon the antibodies used. 
Currently, polyclonal antibodies are the standard despite several limitations: they are non-renewable, vary 
in performance between lots, and need to be validated with each new lot. In contrast, monoclonal 
antibody lots are renewable and provide consistent performance. To increase ChIP-seq standardization, 
we investigated whether monoclonal antibodies could replace polyclonal antibodies. We compared 
monoclonal antibodies that target five key histone modifications (H3K4me1, H3K4me3, H3K9me3, 
H3K27ac and H3K27me3) to their polyclonal counterparts in both human and mouse cells.  

Results: Overall performance was highly similar for four monoclonal/polyclonal pairs, including when 
we used two distinct lots of the same monoclonal antibody. In contrast, the binding patterns for H3K27ac 
differed substantially between polyclonal and monoclonal antibodies. However, this was most likely due 
to the distinct immunogen used rather than the clonality of the antibody.  

Conclusions: Altogether, we found that monoclonal antibodies as a class perform as well as polyclonal 
antibodies for the detection of histone post-translational modifications in both human and mouse. 
Accordingly, we recommend the use of monoclonal antibodies in ChIP-seq experiments. 

Keywords: antibodies, ChIP-seq, monoclonal, polyclonal, methods 

 

Background 
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is one of the key technologies for 

investigating the genomic localization of DNA-associated proteins. The ChIP-seq approach can be 

performed in two major ways:  native ChIP (where the original genomic localization of DNA associated 

proteins is maintained without cross-linking) and cross-linked ChIP. Here, we focused on the cross-linked 

ChIP-seq approach, as most of the public datasets relevant to our samples were produced by this method. 

In this technique, the DNA-associated proteins are cross-linked to the DNA. After DNA shearing, a 

specific antibody is used to enrich the targeted protein by immunoprecipitation, which also enriches the 

specific DNA it is bound to because it is cross-linked to it. Finally, the DNA fragments that precipitated 
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with the enriched protein are sequenced. Hence, the results of each experiment are highly dependent upon 

the quality of the antibody that is used. 

 Polyclonal antibodies have been used as the standard antibody reagent for ChIP-seq by many 

laboratories and consortia [1-3]. Problematically, however, each polyclonal antibody lot is a limited 

resource, as each is raised from a different immunized animal. Each polyclonal antibody batch consists of 

a highly complex population of individual antibody molecules, representing the unique response of the 

source animal’s immune system. Some of these component antibody molecules will specifically target the 

epitope in question, but other molecules in this population may enrich for other off-target epitopes. 

Different antibody lots raised to the same target epitope will thus naturally differ in performance [4, 5] 

and each must be validated before use. Critically, once exhausted, a polyclonal antibody lot cannot be 

reproduced [6].  

To overcome these limitations, many scientists have advocated for the use of monoclonal 

antibodies [7-9]. Monoclonal antibodies are harvested from purified cell lines derived from a single 

immune cell, which brings distinct advantages: first, lots consist of a single antibody species that 

specifically targets the desired epitope; second, monoclonal lots are uniform in performance; and third, 

lots are renewable resources as long as the cell line is maintained. Approaches that attempt to overcome 

the limitations of polyclonal antibodies include the development and optimization of recombinant 

antibodies [10], development of recombinant antibodies that provide “antigen clasping” [11], the 

generation of specific monoclonal antibodies followed by evaluation of their performance [12-14] and the 

comparison of multiple antibodies targeting repressive histone modifications [15].  

However, despite the advantages of monoclonal antibodies and the progress toward other 

approaches, citation data aggregated in the CiteAB database [16] indicates that polyclonal antibodies are 

used in published research more frequently than monoclonal antibodies (54% of citations versus 46% 

[17]); Similarly, in a study conducted as part of the NIH modENCODE [18] and Roadmap Reference 
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Epigenome [2] projects, about 74% (181 out of 246) of the histone modification antibodies surveyed were 

polyclonal [5]. 

To systematically investigate whether monoclonal antibodies can substitute for polyclonal 

antibodies in ChIP-seq procedures while retaining equivalent performance, we designed and carried out a 

direct side-by-side comparison. We compared a set of five monoclonal antibodies targeting key histone 

modifications (H3K4me1, H3K4me3, H3K9me3, H3K27ac, and H3K27me3) to their polyclonal 

counterparts, using the same antibodies and lots that had been previously validated by the ENCODE 

project [1] (Table 1). To ensure that all samples and antibodies were handled in a precisely controlled 

manner, all work was performed employing automated ChIP-seq protocols implemented on a standard 

laboratory liquid handling system. 

As a class, we found that the performance of monoclonal antibodies targeting histone post-

translational modifications in ChIP-seq assays matched the performance of polyclonal antibodies. Given 

that monoclonal antibodies represent a renewable resource, and eliminate the lot-to-lot variability that is 

expected with polyclonal antibodies, the replacement of polyclonal antibodies with monoclonal antibodies 

for use in ChIP-seq and similar affinity-based methods has significant benefits. Employing monoclonal 

antibodies will result in increased reproducibility and robustness and will substantially improve 

standardization of results among data sets. 

Results 

We designed an experimental system for rigorously comparing the performance of monoclonal and 

polyclonal antibodies in ChIP-seq and applied it to antibodies targeting five key histone modifications 

(H3K4me1, H3K4me3, H3K9me3, H3K27ac and H3K27me3) (Table 1). These epitopes provide a 

rigorous test set of antibodies as they represent open and closed chromatin environments, have distinct 

localization patterns as described in Table 2, and are commonly used in studies of genomic organization 

of DNA associated proteins. We performed ChIP-seq with these antibodies in the human erythroleukemic 
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cell line K562, the human lymphoblastoid cell line GM12878 and mouse embryonic stem (mES) cells. To 

control for experimental variability, we implemented a fully automated ChIP-seq process [19] that 

ensures precise liquid handling, maximizes reproducibility, and controls for human error. We performed 

two to four technical replicates for each antibody tested to control for experimental variability and 

sequenced the libraries using Illumina paired-end reads. To provide evidence for consistency between 

monoclonal lots, in a subset of the samples, we repeated the ChIP-seq with a distinct antibody lot. We 

then further computationally normalized our datasets to account for possible technical variability 

introduced by fragmentation and differing read depths. Finally, we analyzed our data to compare the 

performance of monoclonal and polyclonal antibodies focusing on the specificity and the number of peaks 

identified, as well as the overall pattern of reads localized across the genome. 

Normalization of ChIP-seq datasets 

Before analyzing our data, we computationally normalized the aligned reads to isolate the effects of each 

antibody from two possible issues that could confound the comparison: (i) a higher number of reads 

increases the power to distinguish peaks from background noise [20]; (ii) chromatin DNA has been 

shown to shear into different size fragments in regions of open versus closed chromatin, and genomic 

regions originating from open chromatin are more likely to shear into small fragments [21]. The 

combination of this shearing bias and a narrow size selection can lead to an artifactual enrichment of 

reads in areas of open chromatin leading to pile ups of reads that mimic peaks. 

The effects of fragment length bias are therefore protocol-specific and dependent upon both the 

fragmentation method and size selection. To quantify the effect of fragmentation on the localization of 

reads in our protocol, we examined our WCE control data. First, we defined the regions as open or closed 

chromatin based on ENCODE mappings derived from the combined annotations of ChromHMM [22] and 

Segway [23]. This mapping approach annotates the K562 genome according to seven canonical types: 

transcription start sites, promoter flanking regions, enhancers, weak enhancers, CTCF-enriched elements, 

transcribed regions and repressed regions. According to this mapping approach, the majority of the 
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annotated K562 genome (84%) is in repressed regions (closed chromatin) while only ~1% of the K562 

annotated genome is in transcription start sites (open chromatin).  

Next, to assess the regional bias of the fragmentation of the cross-linked DNA, we quantified 

insert sizes of fragments falling into open and closed chromatin, expecting the insert size to be equivalent 

to the size of the DNA fragment originating in the immunoprecipitation step. To explore the effects of 

fragment length variation in our system, we examined reads with insert sizes between 70 and 700 bases, 

the size range of inserts typically found on an Illumina flow cell. We observed that the percentage of 

reads localizing to transcription start sites (TSS) was inversely correlated with the length of the insert size 

(R2=0.80) with a 2.6-fold higher percentage of reads localizing to TSS in read pairs with shorter (70-

120bp) versus longer (650-700bp) insert sizes. Reads localizing to repressed regions were positively 

correlated with insert size (R2=0.70) though the difference in coverage is only 5% (Supplemental Figure 

1).  

While we have optimized our shearing process to provide high reproducibility of the 

fragmentation process (Methods), we recognized the possibility that fragmentation performance could 

vary among samples since each sample is sheared independently. To account for potential differences in 

fragmentation, we randomly selected alignments so that each aligned read set for a given histone 

modification had the same number of reads and fragment size distribution (Supplemental Table 1). As 

the insert size is equal to the length of the DNA fragment in the original pool, this normalization method 

approximates experiments that have both the same fragmentation and read depth.   
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Comparison of peaks between ChIP-seq datasets  

We investigated the relative performance of the antibodies in terms of sensitivity, specificity, and the 

number and distribution of peaks. Initial visualization of the data in a genome browser revealed a high 

degree of similarity in read coverage between monoclonal and polyclonal antibodies (Figure 1 and 

Supplemental Figure 2).  

The best performing antibodies in ChIP-seq are those that provide the highest enrichment for 

DNA fragments associated with the target protein. However, measuring antibody enrichment is 

challenged by the absence of a set of known genomic patterns for histone modifications to serve as a 

baseline. For example, a greater portion of reads localizing to observed peaks could be indicative of either 

higher sensitivity of the antibody for its epitope or the addition of false peaks resulting from a higher 

degree of non-specific binding. For this reason we evaluated antibody performance using several different 

approaches. 

We first sought to compare the locations of the peaks called in data from each antibody type. The 

ability to call peaks is a function of both antibody specificity and read depth. Thus, the analysis of peak 

localization ideally requires the unambiguous localization of peaks. To control for replicate-specific 

variability and provide deeper read coverage, we merged the data from the technical replicates to create a 

larger set of reads. This deeper dataset allowed us to assess the depth of sequencing coverage beyond 

which additional sequencing would not improve peak call accuracy. We randomly downsampled each 

dataset to twenty different read depths and called peaks using the HOMER version 4.7 peak caller [24] on 

the down-sampled read sets, using the default parameters for histone marks. At each sequencing depth, 

we determined the number of bases of the genome that were identified as being in a peak. The number of 

genome bases identified as being in peaks increased and then reached saturation with increasing read 

depth for each of the H3K27ac, H3K4me1, and H3K4me3 datasets (Figure 2A) but did not appear to 

reach saturation for H3K27me3 or H3K9me3 (Supplemental Figure 3). Each of the antibodies, 

monoclonal and polyclonal, followed the same pattern of saturation as its counterpart, indicating that 
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regardless of antibody type the datasets required approximately the same depth of sequencing and that the 

differences between them cannot be overcome by deeper sequencing.  

Next, we focused our analysis of peaks on the histone modifications associated with open 

chromatin (H3K27ac, H3K4me1, and H3K4me4), as in these datasets we were able to call peaks at a 

saturated read depth.  For each of these histone modifications, more genomic bases were identified as 

being in peaks in the datasets for polyclonal antibodies than for monoclonal (Table 3). However, regions 

found in peaks for both types of datasets (Figure 2, Venn diagrams, purple) demonstrated a higher 

association with canonical ENCODE regions than ones that are found only in the polyclonal or only in the 

monoclonal datasets. Using the canonical ENCODE regions as a proxy for the true regions, we found that 

the polyclonal antibodies showed an increase in sensitivity at the expense of specificity. Nonetheless, the 

differences in both metrics were small, and data generated with both the monoclonal and polyclonal 

antibodies showed a high degree of consistency in determining which genomic bases were within peaks. 

Of the total genome bases that were identified by either antibody type as being in peaks, 77% (H3K27ac), 

56% (H3K4me1), and 90% (H3K4me3) were identified by both types. 

Enrichment in Peaks 

To further assess the specificity of binding, we used the peaks called in the merged datasets for 

each of the three antibodies associated with open chromatin to calculate a SPOT score [25] on each of the 

technical replicates. We found that the SPOT scores were slightly higher for the polyclonal antibody in 

H3K4me1 (p<0.01, average of 18% monoclonal versus 24% for the polyclonal) and in H3K4me3 

(p<0.01, 27% monoclonal versus 32% polyclonal) but did not differ significantly for H3K27ac (p>0.05, 

54% monoclonal versus 55% polyclonal). To assess the specificity in the marks associated with closed 

chromatin, we used the reference peaks called by ENCODE in K562 for H3K27me3 (ENCFF001SZF) 

and H3K9me3 (ENCFF001SZN) and calculated the percentage of reads in each dataset falling into these 

peaks. We found that in both cases the SPOT scores were nearly identical (36% and 38% in monoclonal 
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(p<0.05 due to low variance) and polyclonal in H3K27me3 and 42% and 40% (p>0.05) in monoclonal 

and polyclonal in H3K27me3) indicating a high concurrence of read coverage. 

Specificity of binding 

Next, we assessed all of the reads mapped to the genome to determine whether they were mapped 

to their expected regions. Figure 3 and Supplemental Figure 4 show the number of reads that mapped to 

each of the seven ENCODE canonical regions for each antibody. While results between the monoclonal 

and polyclonal antibodies for each epitope were similar, a greater percentage of reads mapped to their 

expected region of the genome (Table 4) for the polyclonal antibody to H3K4me3 (34% polyclonal 

mapping to transcription start sites vs 24% monoclonal, p<0.01). Due to the low variability between 

technical replicates in our system, small differences also reached statistical significance for the antibodies 

H3K27me3 (86% mono, 87% poly, p<0.05) and H3K9me3 (85% mono and 86% poly, p<0.05). We note 

that this approach – evaluating the percentage of reads mapped to ENCODE canonical genomic regions – 

does not provide a fully orthogonal validation of the specificity of the antibodies as the annotations were 

themselves created from ChIP-seq data.  

Whole Genome Read Coverage 

We next investigated the distribution of ChIP-seq reads across the genome. To provide a basis for this 

quantitative evaluation, we defined non-overlapping bins of 2000 base pairs across the genome and 

counted the reads falling into each bin. We first compared the correlations in technical replicates in the 

samples normalized by insert size versus those normalized by random sampling. Correlations were highly 

similar, indicating that fragmentation and size selection were well controlled in these samples and did not 

introduce a significant source of bias (Figure 4 and Supplemental Figure 5). 

For all antibodies except H3K27ac the correlations between monoclonal and polyclonal 

antibodies were similar to those observed between technical replicates using the same antibody (Figure 4 

and Supplemental Figure 5).  
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 Next, we examined the differences between the H3K27ac monoclonal and polyclonal samples 

more closely. The H3K27ac modification is present both at enhancer regions and transcription start site 

regions [26] so we compared the number of reads aligning in each type of region. Interestingly, we found 

that in datasets derived from the polyclonal H3K27ac antibody a higher number of reads fell into 

enhancer site regions relative to transcription start site regions when compared to the datasets derived 

from the monoclonal H3K27ac antibody (Figure 5A).  

One possible explanation for this observation is that the polyclonal reagent, as it is a mix of 

individual antibody molecules, contains antibodies to multiple epitopes, one of which is enhancer-specific 

and increases the antibody’s binding in this region. To examine this possibility, we performed ChIP-seq 

comparing three H3K27ac antibodies: the monoclonal and polyclonal mentioned above, which were 

produced by Cell Signaling Technology (CST) and Active Motif, respectively, and a second monoclonal 

antibody obtained from Active Motif. We repeated this ChIP-seq experiment with the CST monoclonal 

and polyclonal antibody using HeLa cells and obtained the same pattern (Figure 5B). However, when we 

compared the Active Motif polyclonal antibody to the Active Motif monoclonal antibody the effect was 

not present. Instead, the ChIP-seq results from the monoclonal Active Motif antibody more closely 

resembled the polyclonal data (Figure 5B).  

We were not able to obtain the sequences of the polypeptide immunogens that were used to raise 

these antibodies as the vendors consider these proprietary. However, the Active Motif antibodies were 

raised by two different immunogens having an overlapping amino acid sequence (disclosed by Active 

Motif's Technical Support to assist with understanding of the data generated for this project). These 

immunogens likely differed from the one used by Cell Signaling Technology. 

Replication of monoclonal antibodies across lots 

To confirm the reproducibility of the monoclonal antibodies between lots, we compared the performance 

of two different lots of the monoclonal antibody targeting H3K4me3 in K562, GM12878, and mouse ES 
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cells. For each of these lots, we generated two technical replicates and data were normalized by insert 

size. We quantified the genome-wide performance of the antibody by dividing the genomes into 2000bp 

bins and counting the reads that aligned to each bin. We found that the correlations between replicates 

from the same lot were indistinguishable from the correlations across lots (Figure 6).  

Performance of Monoclonal Antibodies in Other Cell Types 

To investigate the performance of the monoclonal antibodies in other cell types, we carried out ChIP-seq 

in two additional cell lines an EBV transformed human lymphoblastoid cell line (GM12878; Methods) 

and mouse embryonic stem cells. The data demonstrate the performance of these monoclonal antibodies 

both in a second species and in primary cells that have been shown to have an ‘open’ epigenomic 

organization. 

Next, we compared the performance of the monoclonal and polyclonal antibodies in ChIP-seq 

using publicly available datasets from the ENCODE consortium from both human [1] and mouse [27]. 

We aligned our data and the ENCODE datasets to the human (hg19) and mouse (mm9) reference 

genomes (Methods). Initial inspection of the data in a genome browser demonstrated that in these cells as 

well, there is a high degree of similarity in read coverage between monoclonal and polyclonal antibodies 

(Supplemental Figure 2), even though the polyclonal ChIP-seq datasets were generated by other groups, 

using different biological samples (GM12878), or even distinct mouse ES cell lines (we used the V6.5 

cell line (Methods), while the public data was derived from ES-Bruce4  or ES-E14 cell lines [27]). 

Next, we calculated the SPOT scores for each of the datasets relative to the peaks called by the 

ENCODE or Mouse ENCODE consortium. As each experiment was performed with at least two 

replicates, we were able to perform a t-test to test for statistical differences between our data and the 

ENCODE data. In the GM12878, only the antibodies to H3K4me3 differed in quality. The data from the 

monoclonal antibodies had substantially higher SPOT scores than either of the ENCODE datasets, 

indicating better performance. Among the mouse datasets, the monoclonal antibody for H3K9me3 
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(p<0.01) and H3K4me1 (p<0.05) performed worse than the polyclonal antibody. All other antibodies 

performed similarly. (Table 5) 

Experimental quality control 

To ensure that our ChIP-seq results were representative of the quality of the antibody rather than 

differences in the performance of the libraries or experiments, one replicate of the H3K27me3 polyclonal 

antibody was removed as it did not pass our quality control and differed substantially from the other three 

technical replicates (Supplemental Figure 6). Specifically, the number of reads falling into regions of 

transcription start sites was systematically higher in this replicate than in other replicates. A monoclonal 

replicate of the H3K4me1 and a monoclonal replicate of H3K9me1 failed to yield an adequate number of 

reads to be used in analysis. These samples were rerun in duplicate and each was replaced with two 

replicates. 

Discussion 

Our goal in designing this study was to improve current ChIP-seq procedures by increasing the 

reproducibility between experiments within the community, as well as to enhance the usage of reagents 

that have long-term accessibility. Specifically, we explored whether monoclonal antibodies could 

properly replace the polyclonal antibodies routinely used in ChIP-seq for detection of histone post-

translational modifications.  

Our experimental design allowed us to directly compare performance of monoclonal and 

polyclonal antibodies in ChIP-seq assays. First, we used standardized automation for all laboratory 

processes. This virtually eliminated variation arising from human handling and ensured that all samples 

were handled as identically as possible. Second, all sequence data for this study were generated as paired-

end reads, since paired-end data provide the only definitive means to assess the lengths of DNA 

fragments that were sequenced. Accordingly, we were able to leverage the paired-end data to normalize 

alignments to eliminate fragmentation and size selection biases as confounding factors. We observed a 
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high degree concordance between results from data normalized by insert size and from data normalized 

for read coverage depth by random downsampling. Thus, differences in fragmentation and size selection 

did not appear to be confounders in this work.  

Our analysis demonstrated that the insert length of paired-end reads correlated with the genomic 

regions from which the fragments originated, consistent with earlier reports [21]. We therefore strongly 

recommend optimizing fragmentation and size selection protocols to include the full range of genomic 

fragment sizes to avoid bias, as well as using paired-end reads for ChIP-seq experiments to account for 

variation in fragment size among samples and to allow accounting for amplification-based duplicates in 

the sequencing libraries. In future studies, it would be useful to evaluate whether insert size normalization 

can provide a cost-effective alternative to using WCE controls, particularly in experiments whose primary 

focus is to measure changes in protein binding under different conditions rather than an exhaustive 

mapping of binding locations. 

Among the five antibodies tested, the polyclonal antibodies to H3K4me3 and H3K27me3 

appeared to offer slightly higher sensitivity while the monoclonal antibody to H3K27ac appeared to offer 

higher specificity. However, the differences in H3K27ac are more likely result from the specific 

immunogen against which the antibody was raised rather than the clonality of the antibody. Because 

higher sensitivity was not seen in the other polyclonal antibodies, our results demonstrate that the use of 

monoclonal antibodies for ChIP-seq did not present any systematic disadvantage relative to polyclonal 

antibodies, and have the clear advantage of superior reproducibility. This conclusion is supported by high 

correlation in both genome-wide and region-specific read counts between monoclonal and polyclonal 

antibodies, as well as the high degree of overlap in peak locations in multiple cell types and two distinct 

species.  

Overall, our data are consistent with a model suggested by Peach and colleagues [28] in which 

some antibodies are better described as indicators of canonical regions of the genome rather than as 

markers of specific modifications. For instance, in our comparison of H3K27ac antibodies, the 
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monoclonal and polyclonal antibodies displayed significant differences in their relative ratios of reads 

localized to putative enhancers versus transcription start sites. If we assume that the targeted acetylated 

H3K27 is the same molecule in each region, then the ability of the antibodies to identify H3K27ac was 

affected not just by the presence of the target but also by its local environment. This finding is expected as 

characteristics of the environment, such as neighboring post-translational modifications, have been 

demonstrated to detectably affect epitope recognition [4]. The binding pattern of a single antibody should 

thus be thought of as a collection of component parts that describe more than just the binary presence or 

absence of a modification. This inherent complexity is further complicated by the fact that researchers 

often do not know the precise nature of the immunogen that was used to raise a specific antibody because 

the antibody’s producer holds this information as proprietary.  

Thus, ChIP-seq datasets targeting the same epitope but using different antibodies cannot be 

considered directly comparable without substantial experimental validation. Standardizing on monoclonal 

antibodies would not only eliminate the batch-to-batch variability that is expected in polyclonal 

antibodies but would also increase the value of ChIP-seq datasets by allowing for more reliable reuse of 

existing datasets. Further, it would simplify the interpretation of ChIP-seq data by removing the added 

complexity that is introduced by using a polyclonal antibody that targets an unknown number of epitopes 

on the antigen.  

The relative portion of reads aligned to different canonical regions of the genome was also 

affected by experimental variability. By examining the relative proportion of reads mapping to canonical 

regions of the genome, we were able to easily identify an outlier replicate in our H3K27me3 data that 

would have passed less rigorous quality standards. This finding demonstrates not only that replicates are 

imperative in any ChIP-seq experiment, but also that performing this simple analysis can provide valuable 

information for quality control. 
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Conclusions 

Use of monoclonal antibodies for ChIP-seq experiments to identify histone post-translational 

modifications provides a key improvement over polyclonal ones.   
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Methods 

Chromatin Immunoprecipitation (ChIP)  

ChIP comprises the basic steps of crosslinking DNA to protein, shearing DNA, and enriching of the 

protein of interest, along with DNA to which is it crosslinked, by immunoprecipitation. Washes and 

mixes were conducted using the Bravo liquid handling platform (Agilent model 16050-102, “Bravo”). For 

the compositions of the buffers used, see [29]; for the specific protocol for the Bravo, see [19]. 

Table 1 describes the antibodies used in this study. The polyclonal antibodies, including these 

specific lots, were previously assessed for accuracy by the ENCODE consortium. 

Crosslinking and DNA Shearing: K562 mylogenous leukemia cells (ATCC CCL-243), GM12878 

lymphoblastoid cells (Coriell; Cellosaurus GM12878 (CVCL_7526)) and mouse ES cell line V6.5 

(Cellosaurus v6.5 (CVCL_C865)) were cross-linked with formaldehyde as previously described [29]. 

Fixed cell pellets (20 million cells each) were resuspended in lysis buffer and ChIP dilution buffer and 

incubated on ice to lyse the cells. Samples were then split across a 96-well plate (approximately 1-2 

million cells per well). DNA shearing was conducted using a Covaris sonifier (model E220) at 4°C for 6 

cycles of 1 minute, with these parameters DF-10%, PIP-175W, CPB-200. After sonication, the cell 

lysates were diluted 1:10 with ChIP dilution buffer. Roughly 50 µL of the cell lysate was set aside for use 

as the whole cell extract (WCE) control.  

Bead Preparation: Immunoprecipitation was performed using magnetic beads coupled to 

antibodies by Protein A or Protein G linkers. The beads were prepared as follows: equal quantities of 

Protein A and Protein G Dynabeads (Invitrogen, 100-02D and 100-07D, respectively) were mixed, 

separated into 50 µL aliquots in a well plate, and washed twice with blocking buffer. The beads and 

antibodies (5 µL of polyclonal or 1 µL monoclonal antibody per ChIP reaction),  mixed and suspended in 

blocking buffer, were incubated in a cold room (4°C) on a rotator for at least two hours to allow 

conjugation. 
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Immunoprecipitation of Target Protein and DNA Purification: Washed bead-antibody conjugates 

were added to the chromatin lysate from approximately 1-2 million cells and incubated overnight. At this 

point, the WCE was added to the sample plate. Samples were washed six times with RIPA buffer, twice 

with RIPA buffer supplemented with 500 mM NaCl, twice with LiCl buffer, twice with TE, and then 

eluted in ChIP elution buffer to unlink and purify the DNA. 

Library Construction  

The library construction phase of ChIP-seq comprises DNA end-repair, A-base addition, adaptor ligation, 

and enrichment. Solid-Phase Reversible Immobilization (SPRI) cleanup was performed on the reverse-

crosslinked DNA before library construction and after each of its four steps to remove proteins and other 

molecules. 

SPRI Cleanup Protocol: SPRI cleanup steps were conducted using the Bravo, following protocols 

described by [19]. All enzymes used in library construction were obtained from New England Biolabs. 

The initial and final SPRI cleanups for the reverse-cross-linked DNA were performed as follows: SPRI 

beads (Agencourt AMPure XP) were added to the unlinked DNA samples. The beads were washed on a 

96-well bar magnet (ThermoFisher, catalog number: 12027) with 70% ethanol and air-dried. The DNA 

was eluted in 10 mM Tris-HCl buffer. Intermediate SPRI cleanups in the library construction process 

were conducted in the same manner. The SPRI beads in the reaction were reused to capture the DNA via 

addition of a 20% PEG solution. 

End-Repair and A-base Addition: DNA end-repair was performed by adding T4 PNK enzyme 

and T4 polymerase to each well, followed by incubation at 12°C for 15 minutes and at 25°C for another 

15 minutes. Following SPRI clean up, A-base addition was performed by adding Klenow 3' → 5' 

exonuclease and incubation at 37°C for 30 minutes. 

Adapter Ligation: Adapter ligation was performed by adding DNA ligase and PE Indexed 

oligonucleotide adapters to samples followed by incubation at 25°C for 15 minutes. After the subsequent 
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SPRI cleanup, eluted DNA was separated from the SPRI beads using a 96-well bar magnet for PCR 

enrichment. 

Enrichment: DNA samples were PCR amplified at 95°C for 2 minutes; 16 cycles of: 95°C for 30 

seconds, 55°C for 30 seconds, 72°C for 60 seconds; and 72°C for 10 minutes. 

Data Collection and Analysis 

DNA fragments were processed by 2x25 base, paired-end or 2x37 base, paired-end sequencing (Illumina 

HiSeq 2500 or NextSeq 500, respectively).  

To assess reproducibility, we designed an analysis pipeline consisting of the following steps: 

alignment, normalization, pairwise correlation and clustering, peak calling, and analysis. Reads were 

aligned by the Broad Genomics Platform with BWA (v5.9) using default parameters [30]. 

To allow for meaningful comparisons between different samples, duplicate reads were removed 

from the alignment data (BAM file) using the Picard tools software package. Downsampling was 

performed using C++ scripts built using the BamTools API [31]. Scripts are available on GitHub 

(https://github.com/mbusby/).  

Downsampling normalization by insert size was performed as follows: We first counted how 

many read pairs are present for each insert size for each of a set of aligned files. We then selected the 

lowest read count for each insert size from among the set of alignments. For example, if four alignments 

for a given antibody have one, two, three, and four million reads with an insert size of 100, all four 

alignments would be randomly sampled so that the four normalized alignments each have about one 

million reads with an insert size of 100. This was performed for each insert size present in all of the 

alignments in the group to yield final bam files with about the same numbers of reads and insert size 

distributions. This approach therefore allows for identical insert size distributions while maximizing the 

number of reads included in the output files. All samples for each histone modification were sampled as a 

group. The K562 WCE control and the HeLa samples were not downsampled. The merged datasets used 
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in peak calling were created by merging the technical replicates downsampled by insert size. To create 

balanced datasets, in cases where one antibody had more replicates than its counterpart an equal number 

of replicates were used for the monoclonal and polyclonal dataset. Replicates were chosen based on the 

order of their replicate number. 

Peaks were called using HOMER (v.4.7) [24] with the WCE used as a control under the default 

settings for paired-end reads using “histone” as the peak type.  

We used the BEDtools coverage tool, version 2.25 [32] to count the number of reads mapping to 

genomic regions and the intersect tool to count the genomic reads that overlapped between antibody 

types. The combined Segway and ChromHMM annotations were downloaded from [33]. Further analyses 

were performed in Matlab. Scripts are available on GitHub (https://github.com/mbusby/). 
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Figure legends: 

Figure 1. Read coverage across the genome. Images of Tiled Data Files (TDFs) generated by the IGV 

browser [34, 35] displaying the density tracks of reads aligned across the genome. The tracks show the 

correspondence in read coverage in monoclonal and polyclonal antibodies over representative genomic 

loci. A. Chromosome 7: 44,829,782-44,930,648 (about 100Kb), shows the read coverage of histone 

modifications associated with ‘active chromatin’ (H3K4me1, H3K4me3 and H3K27ac). The 

correspondence of read coverage of datasets for two major histone modifications associated with 

repression: B. H3K27me3 (Chromosome 22:19,492,023-19,849,594 (about 350Kb)), and C. H3K9me3 

(Chromosome 19: 51,746,058-53,362,194 (about 1.6Mb)). 

Figure 2: A. Saturation curve showing the number of bases called as being in peaks as a function of 

sequencing depth. The final dataset of the merged technical replicates was randomly downsampled to 20 

different read depths and peaks were called in each dataset using HOMER. B. Distribution of the 

canonical ENCODE regions of the genomic bases identified as being in peaks. Note that distribution of 

bases called in both the monoclonal and polyclonal antibody differs from the distribution of bases called 

by only one antibody with fewer bases in their expected regions. C. Left: Bases of the genome that were 

designated as peaks were identified as being in the expected canonical ENCODE region versus other 

regions.  Only genomic bases annotated in the ENCODE segmentation tracks for K562 are included in 

this calculation. Right: Venn diagrams displaying the overlap of peak calls in the monoclonal and 
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polyclonal antibodies. The bases of the genome are identified as being in peaks by the monocolonal (red), 

polyclonal (blue), or both (purple) antibodies. 

Figure 3. Reads in peaks mapping to canonical chromatin regions of the genome as defined by the 

ENCODE mappings. This plot displays the percentage of reads that map to each canonical genome 

region. The canonical genome regions were defined by the combined ENCODE mapping and are 

abbreviated as follows: CTCF-enriched elements (CTCF), promoter flanking regions (PF), transcription 

start sites (TSS), transcribed regions (T), enhancers (E), weak enhancers (WE), and repressed regions (R). 

Only reads that were located at regions identified as peaks were used for this plot. For each peak dataset 

the reads were normalized by insert size. 

Figure 4. Correlation between monoclonal and polyclonal antibodies across the genome. Scatter 

plots (Loglog) presenting counts of reads per bin in non-overlapping 2000 bp windows tiled throughout 

the genome in replicates of the monoclonal antibody (left; gray), the polyclonal antibody (right; gray), 

and polyclonal versus monoclonal (center; blue). The H3K27ac data (A) show divergence between 

polyclonal and monoclonal antibodies, while the H3K27me3 data (B) show that the reproducibility is 

nearly indistinguishable from the reproducibility of data derived from technical replicates using the same 

antibody. 

Figure 5. Variability in H3K27ac patterns is dependent on the immunogen. A. Scatter plots where 

each point represents the count of reads aligning to a non-overlapping, variably-sized region as annotated 

in the chromatin regions determined by ENCODE mapping of the genome. Values are summed for the 

replicates of monoclonal and polyclonal H3K27ac antibodies. The red line (on the left and right plots) 

represents slope=1. B. H3K27ac antibodies in HeLa cells. R2 is indicated for all points, TSS and enhancer 

regions. 

Figure 6. Correlation between two monoclonal lots across the genome. Scatter plots (Loglog) 

presenting counts of reads per bin in non-overlapping 2000 bp windows tiled throughout the genome 
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comparing either technical or lot replicates from ChIP-seq done with H3K4me3 monoclonal antibody in 

K562, GM12878 and mES. 
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Table 1: Antibodies used in the study. 

Epitope Antibody Type Commercial 
company 

Catalog number Lot IDs Validation data 

H3K4me1 Monoclonal CST (Cell Signaling 
Technology) 

5326 1,2 
https://www.encodep
roject.org/antibodies/
ENCAB650MWL/ 

H3K4me1 Polyclonal Active Motif 39297 1714002 
Supplemental Figure 

7 

H3K4me3 Monoclonal CST 9751 1,6,8,9 
https://www.encodep
roject.org/antibodies/

ENCAB902NZL/ 

H3K4me3 Polyclonal Millipore 17-614 DAM1644057 
https://www.encodep
roject.org/antibodies/

ENCAB000BLE/ 
H3K9me3 Monoclonal CST 13969 2 

H3K9me3 Polyclonal Abcam ab8898 GR131093-3 https://www.encodep
roject.org/antibodies/

ENCAB369JSU/ 

H3K27ac Monoclonal CST 8173 1,3 
https://www.encodep
roject.org/antibodies/

ENCAB502OHI/ 

H3K27ac Monoclonal Active Motif 39685 Lot 35813005 
http://www.histonean
tibodies.com/FinalAr
rayData/H3K27ac/ 

H3K27ac Polyclonal Active Motif 39133 31610003 
https://www.encodep
roject.org/antibodies/

ENCAB000AQN/ 

H3K27me3 Monoclonal CST 9733 8,10 
https://www.encodep
roject.org/antibodies/

ENCAB155VEG/ 

H3K27me3 Polyclonal Millipore 07-449 2064519 
https://www.encodep
roject.org/antibodies/

ENCAB036YAO/ 
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Table 2: Datasets summary.  

  
Antibody Number of Replicates Region targeted 

Mono  Poly  

H3K27ac 

6  
(2 in K562; 

2in GM12878 
and 2 in mES) 

2 (in K562) Transcription start 
sites, enhancers 

H3K27me3 

8  
(4 in K562; 2 
in GM12878; 

2 in mES)  

3 (in K562) Repressed regions 

H3K4me1 

7 
(3 in K562; 2 
in GM12878; 

2 in mES) 

2 (in K562) Enhancers 

H3K4me3 

14  
(6 in K562; 4 
in GM12878; 

4 in mES) 

4 (in K562) Transcription start 
sites 

H3K9me3 

7 
(3 in K562; 2 
in GM12878; 

2 in mES) 

2 (in K562) Repressed regions 
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Table 3: 
  Specificity Sensitivity 

  Mono Poly Mono Poly 

H3K27ac 89% 85% 68% 69% 

H3K4me1  38% 36% 54% 59% 

H3K4me3 91% 90% 86% 87% 

 

Table 3: Sensitivity and Specificity data for histone modifications associated with open chromatin 
Sensitivity and specificity of monoclonal and polyclonal antibodies. Specificity is calculated as the 
percentage of the genomic bases that are identified as peaks that are within the expected canonical 
genomic region, as annotated by ENCODE. Sensitivity is calculated at the percentage of bases within the 
expected genomic region that are identified as being within peaks. Only genomic bases annotated in the 
ENCODE segmentation tracks for K562 are included in this calculation. 
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Table 4: 

    

Percent 
Reads in 
Expected 
Regions 

Enrichment 
Over WCE 

H3K27ac MonoRep1 60.5% 15.2 
  MonoRep2 56.1% 14.1 
  PolyRep1 56.8% 14.2 
  PolyRep2 56.3% 14.1 
H3K27me3 MonoRep1 86.1% 1.1 
  MonoRep2 86.1% 1.1 
  MonoRep3 86.2% 1.1 
  MonoRep4 86.2% 1.1 
  PolyRep1 86.6% 1.1 
  PolyRep2 86.3% 1.1 
  PolyRep3 87.1% 1.1 
H3K4me1 MonoRep1 7.2% 4.2 
  MonoRep2 9.6% 5.6 
  MonoRep3 8.2% 4.8 
  PolyRep1 9.9% 5.8 
  PolyRep2 9.9% 5.7 
H3K4me3 MonoRep1 26.5% 11.7 
  MonoRep2 29.4% 13.0 
  MonoRep3 29.2% 12.9 
  MonoRep4 28.2% 12.4 
  PolyRep1 35.6% 15.7 
  PolyRep2 34.4% 15.2 
  PolyRep3 33.6% 14.8 
  PolyRep4 32.4% 14.3 
H3K9me3 MonoRep1 84.9% 1.1 
  MonoRep2 84.7% 1.1 
  MonoRep3 84.8% 1.1 
  PolyRep1 86.0% 1.1 
  PolyRep2 85.4% 1.1 

 
   Table 4: Comparison of the percentage of reads in their expected ENCODE canonical regions (as defined 

in Table 2) between ChIP-seq datasets derived obtained by monoclonal and polyclonal antibodies. 
Enrichment versus WCE is defined as the percentage of reads in that region type in the sample divided by 
the percentage of reads in that region type in the WCE control. 
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Table 5: 

A. 
SPOT Scores for GM12878 monoclonal and polyclonal datasets 

Epitope Dataset 
SPOT 
Score 

H3K27ac Monoclonal Rep 1 37.42% 
 Monoclonal Rep 2 38.86% 
 Polyclonal ENCFF000ASP 45.34% 
 Polyclonal ENCFF000ASU 19.41% 
   
H3K27me3 Monoclonal Rep 1 45.67% 
 Monoclonal Rep 2 47.53% 
 Polyclonal ENCFF000ASV 40.92% 
 Polyclonal ENCFF000ASW 48.89% 
 Polyclonal ENCFF000ASZ 24.35% 
   
H3K4me1 Monoclonal Rep 1 27.84% 
 Monoclonal Rep 2 25.66% 
 Polyclonal ENCFF000ASM 45.47% 
 Polyclonal ENCFF000ATK 33.47% 
   
H3K4me3 Monoclonal Lot 8 Rep 1 65.41% 
 Monoclonal Lot 8 Rep 2 67.41% 
 Monoclonal Lot 9 Rep 1 62.18% 
 Monoclonal Lot 9 Rep 2 58.64% 
 Polyclonal ENCFF000ASR 27.53% 
 Polyclonal ENCFF000AUB 16.47% 
   
H3K9me3 Monoclonal K9me3 Rep 1 25.24% 
 Monoclonal K9me3 Rep 2 24.76% 
 Polyclonal ENCFF000AUK 25.50% 
 Polyclonal ENCFF000AUO 28.59% 
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B. 
SPOT Scores for mouse ES cells monoclonal and polyclonal datasets 

Epitope Dataset 
SPOT 
Score 

H2K27ac Monoclonal Rep1 11% 
 Monoclonal  Rep2 11% 
 Polyclonal Mouse ENCODE Bruce4 Rep 1 16% 
 Polyclonal Mouse ENCODE Bruce4 Rep 2 14% 
 Polyclonal Mouse ENCODE E14 Rep 1 6% 
 Polyclonal Mouse ENCODE E14 Rep 2 16% 
   
H3K27me3 Monoclonal Lot 1 Rep1 3% 
 Monoclonal Lot 1 Rep2 3% 
 Polyclonal Mouse ENCODE Bruce4 Rep 1 4% 
 Polyclonal Mouse ENCODE Bruce4 Rep 2 4% 
   
H3K4me1 Monoclonal Rep 1 16% 
 Monoclonal Rep 2 15% 
 Polyclonal Mouse ENCODE Bruce4  30% 
 Polyclonal Mouse ENCODE E14 Rep 1 24% 
 Polyclonal Mouse ENCODE E14 Rep 2 27% 
   
H3K4me3 Monoclonal Lot 8 Rep 1 33% 
 Monoclonal Lot 8 Rep 2 27% 
 Monoclonal Lot 9 Rep 1 30% 
 Monoclonal Lot 9 Rep 2 27% 
 Polyclonal Mouse ENCODE Bruce4 Rep 1 36% 
 Polyclonal Mouse ENCODE Bruce4 Rep 2 37% 
 Polyclonal Mouse ENCODE E14 Rep 1 42% 
 Polyclonal Mouse ENCODE E14 Rep 2 39% 
   
H3K9me3 Monoclonal Rep1 3% 
 Monoclonal Rep2 3% 
 Polyclonal Mouse ENCODE Bruce4 Rep 1 11% 
 Polyclonal Mouse ENCODE Bruce4 Rep 2 12% 
 

Table 5: SPOT score for ChIP-seq datasets from GM12878 (A) and mouse ES cells (B). SPOT score is 
calculated as the percent of reads that overlap with peaks. For each antibody, peak calls generated by the 
Mouse ENCODE for the Bruce4 ES cell line (polyclonal antibody) were used to define the peak 
coordinates. 
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Supplemental Figure 1. Reads aligning to annotated open and closed chromatin. The location of 
reads of different insert sizes from our K562 WCE data was compared to the ENCODE annotation of the 
genome using BEDTools [1]. Reads with smaller insert sizes, indicating that they originate from smaller 
DNA fragments, mapped to transcription start sites (open chromatin) at a higher rate than those of longer 
insert sizes. An opposite relationship was oboserved for closed chromatin. Note, however, that the Y axis 
is truncated to show this effect and the change in the percentage of reads tracking to repressed regions is 
small. Reads below and above the displayed insert sizes were excluded due to low read coverage and 
associate noise. 

Supplemental Figure 2: Read coverage across the genome. Images of Tiled Data Files (TDFs) 
generated by the IGV browser [2, 3] displaying the density tracks of reads aligned across the genome. The 
tracks show the correspondence in read coverage in monoclonal and polyclonal antibodies (from 
ENCODE and Mouse ENCODE) over representative genomic loci. A-C GM12878; D-F mES. A. 
Chromosome 19:41,792,290-41,912,756 (about 120Kb) for H3K4me1, H3K4me3 (two monoclonal lots) 
and H3K27ac. B. Chromosome 20:61,503,810-62,032,504 (about 500Kb) for H3K27me3. C. 
Chromosome (about 250Kb) for H3K9me3. D. Chromosome 6:125,035,929-125,153,426 (about 120Kb) 
for H3K4me1, H3K4me3 (two monoclonal lots) and H3K27ac. E. Chromosome 6:51,949,208-52,399,454 
(about 450Kb) for H3K27me3. F. Chromosome 8:65,216,638-65,604,437 (about 390Kb) for H3K9me3. 

Supplemental Figure 3: Saturation curve showing the number of bases called as being in peaks as a 
function of sequencing depth for H3K9me3 and H3K27me3. The final dataset of the merged technical 
replicates was randomly down sampled to 20 different read depths and peaks were called in each dataset 
using HOMER. For these datasets, curves do not show the expected pattern and do not appear to reach 
saturation. 

Supplemental Figure 4: Mapping of peaks and reads to canonical chromatin regions of the genome 
as defined by the ENCODE mappings. These plots display the percentage of reads that map to each 
canonical genome region. The canonical genome regions were defined by the combined ENCODE 
mapping and are abbreviated as follows: CTCF-enriched elements (CTCF), promoter flanking regions 
(PF), transcription start sites (TSS), transcribed regions (T), enhancers (E), weak enhancers (WE), and 
repressed regions (R). Reads were normalized by random downsampling. 

Supplemental Figure 5. Correlation between monoclonal and polyclonal antibodies across the 
genome. Scatter plots (Loglog) show counts of reads per bin in non-overlapping 2000 bp bins tiled 
throughout the genome in replicates of the monoclonal antibody (left), the polyclonal antibody (right), 
and polyclonal antibody versus monoclonal antibody (center). The reads for each dataset were 
normalized by A. insert size or by B. random downsampling.   

Supplemental Figure 6: Experimental quality control. While we generated four technical replicates of 
the H3K27me3 polyclonal antibody, one of the replicates (Replicate number 4) did not pass our quality 
control. Points on the graph represent the number of reads falling into each variable-sized bin defined by 
the canonical chromatin regions of the genome as defined by the ENCODE. A. A comparison of 
Replicate 3 to the summed read counts of Replicates 1 and 2. This is in line with our expectations. B. The 
same comparison to Replicates 1 and 2, this time using Replicate 4. Here we see that Replicate 4 has a 
systematically reduced read count in transcription start sites. No other classes of genomic regions were 
shifted. We concluded that Replicates 4 did not pass our quality control. 

Supplemental Figure 7: Validation of the polyclonal antibody targeting H3K4me1 by peptide array. The 
details are presented in the same manner as the publically available validations of the other antibodies we 
used in the study (Table 1), and include the details of the antibody and validation protocol, the row signal 
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of the peptide array (bottom left); reactivity with the synthetic peptides on the array (top right), and the 
cross reactivity other modifications of the same peptide. 

Supplemental References  

1. Quinlan AR: BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Current 
protocols in bioinformatics / editoral board, Andreas D Baxevanis  [et al] 2014, 47:11 12 11-11 
12 34. 

2. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP: 
Integrative genomics viewer. Nature biotechnology 2011, 29(1):24-26. 

3. Thorvaldsdottir H, Robinson JT, Mesirov JP: Integrative Genomics Viewer (IGV): high-
performance genomics data visualization and exploration. Brief Bioinform 2013, 14(2):178-
192. 
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Reactivity of test antibody with control peptides and singly modified peptides

Antibody: H3-K4me1 Graph is scaled so that the intended primary reactivity is set to 1

Vendor: Active Motif

Part number: 39297

Lot number: 1714002

Test Date: 4-1-2016

User: RI

Primary antibody:

Primary ab dilution: 1:20,000

Incubation: O/N at 4C

Secondary antibody:

Vendor: Active Motif

Part number: 100612

Lot number:      6012051

Concentration: 1:2500

Incubation: 1 hour at room temperature

Protocol:

• immerse array in 4 mL of blocking solution containing

(TBST containing 5% non-fat dried milk)

• incubate on a rotator for 4 hours at room temperature

• carefully pour off buffer

•perform a quick rinse (30 seconds) with TBST buffer

• wash 3 x 5 minutes in TBST

• dilute primary antibody in 4 mL of Blocking solution

• incubate on a rotator overnight at 4°C

• carefully pour off buffer

•perform a quick rinse (30 seconds) with TBST buffer

• wash 3 x 5 minutes in TBST

• dilute secondary antibody in 4 mL of Blocking solution

• incubate on a rotator for 1 hour at room temperature 4-1-2016 - H3-K4me1 Active Motif #39297 Lot 1714002; image: 2013-05-24 14hr 26min_Exposure_2_0sec_crop-1_resize_data

• carefully pour off buffer

•perform a quick rinse (30 seconds) with TBST buffer Cross inhibition of reactivity by aother modifications of the same peptide
• wash 3 x 5 minutes in TBST Graph is scaled so that saturation of signal = 1

• detect using FlourChemQ

Gridded image of the array
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Supplemental Table 1. Datasets summary.  

A. 

Cell Type Antibody Replicate Reads Pairs 

GM12878 

H3K4me1 Monoclonal Rep 1 83,100,486  41,550,243  
Monoclonal Rep 2 99,255,196  49,627,598  

H3K4me3 Monoclonal Lot 8 Rep 1  99,255,196   78,227,985  
Monoclonal Lot 8 Rep 2  156,455,970   42,980,622  
Monoclonal Lot 9 Rep 1  85,961,244   33,912,720  
Monoclonal Lot 9 Rep 2  67,825,440   36,033,346  

H3K9me3 Monoclonal Rep 1  143,527,964   71,763,982  
Monoclonal Rep 2  66,206,100   33,103,050  

H3K27ac Monoclonal Rep 1  146,244,844   73,122,422  
Monoclonal Rep 2  156,042,348   78,021,174  

H3K27me3 Monoclonal Rep 1  157,892,610   78,946,305  
Monoclonal Rep 2  152,454,660   76,227,330  

HeLa 
H3K27ac Monoclonal Rep 1  17,340,796   8,670,398  

Monoclonal Rep 2  16,389,304   8,194,652  
Polyclonal Rep 2  13,155,478   6,577,739  

K562 

H3K4me1  Monoclonal Rep 1  44,707,286   22,353,643  
Monoclonal Rep 2  19,370,594   9,685,297  
Polyclonal Rep 1  46,708,750   23,354,375  
Polyclonal Rep 2  77,858,414   38,929,207  

H3K4me3 – lot 
comparison  

Monoclonal Lot 8 Rep 1  83,285,982   41,642,991  
Monoclonal Lot 8 Rep 2  69,829,160   34,914,580  
Monoclonal Lot 9 Rep 1  73,635,980   36,817,990  
Monoclonal Lot 9 Rep 2  68,671,138   34,335,569  

H3K4me3 Monoclonal Rep 1  10,769,082   5,384,541  
Monoclonal Rep 2  14,706,444   7,353,222  
Monoclonal Rep 2  14,864,810   7,432,405  
Monoclonal Rep 4  11,230,992   5,615,496  
Polyclonal Rep 1  13,184,088   6,592,044  
Polyclonal Rep 2  10,007,054   5,003,527  
Polyclonal Rep 3  11,968,378   5,984,189  
Polyclonal Rep 4  25,205,992   12,602,996  

H3K9me3 Monoclonal Rep 1   75,625,321   37,812,661  
Monoclonal Rep 2  37,480,051   18,740,026  
Monoclonal Rep 2  45,075,156   22,537,578  

H3K27ac Monoclonal Rep 1  42,775,420   21,387,710  
Monoclonal Rep 2  72,589,124   36,294,562  
Polyclonal Rep 1  60,003,204   30,001,602  
Polyclonal Rep 2  28,926,788   14,463,394  
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B. 

 
 

 Average Reads 
After 

Downsampling 

Average Pairs 
After 

Downsampling 
Pairs in Merged 

Dataset 

K562 
 
 
 
 
 

 

H3K27ac 
                      
25,808,498  

                      
12,904,249  

                      
25,808,498  

H3K27me3 
                      
18,616,216  

                        
9,308,108  

                      
27,924,324  

H3K4me1 
                      
35,539,733  

                      
17,769,867  

                      
35,539,733  

H3K4me3 
                        
9,204,667  

                        
4,602,334  

                      
18,409,335  

H3K9me3 
                      
28,479,015  

                      
14,239,507  

                      
28,479,015  

 

H3K27me3 Monoclonal Rep 1  19,964,374   9,982,187  
Monoclonal Rep 2  24,909,516   12,454,758  
Monoclonal Rep 2  31,796,524   15,898,262  
Monoclonal Rep 4  25,983,780   12,991,890  
Polyclonal Rep 1  22,909,534   11,454,767  
Polyclonal Rep 2  28,428,020   14,214,010  
Polyclonal Rep 3  19,843,850   9,921,925  
Polyclonal Rep 4  37,134,412   18,567,206  

WCE Rep 1  15,726,808   7,863,404  

mES 

H3K4me1 Monoclonal Rep 1  76,330,698   38,165,349  
Monoclonal Rep 2  98,191,020   49,095,510  

H3K4me3 Monoclonal Lot 8 Rep 1  81,525,630   40,762,815  
Monoclonal Lot 8 Rep 2  80,975,708   40,487,854  
Monoclonal Lot 9 Rep 1  72,554,992   36,277,496  
Monoclonal Lot 9 Rep 2  73,758,624   36,879,312  

H3K27ac Monoclonal Rep 1  161,354,476   80,677,238  
Monoclonal Rep 2  161,371,680   80,685,840  

H3K27me3 Monoclonal Rep 1  75,925,468   37,962,734  
Monoclonal Rep 2  164,450,620   82,225,310  
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