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Abstract 

The robustness of ChIP-seq datasets is highly dependent upon the antibodies used. Currently, polyclonal 
antibodies are the standard despite several limitations: they are non-renewable, vary in performance 
between lots, and need to be validated with each new lot. In contrast, monoclonal antibody lots are 
renewable and provide consistent performance. To increase ChIP-seq standardization, we investigated 
whether monoclonal antibodies could replace polyclonal antibodies. We compared monoclonal antibodies 
that target five key histone modifications (H3K4me1, H3K4me3, H3K9me3, H3K27ac and H3K27me3) 
to their polyclonal counterparts. Overall performance was highly similar for four monoclonal/polyclonal 
pairs. In contrast, the binding patterns for H3K27ac differed substantially between polyclonal and 
monoclonal antibodies. However, this was most likely due to the distinct immunogen used rather than the 
clonality of the antibody. Altogether, we found that monoclonal antibodies as a class perform as well as 
polyclonal antibodies. Accordingly, we recommend the use of monoclonal antibodies in ChIP-seq 
experiments. 

Introduction 
 Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is one of the major 

technologies for investigating chromatin structure on a genomic scale. In this technique, the histone 

proteins bound to DNA are cross-linked to the DNA. After DNA shearing, a specific antibody is used to 

enrich the targeted protein by immunoprecipitation, which also enriches the specific DNA it is bound to 

because it is cross-linked to it. Finally, the DNA fragments that precipitated with the enriched protein are 

sequenced. Hence, the results of each experiment are highly dependent upon the quality of the antibody 

that is used. 

 Polyclonal antibodies have been used as the standard antibody reagent for ChIP-seq by many labs 

and consortia (Consortium, 2012, Bernstein et al., 2010, Landt et al., 2012). Problematically, however, 

polyclonal antibody lots are a limited resource, as each lot is raised from a different immunized animal. 

Each polyclonal batch consists of a highly complex population of individual antibody molecules, 

representing the unique response of that animal’s immune system. Some of these component antibody 

molecules will specifically target the epitope in question, but other molecules in this population may 
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enrich for other non-target proteins. Different batches raised to the same target epitope will thus naturally 

differ in performance and must be validated before use. Critically, once exhausted, a polyclonal antibody 

lot cannot be reproduced (Lipman et al., 2005). To overcome these limitations, many scientists have 

advocated for the use of monoclonal antibodies (Baker, 2015, Bradbury and Pluckthun, 2015, Soll, 2014), 

as these antibodies are harvested from purified cell lines derived from a single immune cell. Thus, all 

monoclonal antibody lots are uniform and consist of a single antibody species that specifically targets the 

desired epitope.  

To investigate whether monoclonal antibodies can substitute for polyclonal antibodies in ChIP-

seq procedures while retaining equivalent performance, we designed and carried out a direct side-by-side 

comparison. We compared a set of five monoclonal antibodies targeting key histone modifications 

(H3K4me1, H3K4me3, H3K9me3, H3K27ac, and H3K27me3) to their polyclonal counterparts. To 

ensure that all samples and antibodies were handled in a precisely controlled manner, all work was 

performed employing automated ChIP-seq protocols implemented on a standard laboratory liquid 

handling system. 

As a class, we found that the performance of monoclonal antibodies in ChIP-seq assays was equal 

to that of polyclonal antibodies. Given that monoclonal antibodies represent a renewable resource, and 

eliminate the lot-to-lot variability that is expected with polyclonal antibodies, the replacement of 

polyclonal antibodies with monoclonal antibodies for use in ChIP-seq and similar affinity-based methods 

has significant benefits. Employing monoclonal antibodies will result in increased reproducibility and 

robustness and will substantially improve standardization of results among data sets. 

Results 

We designed an experimental system for rigorously comparing the performance of monoclonal 

and polyclonal antibodies in ChIP-seq and applied it to antibodies targeting five key histone 

modifications (H3K4me1, H3K4me3, H3K9me3, H3K27ac and H3K27me3) (Table 1). These epitopes 
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provide a rigorous test set of antibodies as they represent open and closed chromatin environments, have 

distinct localization patterns as described in Table 2, and are commonly used in studies of chromatin 

structure. We performed ChIP-seq with these antibodies in the human erythroleukemic cell line K562 

using unenriched whole cell extract (WCE) as a control. To control for experimental variability, we 

implemented a fully automated ChIP-seq process (Garber et al., 2012) that ensures precise liquid 

handling, maximizes reproducibility, and controls for human error. We performed two to four technical 

replicates for each antibody tested to control for experimental variability and sequenced the libraries using 

Illumina paired-end reads. We then further computationally normalized our datasets to account for 

possible technical variability introduced by fragmentation and differing read depths. Finally, we analyzed 

our data to compare the performance of monoclonal and polyclonal antibodies focusing on the specificity 

and the number of peaks identified, as well as the overall pattern of reads localized across the genome. 

Normalization of ChIP-seq datasets  

Before analyzing our data, we computationally normalized the aligned reads to isolate the effects 

of each antibody from two possible issues that could confound the comparison: (i) A higher number of 

reads increases the power to distinguish peaks from background noise (Jung et al., 2014); (ii) Chromatin 

DNA has been shown to shear into different size fragments in regions of open versus closed chromatin, 

and genomic regions originating from open chromatin are more likely to shear into small fragments 

(Rozowsky et al., 2009). The combination of this shearing bias and a narrow size selection can lead to an 

artifactual enrichment of reads in areas of open chromatin leading to pile ups of reads that mimic peaks. 

The effects of fragment length bias are therefore protocol-specific and dependent upon both the 

fragmentation method and size selection. To quantify the effect of fragmentation on the localization of 

reads in our protocol, we examined our WCE control data. First, we defined the regions as open or closed 

chromatin based on ENCODE mappings derived from the combined annotations of ChromHMM (Ernst 

and Kellis, 2012) and Segway (Hoffman et al., 2012). This mapping approach annotates the K562 

genome according to seven canonical types: transcription start sites, promoter flanking regions, 
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enhancers, weak enhancers, CTCF-enriched elements, transcribed regions, and repressed regions. 

According to this mapping approach, the majority of the annotated K562 genome (84%) is in repressed 

regions (closed chromatin) while only ~1% of the K562 annotated genome is in transcription start sites 

(open chromatin).  

Next, to assess the regional bias of the fragmentation of the cross-linked DNA, we quantified 

insert sizes of fragments falling into open and closed chromatin, expecting the insert size to be equivalent 

to the size of the DNA fragment originating in the immunoprecipitation step. To explore the effects of 

fragment length variation in our system, we examined reads with insert sizes between 70 and 700 bases, 

the size range of inserts typically found in an Illumina flow cell. We observed that the percentage of reads 

localizing to transcription start sites (TSS) was inversely correlated with the length of the insert size 

(R2=0.80) with a 2.6 fold higher percentage of reads localizing to TSS in read pairs with shorter (70-

120bp) versus longer (650-700bp) insert sizes. Reads localizing to repressed regions were positively 

correlated with insert size (R2=0.70) though the difference in coverage is only 5% (Supplemental Figure 

1).  

While we have optimized our shearing process to provide high reproducibility of the 

fragmentation process (Methods), since each sample is sheared separately, the fragmentation might vary 

between samples. To account for potential differences in fragmentation, we randomly selected alignments 

so that each aligned read set for a given histone modification had the same number of reads and fragment 

size distribution (Table 1). As the insert size is equal to the length of the DNA fragment in the original 

pool, this normalization method approximates experiments that have both the same fragmentation and 

read depth. Because normalizing by insert size could also obscure true differences between antibodies, 

parallel analyses using alignments randomly sampled to the lowest read count in the group are included as 

supplementary figures for key results. 

Comparison of peaks between ChIP-seq datasets  
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We investigated the relative performance of the antibodies in terms of sensitivity, specificity, and 

the number and distribution of peaks. Initial visualization of the data in a genome browser revealed a high 

degree of similarity in read coverage between monoclonal and polyclonal antibodies (Figure 1).  

The best performing antibodies are those that provide the highest enrichment for DNA fragments 

associated with the target protein. However, a greater portion of reads localizing to observed peaks could 

be indicative of either higher sensitivity of the antibody for its epitope or the addition of false peaks 

resulting from a higher degree of non-specific binding. To quantify antibody performance, we evaluated 

whether the monoclonal and polyclonal antibodies differed in the number of peaks identified or the 

percentage of reads that are in locations identified as peaks (Signal Portion of Tags – SPOT score (John et 

al., 2011)). Peaks were called for each sample using the HOMER software (Heinz et al., 2010) with WCE 

data used as the control. For H3K27ac, H3K27me3, H3K4me3, and H3K9me3 the polyclonal antibody 

had a significantly higher number of peaks called versus their monoclonal counterparts (p<0.05 by t-test, 

Table 2 and Supplemental Figure 2A). However, only the polyclonal antibodies to H3K27me3 and 

H3K4me3 had significantly higher percentage of reads in the peak regions (p<0.05, Table 2 and 

Supplemental Figure 2B). 

To assess the specificity of binding, we tested whether reads and peaks were mapped to their 

expected regions. Figure 2 and Supplemental Figure 3A show the number of peaks that mapped to each 

of the seven ENCODE canonical regions for each antibody. While results between the monoclonal and 

polyclonal antibodies for each epitope were similar, a greater percentage of reads mapped to their 

expected regions of the genome (Table 1) for the monoclonal samples of H3K27ac (88.1% mono vs. 

80.2% poly, p<0.01). Due to the low variability between technical replicates in our system, small 

differences also reached statistical significance for H3K4me3 (92.8% mono, 91.5% poly, p<0.01) and 

H3K27me3 (98.2% mono and 98.4% poly, p=0.04). These findings are consistent with the numbers of 

reads mapping to these regions (Supplemental Figure 3B and C). We note that this approach – 

evaluating the percentage of reads mapped to ENCODE canonical genomic regions – does not provide a 
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fully orthogonal validation of the specificity of the antibodies as the annotations were themselves created 

from ChIP-seq data.  

Next, we tested whether the locations of peaks called were consistent between monoclonal and 

polyclonal antibodies by comparing which peaks in one sample overlapped peaks identified in another 

sample. As expected, the overall percentage of peaks that overlap was high (60-86%) for the histone 

modifications associated with open chromatin (H3K27ac, H3K4me1, and H3K4me4) but substantially 

lower (11-27%) for histone modifications associated with closed chromatin (H3K9me3 and H3K27me3). 

This difference is most likely due to the fact that repressed regions make up the largest portion of the 

genome and deeper sequencing is required to comprehensively map these marks. This lack of power 

makes it less likely that peaks that are identified in one sample will also be identified in a second sample. 

For most of the epitopes, the overlap of peaks called in ChIP-seq datasets from either monoclonal or 

polyclonal antibodies was similar to the overlap of peaks called using the same antibody (Table 3). 

Consistent with other data, the H3K27ac antibodies showed a high reproducibility of technical replicates 

using the same antibody (85-86% overlap), but showed a lower degree of reproducibility when comparing 

samples prepared with the monoclonal antibody to those prepared with the polyclonal antibody (79% 

overlap). 

Whole Genome Read Coverage 

We next investigated the binding patterns of reads across the entire genome. To provide a basis 

for this quantitative evaluation, we defined non-overlapping bins of 2000 base pairs across the genome 

and counted the reads falling into each bin. We first compared the correlations in technical replicates in 

the samples normalized by insert size versus those normalized by random sampling. Correlations were 

highly similar, indicating that fragmentation and size selection were well controlled in these samples and 

did not introduce a significant source of bias (Figure 3 and Supplemental Figure 4). 
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For all antibodies except H3K27ac the correlations between monoclonal and polyclonal 

antibodies were similar to those observed between technical replicates using the same antibody (Figure 3 

and Supplemental Figure 4).  

 Next, we examined the differences between the H3K27ac monoclonal and polyclonal samples 

more closely. The H3K27ac modification is present both at enhancer regions and transcription start site 

regions (Zhou et al., 2011). Therefore, we compared the number of reads aligning in each region. 

Interestingly, we found that in datasets derived from the polyclonal H3K27ac antibody a higher number 

of reads fell into enhancer site regions relative to transcription start site regions when compared to the 

datasets derived from the monoclonal H3K27ac antibody (Figure 4A).  

One possible explanation for this finding is that the polyclonal reagent, as it is a mix of individual 

antibody molecules, contains antibodies to multiple epitopes, one of which is enhancer-specific and 

increases the antibody’s binding in this region. To examine this possibility, we performed ChIP-seq 

comparing three H3K27ac antibodies: the monoclonal and polyclonal mentioned above which were 

produced by Cell Signaling Technology (CST) and Active Motif, respectively, and a second monoclonal 

antibody obtained from Active Motif. We repeated this ChIP-seq experiment with the CST monoclonal 

and polyclonal antibody using HeLa cells and obtained the same pattern (Figure 4B). However, when we 

compared the Active Motif polyclonal antibody to the Active Motif monoclonal antibody the effect was 

not present. Instead, the ChIP-seq results from the monoclonal Active Motif antibody more closely 

resembled the polyclonal data (Figure 4B).  

We were not able to obtain the sequences of the polypeptide immunogens that were used to raise 

these antibodies as the vendors consider these proprietary. However, the Active Motif antibodies were 

raised by two different immunogens having an overlapping amino acid sequence (disclosed by Active 

Motif's Technical Support to assist with understanding of the data generated for this project). These 

immunogens likely differed from the one used by Cell Signaling Technology. 
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Experimental quality control 

To ensure that our ChIP-seq results were representative of the quality of the antibody rather than 

differences in the performance of the libraries or experiments, one replicate of the H3K27me3 polyclonal 

antibody was removed as it did not pass our quality control and differed substantially from the other three 

technical replicates (Supplemental Figure 5). Specifically, the number of reads falling into regions of 

transcription start sites was systematically higher in this replicate than in other replicates. A monoclonal 

replicate of the H3K4me1 and a monoclonal replicate of H3K9me1 failed to yield an adequate number of 

reads to be used in analysis. These samples were rerun in duplicate and each was replaced with two 

replicates. 

Discussion 

Our goal in designing this study was to improve current ChIP-seq procedures by increasing the 

reproducibility between experiments within the community, as well as enhance the usage of reagents that 

have long-term accessibility. Specifically, we explored whether monoclonal antibodies could properly 

replace the polyclonal antibodies routinely used in ChIP-seq.  

Our experimental setup allowed us to directly compare performance of ChIP-seq carried out 

using both antibody types. Additionally, sequencing our data with paired-end reads allowed us to 

normalize alignments to eliminate fragmentation and size selection biases as confounding factors. As we 

observed a high degree concordance between results from data normalized by insert size and results from 

data randomly downsampled, differences in fragmentation and size selection did not appear to be a strong 

confounder in this experiment. However, it is possible that this issue may be a confounder in other 

applications. Here we further demonstrated that the insert length of paired-end reads was correlated with 

the genomic regions from which the fragments originated, consistent with earlier reports (Rozowsky et 

al., 2009). Further, we note that paired-end reads provide the only definitive way to assess the distribution 

of DNA fragment lengths that were ultimately sequenced. We therefore strongly recommend optimizing 
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fragmentation and size selection protocols to include the full range of genomic fragment sizes to avoid 

bias, as well as using paired-end reads for ChIP-seq experiments. In the future, it would be useful to 

evaluate whether insert size normalization can provide a cost-effective alternative to using WCE controls, 

particularly in experiments whose primary focus is to measure changes in protein binding under different 

conditions rather than an exhaustive mapping of binding locations. 

Among the five antibodies tested, the polyclonal antibodies to H3K4me3 and H3K27me3 

appeared to offer slightly higher sensitivity while the monoclonal antibody to H3K27ac appeared to offer 

higher specificity. However, given that the differences we saw between the H3K27ac monoclonal and 

polyclonal antibody were also seen in a second monoclonal antibody, these differences more likely result 

from the specific immunogen against which the antibody was raised rather than the mono- or 

polyclonality of the antibody. Because higher sensitivity was not seen in the other polyclonal antibodies, 

our results demonstrate that the use of monoclonal antibodies for ChIP-seq did not present any systematic 

disadvantage relative to polyclonal antibodies, and have the clear advantage of superior reproducibility. 

This conclusion is supported by high correlation in genome-wide and region-specific read counts between 

monoclonal and polyclonal antibodies, as well as the high degree of overlap in peak locations. Therefore, 

we suggest that usage of monoclonal antibodies for ChIP-seq experiments provides a key improvement 

over polyclonal ones.  

Overall, our data are consistent with a model suggested by Peach and colleagues (Peach et al., 

2012) in which some antibodies are better described as indicators of canonical regions of the genome 

rather than as markers of specific modifications. For instance, in our comparison of H3K27ac antibodies, 

the monoclonal and polyclonal antibodies displayed significant differences in their relative ratio of reads 

localized to putative enhancers versus transcription start sites. If we assume that the targeted acetylated 

H3K27 is the same molecule in each region, then the ability of the antibodies to identify H3K27ac was 

affected not just by the presence of the target but also by its local environment. Characteristics of the 

environment will determine the accessibility of the epitope to the antibody and the potential for off-target 
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binding. The pattern of the binding of a single antibody should thus be thought of as a collection of 

component parts that describe more than just the binary presence or absence of a modification. This 

inherent complexity is further complicated by the fact that researchers often do not know the precise 

nature of the immunogen that was used to raise a specific antibody because the antibody’s producer holds 

this information as proprietary.  

Thus, ChIP-seq datasets targeting the same epitope but using different antibodies cannot be 

considered directly comparable without substantial experimental validation. Standardizing on monoclonal 

antibodies would not only eliminate the batch-to-batch variability that is expected in polyclonal 

antibodies but would also increase the value of ChIP-seq datasets by allowing for more reliable reuse of 

existing datasets. Further, it would simplify the interpretation of ChIP-seq data by removing the added 

complexity that is introduced by using a polyclonal antibody that targets an unknown number of epitopes 

on the antigen.  

The relative portion of reads aligned to different canonical regions of the genome was also 

affected by experimental variability. By examining the relative proportion of reads mapping to canonical 

regions of the genome, we were able to easily identify an outlier replicate in our K27me3 data that would 

have passed less rigorous quality screens. This finding demonstrates not only that replicates are 

imperative in any ChIP-seq experiment, but also that performing this simple analysis can provide valuable 

information for quality control.  
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Methods 
 

Chromatin Immunoprecipitation (ChIP)  

ChIP comprises the basic steps of crosslinking DNA to protein, shearing DNA, and pulling-down of the 

protein of interest by immunoprecipitation. Washes and mixes were conducted using the Bravo liquid 

handling platform (Agilent model 16050-102, “Bravo”). For the compositions of the buffers used, see 

(Ram et al., 2011); for the specific protocol for the Bravo, see (Garber et al., 2012). 

Table 1 presents the antibodies used in this study. The polyclonal antibodies were previously 

assessed for accuracy by comparison to “gold standard” ENCODE data. 

Crosslinking and DNA Shearing: K562 mylogenous leukemia cells (ATCC CCL-243) were 

cross-linked with formaldehyde as previously described (Ram et al., 2011). Fixed cell pellets (20 million 

cells each) were resuspended in lysis buffer and ChIP dilution buffer and incubated on ice to lyse the 

cells. Samples were then split across a 96-well plate. DNA shearing was conducted using a Covaris 

sonifier (model E220) at 4°C for 6 cycles of 1 minute, with these parameters DF-10%, PIP-175W, CPB-

200. After sonication, the cell lysates were diluted 1:10 with ChIP dilution buffer. Roughly 50 µL of the 

cell lysate was set aside for use as the whole cell extract (WCE) control.  

Bead Preparation: Immunoprecipitation was performed using magnetic beads coupled to 

antibodies by Protein A or Protein G linkers. The beads were prepared as follows: equal quantities of 

Protein A and Protein G Dynabeads (Invitrogen, 100-02D and 100-07D, respectively) were mixed, 

separated into 50 µL aliquots in a well plate, and washed twice with blocking buffer. The beads and 

antibodies, mixed and suspended in blocking buffer, were incubated in a cold room (4 °C) on a rotator for 

at least two hours to allow conjugation. 

Immunoprecipitation of Target Protein and DNA Purification: Washed bead-antibody conjugates 

were added to the chromatin lysate and incubated overnight. At this point, the WCE was added to the 
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sample plate. Samples were washed six times with RIPA buffer, twice with RIPA buffer supplemented 

with 500 mM NaCl, twice with LiCl buffer, twice with TE, and then eluted in ChIP elution buffer to 

unlink and purify the DNA. 

Library Construction  

The library construction phase of ChIP-seq comprises DNA end-repair, A-base addition, adaptor ligation, 

and enrichment. Solid-Phase Reversible Immobilization (SPRI) cleanup was performed on the reverse-

crosslinked DNA before library construction and after each of its four steps to remove proteins and other 

molecules. 

SPRI Cleanup Protocol: SPRI cleanup steps were conducted using the Bravo, following protocols 

described by (Garber et al., 2012). All enzymes used in library construction were obtained from New 

England Biolabs. The initial and final SPRI cleanups for the reverse-cross-linked DNA were performed as 

follows: SPRI beads (Agencourt AMPure XP) were added to the unlinked DNA samples. The beads were 

washed on a 96-well bar magnet (ThermoFisher, catalog number: 12027) with 70% ethanol and air-dried. 

The DNA was eluted in 10 mM Tris-HCl buffer. Intermediate SPRI cleanups in the library construction 

process were conducted in the same manner. The SPRI beads in the reaction were reused to capture the 

DNA via addition of a 20% PEG solution. 

End-Repair and A-base Addition: DNA end-repair was performed by adding T4 PNK enzyme 

and T4 polymerase to each well, followed by incubation at 12 °C for 15 minutes and at 25 °C for another 

15 minutes. Following SPRI clean up, A-base addition was performed by adding Klenow 3' → 5' 

exonuclease and incubation at 37 °C for 30 minutes. 

Adapter Ligation: Adapter ligation was performed by adding DNA ligase and PE Indexed 

oligonucleotide adapters to samples followed by incubation at 25 °C for 15 minutes. After the subsequent 

SPRI cleanup, eluted DNA was separated from the SPRI beads using a 96-well bar magnet for PCR 

enrichment. 
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Enrichment: DNA samples were PCR amplified at 95 °C for 2 minutes; 16 cycles of: 95 °C for 

30 seconds, 55 °C for 30 seconds, 72 °C for 60 seconds; and 72 °C for 10 minutes. 

Data Collection and Analysis 

DNA fragments were processed by 2x25 paired-end or 2x37 paired-end sequencing (Illumina HiSeq 2500 

or NextSeq 500, respectively).  

To assess reproducibility, we designed an analysis pipeline consisting of the following steps: 

alignment, normalization, pairwise correlation and clustering, peak calling, and analysis. Reads were 

aligned by the Broad Genomics Platform using BWA (v5.9) (Li & Durbin, 2009).  

To allow for meaningful comparisons between different samples, duplicate reads were removed 

from the alignment data (BAM file) and all alignment files for each epitope were downsampled using 

C++ scripts built using the BamTools API (Barnett et al., 2011). Scripts are available on GitHub 

(https://github.com/mbusby/).  

Downsampling normalization by insert size was performed as follows: The program first counts 

how many read pairs are present for each insert size for each of a set of aligned files. We then select the 

lowest read count for each insert size from among the set of alignments. For example, if four alignments 

for a given antibody have one, two, three, and four million reads with an insert size of 100, all four 

alignments would be randomly sampled so that the four normalized alignments each have about one 

million reads with an insert size of 100. This is performed for each insert size present in all of the 

alignments in the group to yield final bam files with about the same number of reads and insert size 

distribution. This approach therefore allows for identical insert size distributions while maximizing the 

number of reads included in the output files. All samples for each histone modification were sampled as a 

group. The WCE control was not randomly sampled, nor were the HeLa samples due to their low starting 

read coverage. 
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Peaks were called using HOMER (v.4.5) (Heinz et al., 2010) with the whole cell extract (WCE) 

as a control under the default settings for paired-end reads using “histone” as the peak type.  

We counted the number of peaks mapping to the canonical genomic regions using the BEDtools 

intersect tool, version 2.25 (Quinlan, 2014). To avoid counting peaks that overlapped annotation 

boundaries twice, we required that at least 60% of the peak region would overlap the annotated region. 

We used the BEDtools coverage tool to count the number of reads mapping to genomic regions. The 

combined Segway and ChromHMM annotation was downloaded from (Wilder and Dunham). 
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Figure legends: 
Figure 1. Read coverage across the genome. IGV browser (Robinson et al., 2011, Thorvaldsdottir et al., 

2013) generated images of tiled data files (TDFs) displaying the density tracks of reads aligned across the 

genome. The tracks show the correspondence in read coverage in monoclonal and polyclonal antibodies 

over representative genomic loci. A. Chromosome 7: 44,829,782-44,930,648 (about 100Kb), shows the 

read coverage of histone modifications associated with ‘active chromatin’ (H3K4me1, H3K4me3 and 

H3K27ac). The correspondence of in read coverage of B. H3K27me3 (Chromosome 22:19,492,023-

19,849,594 (about 350Kb)), and C. H3K9me3 (Chromosome 19: 51,746,058-53,362,194 (about 1.6Mb)), 

two major histone modifications associated with repression. 

Figure 2. Reads in peaks mapping to canonical chromatin regions of the genome as defined by the 

ENCODE mappings. This plot displays the percentage of reads that map to each canonical genome 

region. The canonical genome regions were defined by the combined ENCODE mapping and are 

abbreviated as follows: CTCF-enriched elements (CTCF), promoter flanking regions (PF), transcription 

start sites (TSS), transcribed regions (T), enhancers (E), weak enhancers (WE), and repressed regions (R). 

Only reads that were located at regions identified as peaks were used for this plot. For each peak dataset 

the reads were normalized by insert size. 

Figure 3. Correlation between monoclonal and polyclonal antibodies across the genome. Scatter 

plots (Loglog) presenting counts of reads per bin in non-overlapping 2000 bp windows tiled throughout 

the genome in replicates of the monoclonal antibody (left; gray), the polyclonal antibody (right; gray), 

and polyclonal versus monoclonal (center; blue). The H3K27ac data (A) show divergence between 

polyclonal and monoclonal antibodies, while the H3K27me3 data (B) show that the reproducibility is 

nearly indistinguishable from the reproducibility of data derived from technical replicates using the same 

antibody. 

Figure 4. Variability in H3K27ac patterns is dependent on the immunogen. A. Scatter plots where 

each point represents the count of reads aligning to a non-overlapping, variably-sized region as annotated 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2016. ; https://doi.org/10.1101/054387doi: bioRxiv preprint 

https://doi.org/10.1101/054387
http://creativecommons.org/licenses/by-nc-nd/4.0/


in the chromatin regions determined by ENCODE mapping of the genome. Values are summed for the 

replicates of monoclonal and polyclonal H3K27ac antibodies. The red line (on the left and right plots) 

represents slope=1. B. H3K27ac antibodies in HeLa cells. 
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Table 1: Antibodies used in the study. 

Epitope Antibody Type Commercial company  Catalog number 

H3K4me1 Monoclonal CST (Cell Signaling 
Technology) 

5326 

H3K4me1 Polyclonal Active Motif 39297  

H3K4me3 Monoclonal CST 9751 

H3K4me3 Polyclonal Millipore 17-614 

H3K9me3 Monoclonal CST 13969 

H3K9me3 Polyclonal Abcam ab8898 

H3K27ac Monoclonal CST 8173 

H3K27ac Monoclonal Active Motif 39685 

H3K27ac Polyclonal Active Motif  39133 

H3K27me3 Monoclonal CST 9733 

H3K27me3 Polyclonal Millipore 07-449 
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Table 2: Datasets summary.  

 

 

 

 

 

 

 

 

  

Antibody 
N read pairs 
(insert size 

normalized) 

Number of 
Replicates Region targeted 

Mono Poly 

H3K27ac 25,808,498 2 2 Transcription start sites, enhancers 

H3K27me3 18,616,216 4 3 Repressed regions 

H3K4me1 35,524,049 3 2 Enhancers 

H3K4me3 9,204,667 4 4 Transcription start sites 

H3K9me3 28,456,470 3 2 Repressed regions 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2016. ; https://doi.org/10.1101/054387doi: bioRxiv preprint 

https://doi.org/10.1101/054387
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3: Comparison of peaks between ChIP-seq datasets derived obtained by monoclonal and 
polyclonal antibodies. 

    
Number 

of 
Peaks 

% 
Reads 

In 
Peaks 

% Reads 
in 

expected 
Regions 

H3K27ac MonoRep1 29,320 55.9 88% 
	
  	
   MonoRep2 28,413 51.5 89% 
	
  	
   PolyRep1 33,784 55 80% 
	
  	
   PolyRep2 33,575 54.4 80% 
H3K27me3 MonoRep1 10,229 1.1 98% 
	
  	
   MonoRep2 10,148 1.1 98% 
	
  	
   MonoRep3 10,002 1.1 98% 
	
  	
   MonoRep4 10,196 1.1 98% 
	
  	
   PolyRep1 13,984 1.6 98% 
	
  	
   PolyRep2 12,937 1.5 98% 
	
  	
   PolyRep3 18,721 2.3 98% 
H3K4me1 MonoRep1 52,118 17.5 30% 
	
  	
   MonoRep2 62,227 25.8 29% 
	
  	
   MonoRep3 54,468 19 34% 
	
  	
   PolyRep1 59,427 25.1 32% 
	
  	
   PolyRep2 58,730 24.7 33% 
H3K4me3 MonoRep1 15,002 23.9 93% 
	
  	
   MonoRep2 15,167 26.9 93% 
	
  	
   MonoRep3 15,185 26.7 93% 
	
  	
   MonoRep4 15,053 25.6 93% 
	
  	
   PolyRep1 15,904 33 92% 
	
  	
   PolyRep2 15,982 31.9 91% 
	
  	
   PolyRep3 15,956 31.1 92% 
	
  	
   PolyRep4 16,160 29.9 92% 
H3K9me3 MonoRep1 6,083 5.4 74% 
	
  	
   MonoRep2 5,326 5 72% 
	
  	
   MonoRep3 5,533 4.1 63% 
	
  	
   PolyRep1 9,399 5 69% 
	
  	
   PolyRep2 7,411 4.6 68% 
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Table 4: Overlap of peaks. 

 

Mono 
vs Poly 

Mono 
vs 

Mono 
Poly vs 

Poly 
H3K27ac 79% 86% 85% 

H3K27me3 11% 11% 13% 
H3K4me1 62% 61% 70% 
H3K4me3 86% 86% 86% 
H3K9me1 21% 22% 27% 

The average percentage of peaks that overlap between replicates of the same antibody as compared to 
monoclonal versus polyclonal antibodies to the same epitope. A peak is considered overlapping if at least 
half of the peak is covered by a peak in the other dataset. 
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