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Abstract

In cancer, clonal evolution is characterized based on single nucleotide variants and copy number alterations.

Nonetheless, previous methods failed to combine information from both sources to accurately reconstruct

clonal populations in a given tumor sample or in a set of tumor samples coming from the same patient.

Moreover, previous methods accepted as input all variants predicted by variant-callers, regardless of di�er-

ences in dispersion of variant allele frequencies (VAFs) due to uneven depth of coverage and possible presence

of strand bias, prohibiting accurate inference of clonal architecture. We present a general framework for

assignment of functional mutations to speci�c cancer clones, which is based on distinction between passenger

variants with expected low dispersion of VAF versus putative functional variants, which may not be used

for the reconstruction of cancer clonal architecture but can be assigned to inferred clones at the �nal stage.

The key element of our framework is QuantumClone, a method to cluster variants into clones, which we

have thoroughly tested on simulated data. QuantumClone takes into account VAFs and genotypes of cor-

responding regions together with information about normal cell contamination. We applied our framework

to whole genome sequencing data for 19 neuroblastoma trios each including constitutional, diagnosis and

relapse samples. We discovered speci�c pathways recurrently altered by deleterious mutations in di�erent

clonal populations. Some such pathways were previously reported (e.g., MAPK and neuritogenesis) while

some were novel (e.g., epithelial�mesenchymal transition, cell survival and DNA repair). Most pathways and

their modules had more mutations at relapse compared to diagnosis.
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Introduction1

The principal cause of cancer is believed to be accumulation of mutations and structural variations (SVs)2

of the genome. Recently, many e�orts have focused on the identi�cation of driver mutations; nonetheless,3

passenger variants, although they are not directly linked to the disease, may provide additional evidence from4

which to infer the phylogeny of a tumor and so help uncover the basis for its proliferative activity (Marusyk5

et al., 2014).6

7

To understand the role driver mutations play in clonal expansion and cancer progression, it is essential8

to accurately reconstruct the clonal structure and assign functional variants to it. We de�ne a clone as a9

cell population that harbors a unique pattern of mutations and SVs. Clones are related to each other and10

share a common ancestor. A hierarchical phylogenetic tree, which represents the ancestry of clones, can11

be constructed to re�ect the order of appearance of new sets of mutations de�ning each clone. Each such12

set of mutations is expected to contain at least one driver mutation or SV giving a selective advantage to13

the clone compared to its ancestry. A clone can thus have a di�erent behavior from its ancestral clone14

when facing the same stimuli. With accumulation of driver mutations, clones are likely to gain hallmarks of15

cancer such as evading growth suppressors, activating invasion and metastasis (Hanahan and Weinberg, 2011).16

17

High-Throughput Sequencing (HTS) of bulk tumor tissues has allowed uncovering genetic di�erences at18

the clonal level in primary and relapse/metastatic tumors. Modern computational methods provide ways to19

reconstruct the structure of the phylogenetic tree from variant allele frequencies (VAFs) in sequenced reads,20

where VAF is a proportion of reads supporting each given variant among all reads spanning the position of21

interest (Fischer et al., 2014; Jiao et al., 2014; Kepler, 2013; Malikic et al., 2015; Miller et al., 2014; Qiao et al.,22

2014; Schwarz et al., 2014). However, existing methods for clonal reconstruction often neglect information23

about the genotype of each position, which refers to the paternal or maternal inheritance of a locus and the24

number of copies of each allele. Accounting for the genotype information is especially crucial in the case of25

hyper-diploid cancers and cancers with highly rearranged genomes, as the cellular prevalence � measured as26

the proportion of cancer cells carrying a variant � is linked to VAF through such parameters as copy number27

of the locus and the number of chromosome bearing the mutation.28

29

Here we show that by combining the genotype and VAF information it is possible to correctly cluster30

variants and assign them to speci�c clones, thus reconstructing the clonal architecture of an individual can-31

cer. This may be done with our novel method, QuantumClone, designed to reconstruct clones based on both32
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VAF and genotype information. We demonstrate that our algorithm accurately clusters variants on simu-33

lated data, even when cancer is hyper-diploid or contaminated by normal cells. We also propose a general34

framework based on QuantumClone to detect driver mutations of clonal evolution. This general approach is35

applied to 19 neuroblastoma cases; each case includes whole genome sequencing (WGS) data from a sample36

at diagnosis and relapse. We show that deleterious mutations in neuroblastoma accumulate at relapse in37

speci�c pathways such as cell motility (e.g., cell-matrix adhesion and regulation of epithelial�mesenchymal38

transition, EMT) and cell survival (e.g., PI3K/AKT/mTOR, MAPK or noncanonical Wnt pathways).39

40

Results41

The QuantumClone method presented here applies an expectation-maximization (EM) algorithm and allows42

for accurate inference of clonal structure using VAFs from one or several tumor samples sequenced using43

WGS. It can analyze variants coming from highly rearranged and hyper-diploid cancer genomes. We exten-44

sively validated QuantumClone on simulated data, where we compared it with recently published methods45

(Miller et al., 2014; Roth et al., 2014). We complement QuantumClone with a robust framework for the46

functional assessment of mutations based on signaling pathway analysis combined with the clonal assignment47

(Fig. 1).48

49

The overall framework was applied to WGS neuroblastoma datasets: 19 patients' primary and relapse50

samples including 7 new triplets. Novel and previously published samples (Eleveld et al., 2015) have been51

sequenced at ∼ 100× depth of coverage using Illumina HiSeq 2500 and Complete Genomics sequencing tech-52

nologies. Application of the QuantumClone-based framework allowed us to discover pathways recurrently53

altered by mutations in neuroblastoma at diagnosis and relapse.54

55

Assessment of clonal reconstruction accuracy by QuantumClone56

For clonal reconstruction using VAFs, we developed an approach that applies an EM algorithm (Fig. 2A,57

Methods). QuantumClone utilizes genotype information and assigns variants to clones providing the most58

likely values of cellular prevalence (Fig. 2A, Methods).59

60
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Comparison of QuantumClone with existing methods61

Using in silico data, we compared the performance of QuantumClone, sciClone (Miller et al., 2014), pyClone62

(Roth et al., 2014) and a generic k�medoids clustering algorithm in inferring clonal structure of a set of63

tumors derived from the same patient. sciClone is based on variational Bayesian Mixture Models, while py-64

Clone relies on a hierarchical Bayes statistical model. Partitioning with k�medoids is a more robust version65

of a widely used k�means clustering algorithm (Kaufman and Rousseeuw, 1987).66

67

In our simulation experiments, the following parameters were varied within realistic ranges: depth of68

sequencing (50 × to 1000×), fraction of contamination by normal cells (from 0 to 50%), number of variants69

used for the clonal reconstruction (from 50 to 200), number of tumor samples used for each patient (from70

2 to 5) and number of distinct clones per cancer (from 2 to 9) (Fig. 2B). For each set of parameters, we71

performed and analyzed 50 independent simulation experiments (Methods). The accuracy of clonal recon-72

struction was assessed by evaluation of the normalized mutual information (NMI) (Manning et al., 2008). A73

perfect mutation clustering would result in a NMI value of 1, which corresponds to an identi�cation of the74

exact number of clones and correct assignment of all the mutations of a clone to the same cluster.75

76

Our analysis showed that QuantumClone surpasses both published algorithms in experiments with chal-77

lenging parameter settings: high contamination by normal cells, moderate depth of sequencing or high tumor78

heterogeneity (Fig. 2B). Indeed, in samples with 50% contamination by normal cells QuantumClone signif-79

icantly outperformed sciClone and pyClone (p − value = 2.6 × 10−4 and p − value = 3.2 × 10−14, Welch80

two sample t-test). While at high values of sequencing depth, all methods provided accurate results, at81

depth of sequencing of 50× QuantumClone consistently gave better predictions (p− value = 1.2× 10−3 and82

p − value = 7.3 × 10−10 for sciClone and pyClone respectively). In addition, compared to the other meth-83

ods, QuantumClone took the best advantage of data when multiple samples were provided for the analysis84

(p−value = 9.4×10−3 and p−value = 8.0×10−4 for sciClone and pyClone respectively, for simulated tumors85

with �ve samples). Also, starting from six clones per tumor, QuantumClone demonstrated signi�cantly better86

clonal reconstitution accuracy than the other methods (p− value = 4.3× 10−8 and p− value < 2.2× 10−16
87

for sciClone and pyClone respectively).88

89
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Figure 2: Principle of the QuantumClone algorithm and comparison to published methods. (A)
Mutations located in regions of copy number aberration can be present on several chromosomal copies; they
can thus be assigned to several cellular prevalence values (left panel). After the Expectation Maximization
(EM) step each mutation is attributed the most likely cellular prevalence value (right panel). Each mutation
is represented by a speci�c color. Mutations located in AB regions (circles); mutations located at relapse in
regions of gain (squares), mutations located in regions of gain both at diagnosis and relapse (triangles). (B)
Comparison of QuantumClone to existing methods. Normalized Mutual Information (NMI) is used to assess
the quality of clustering on simulated data, with a single parameter varying in each test. QuantumClone
(red) shows better performance in di�cult settings, i.e., in presence of a high number of clones, low number of
input samples, low sequencing depth, and high fraction of contamination by normal cells. Default parameters:
two tumor samples without contamination sequenced at 100×; 4 clones; 100 mutations used for clustering.
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Assessment of clonal reconstruction accuracy in hyper-diploid cancers or cancers with highly90

rearranged genomes91

We expect that in addition to the parameters discussed above, the degree of genome rearrangement and92

chromosome duplication signi�cantly a�ects the quality of the mutation clustering and consecutive clonal93

reconstruction. Indeed, given an observed VAF value, a mutation occurring in a high copy number locus has94

more possibilities for values of cellular prevalence: a mutation with an observed allele frequency of 25% can95

only be linked to a cellular prevalence of 50% in a AB locus, while it can arise from cellular prevalence values96

of 33.3%, 50% or 100% if the genotype is AAAB (Methods).97

98

In order to validate QuantumClone on diploid and hyper-diploid genomes, we simulated variants in loci99

of genotype AB, AAB and AABB (Fig. 3). In addition to QuantumClone, we tested the performance of100

the k -medoids clustering algorithm, and two alternative versions of QuantumClone: QuantumClone-Single101

and QuantumClone-Alpha. QuantumClone-Single assigned variants to a single copy state, e.g., variants in102

AAB regions were supposed to only occur on a single chromosome. QuantumClone-Alpha used the same EM103

algorithm as the default version of QuantumClone but added additional weights to probabilities based on104

the locus genotype (Methods); e.g., this method suggested that a mutation in an AAB region has 3 times105

more chances to occur on a single chromosome than on two chromosomes out of three. The default version106

of QuantumClone assigned equal weights to all possibilities (Methods).107

108

In all types of regions, QuantumClone and its alternative methods performed better than the baseline109

k -medoids clustering algorithm (Fig. 3). For AB regions, where VAF of each mutation corresponds to a single110

possible value of cellular prevalence, the di�erence in performance between QuantumClone, QuantumClone-111

Single and QuantumClone-Alpha was not signi�cant; in fact, it was due to random initialization of the EM112

algorithm.113

114

In the case of a triploid genome when each mutation was simulated to occur in a single chromosome115

copy (case AAB*, Fig. 3), QuantumClone provided equally good results as QuantumClone-Single (t-test116

p−value = 0.63). This validated our EM strategy to automatically select the number of chromosomal copies117

with a mutation.118

119

We demonstrated that in a more realistic case when a mutation can have a single or multiple copy status120

(AAB and AABB regions), QuantumClone performed better than the three other methods. This validated121
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our computational strategy for hyper-diploid cancers.122

123

Overall, validation on simulated data showed that (1) QuantumClone can be applied to cancer samples124

with hyperploid or rearranged genomes and (2) QuantumClone performs generally better than its peers in125

di�cult settings, e.g., in experiments with low depth of sequencing, when the number of clones is higher than126

or equal to six, or when the contamination by normal cells is higher than or equal to 0.3.127

128

E�ect of experimental settings on the clonal reconstruction accuracy129

Our analysis allowed us not only to compare QuantumClone to published methods and de�ne the limits of130

applicability of each method but also to study the e�ect of experimental settings on the clonal reconstruction131

accuracy, which can help in the planning of tumor DNA sequencing experiments.132

133

E�ect of contamination by normal cells. As expected, the accuracy of clonal reconstruction decreased134

with the contamination level (Spearman's rank correlation rho = -0.29, p − value = 8.1 × 10−6); here and135

below, correlation is provided for QuantumClone results only, although the observed trend is usually true for136

the three other methods.137

138

E�ect of the number of variants. Unexpectedly, increasing the number of variants slightly decreased the139

quality of clustering (rho = −0.17, p − value = 0.0104). This e�ect is due to an artefactual increase in140

the number of mutation clusters needed to explain larger numbers of observed cellular prevalence values. In141

other words, independently of the true clonal structure, more variants in the input result in the prediction142

of higher number of mutation clusters corresponding to clones.143

144

E�ect of the number of samples. To reconstruct clones existing in patients' tumors with higher �delity,145

recent studies advocate for sequencing of multiple samples obtained from the same patient, either by us-146

ing di�erent time points or di�erent sites of the tumor (Schwarz et al., 2014). Indeed, we demonstrated147

that increasing the number of available samples signi�cantly improved the quality of clonal reconstruction148

(rho = 0.40, p− value = 6.3× 10−6).149

150

E�ect of sequencing depth. Variance in VAF estimation is expected to go down with the increase in151

sequencing depth, resulting in better mutation clustering. As expected, we observed a signi�cant positive152
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correlation between depth of sequencing and the quality of clonal reconstruction (rho = 0.67, p − value <153

2.2× 10−16).154

155

E�ect of the number of distinct clones present. We observe that the quality of clonal reconstruction de-156

clined with the increase in tumor heterogeneity, i.e., the number of distinct clones present in patients' tumors157

(rho = -0.27, p − value = 8.2 × 10−5). As previously mentioned, in heterogeneous samples, QuantumClone158

showed better performance than the other tested methods.159

160

Creating a robust framework for clonal assignment of functional mutations161

We proposed a novel concept of reconstruction of the clonal architecture in cancer combined with the attri-162

bution of functional mutations (potential drivers) to identi�ed clones (Fig. 1). The approach is based on163

the di�erent usage of `functional' variants that potentially a�ect cell phenotype and `support' variants that164

are used to de�ne clones. Support variants can be either drivers or passengers; however, they should have165

high depth of coverage (> 50× in our implementation), have no strand bias and should not coincide with166

annotated single-nucleotide polymorphisms (SNPs). As we showed in the simulation studies (Fig. 2B) only167

a limited number of support variants are needed for an accurate clonal reconstruction. Therefore, in most168

cases, we can even a�ord to limit the set of support variants to those falling in regions of genotype A and169

AB; in such regions VAF values directly determine values of mutation cellular prevalence (Methods). Support170

variants, because they have a lower variance of observed VAF compared with other variants, are applied to171

de�ne clones, i.e., support variants serve as input to QuantumClone or an alternative method. Functional172

mutations are de�ned as variants with deleterious properties that a�ect either genes reported in the Cancer173

Census List (Futreal et al., 2004) or genes from gene modules/signaling pathways that are recurrently a�ected174

by mutations in a given cancer type (Methods). At the last step of our framework, functional mutations are175

mapped to the clonal structure inferred from support variants based on the likelihood values.176

177

The QuantumClone R package includes functions for both clonal reconstruction using support variants178

and assignment of functional mutations to the de�ned clones.179

180

We propose the following options to be used in the analysis framework. Deleterious mutations can be181

determined using SIFT (Ng and Heniko�, 2003) , PolyPhen-2 (Adzhubei et al., 2013) and FunSeq2 (Khurana182

et al., 2013). Gene module enrichment analysis may be performed using the R package ACSNMineR (Deveau183
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P., Barillot E., Boeva V., Zinovyev A., Bonnet E., In Press) using maps and modules of the Atlas of Can-184

cer Signalling Networks (ACSN) (Kuperstein et al., 2015) completed with the user-de�ned/cancer-speci�c185

modules. For the speci�c case of neuroblastoma, we created a `Neuritogenesis' map extracted from Molenaar186

et al. (2012).187

188

Characterization of neuroblastoma clonal evolution from diagnosis to relapse:189

application of the QuantumClone-based framework190

We applied our framework to investigate the clonal composition of neuroblastoma primary and relapse tumors191

and study its clonal evolution. We characterized clonal structure of tumors of 22 neuroblastoma patients192

(clinical data available in Suppl. Table 1). We performed WGS of constitutive DNA, diagnosis and relapse193

tumor samples of each patient with average depth of coverage ∼ 100×. Datasets for 15 patients out of194

22 came from a previously published study (Eleveld et al., 2015). Sequencing was carried out using both195

Illumina HiSeq 2500 and Complete Genomics platforms. Reads were mapped to the reference hg19 genome196

using BWA-aln (Li and Durbin, 2009) (Illumina reads) and the internal Complete Genomics mapping tool197

(Complete Genomics reads). Variant calling was performed using Varscan2 version 2.3.6 (Koboldt et al.,198

2013).199

200

The level of contamination by normal cells varied from 0% to 90%, and only data from 19 patients with201

a contamination level lower than 70% were kept for further analysis (Suppl. Table 1).202

203

Application of �lters uni�es variant call numbers across di�erent sequencing platforms204

In order to remove false positive variant calls, we used a set of stringent �lters (Fig. 1, Methods). The initial205

number of variants in the Varscan2 output was highly dependent on the sequencing technology and platform206

(Suppl. Fig. 1 and 2). The number of variants called for samples sequenced by the Beijing Genomics Institute207

(BGI) sequencing platform was an order of magnitude higher than the number of mutations called for samples208

processed by the Centre National de Génotypage (CNG). Application of a set of �lters based on read depth209

of coverage, read mappability, annotated repetitive regions (listed in Fig. 1 and Methods) allowed us to210

get comparable numbers of variants for further analysis. In the �nal list, number of mutations per sample211

correlated with the age of the patient (Fig. 4, Spearman's rho = 0.54, p−value = 5.3×10−4; datasets tested212

include information from all samples kept after the evaluation of normal contamination). The stability of213
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Figure 4: Statistics on numbers of somatic mutations called using stringent �lters for diagnosis
and relapse samples from 19 neuroblastoma patients. The number of somatic mutations is correlated
with the age of the patient at the time of the biopsy (Spearman correlation test p−value = 6.3×10−4). Final
mutation numbers after the �ltering step do not depend on the sequencing center or sequencing technology
used. Diagnosis and relapse samples from the same patient are connected by a dotted line.

�nal numbers of predicted variants across sequencing platforms and correlation of these numbers with the214

age of patients validated our �ltering approach. In fact, the presence of such correlation has previously been215

shown in neuroblastoma (Molenaar et al., 2012). In all but one neuroblastoma patient, there were more216

variants detected in the relapse sample than in the diagnosis sample with an average two-fold increase.217

Clonal reconstruction218

We applied QuantumClone on support variants we de�ned using stringent �lters (Fig. 1, Step 2; Fig. 5).219

Across our cohort, we observed a signi�cant association between the predicted number of clones and the220

number of mutations per patient (Spearman's rho = 0.42, p − value = 0.011). However, for each given pa-221

tient, the number of clones at relapse was similar to that at diagnosis, even despite the fact that the relapse222

samples had about twice as many mutations as the diagnosis samples (number of mutation clusters varied223

from zero to four with a median of three for both time points).224

225

We identi�ed mutations coming from the ancestral clone (Figure 6A), i.e. the clone that gave rise to all226

cells in both diagnosis and relapse samples, in 84% of reconstructed clonal structures (16 out of 19 patients).227
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The total number of support variants attributed to ancestral clones ranged between 3 and 120, with a median228

of 22.229

Annotation of functional mutations in each sample based on the global pathway enrichment230

analysis231

In our framework, we assumed that functional mutations in a given cancer type, i.e., putative drivers, should232

target speci�c signaling pathways or pathway modules (Fig. 1, Step 4). These modules can be identi�ed233

as those enriched in coding deleterious mutations across the cohort. Thus, we mapped the total of 541234

deleterious mutations obtained with tolerant �lters (Fig. 1, Methods) to the ACSN maps and detected re-235

currently altered gene modules using the ACSNmineR package. Overall, �ve general gene maps (apoptosis,236

DNA repair, EMT/cell motility, cell survival and neuritogenesis) and their 15 gene modules were found to237

be enriched in mutations (threshold 0.05 on the p-value corrected to account for multiple testing with the238

Benjamini-Hochberg False Discovery Rate correction, corresponding to the q-value)) (Figure 6B, Supp. Ta-239

ble 2). Next, deleterious mutations were annotated as functional when corresponding genes were included240

in the enriched pathways, or when such genes belonged to the Cancer Census list. The resulting number of241

functional mutations per sample varied from 1 to 23.242

243
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At this step, among the cell survival modules, the highest enrichment in putative driver mutations was244

observed for the MAPK pathway (q − value ≤ 7.2 × 10−5). In addition, we detected signi�cant enrichment245

in functional mutations of both canonical and non-canonical WNT pathways (q− value ≤ 3.8× 10−3 and ≤246

1.49×10−2, respectively), and of the PI3K/AKT/mTOR and Hedgehog gene modules (q−value ≤ 1.3×10−2
247

and ≤ 4.5 × 10−4, respectively). As for the modules of other maps, genes coding for the EMT regulators248

were also signi�cantly a�ected by the deleterious mutations in our cohort of relapsed neuroblastoma patients249

(q − value ≤ 1.2× 10−6).250

251

As a control, we ran ACSNMineR on synonymous variants passing the same �lters as the non-synonymous252

ones (1060 synonymous mutations in 771 genes). Enrichment analysis provided no modules enriched in253

synonymous variants (minimal p−value > 0.28), thus con�rming the biological signi�cance of the discovered254

enrichment in functional mutations for 20 ACSN modules and maps. Strikingly, similar enrichment analysis255

of intronic variants showed recurrently a�ected pathways similar to those a�ected by coding deleterious256

mutations, such as EMT-motility (Odds ratio = 5.3, p− value < 10−20) or cell survival (Odds ratio = 4.0,257

p− value < 10−20), highlighting the possible role of intronic SNVs in neuroblastoma tumorigenesis.258

Assignment of functional mutations to the identi�ed clonal structure259

Using the results of the mapping of functional mutations on the clonal structure detected for each patient260

by QuantumClone (Fig. 1, Step 5), we annotated mutations as (i) those belonging to expanding clones, (ii)261

those belonging to shrinking clones, and (iii) those belonging to ancestral clones (Fig. 6A). Overall, 53%,262

31% and 4,8% of all functional mutations fell in these three categories.263

264

For the majority of samples (16 out of 19 patients), we could not detect functional mutations in the265

ancestral clone. But, interestingly, samples with identi�ed ancestral functional mutations contained variants266

in the MYC and AKT2 genes, which are known to act as drivers in many cancers. Moreover, the ancestral267

clones detected in our samples, often contained a higher proportion of putative driver mutations a�ecting268

the DNA repair, EMT/cell motility and other pathways than any other clones including those expanding at269

relapse (Fig. 6B and 6C).270

Analysis of pathways enriched in functional mutations in shrinking and expanding clones271

Assignment of mutations to clones shrinking or expanding after the treatment resulted in the identi�cation272

of 33 and 56 possible driver mutations in these clone types, respectively. Expanding clones had more dele-273

terious mutations targeting genes from four general maps (DNA repair, EMT/cell motility, cell survival and274
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Figure 6: Annotation of clones in neuroblastoma and pathway enrichment analysis. (A) Illustra-
tion of the rule for assignment of mutations to (i) the ancestral clone (cellular prevalence of the mutation clus-
ter exceeds 80% both at diagnosis and relapse), (ii) clones expanding after the treatment (cellular prevalence
of the mutation cluster increases at least two-fold at relapse) and (iii) shrinking clones (cellular prevalence
of such mutation clusters decreases at least two-fold). (B) Pathways enriched in deleterious mutations in
neuroblastoma. General ACSN maps and the manually added neuritogenesis pathway are shown in bold;
map sub-modules are shown in the color of the corresponding map. The �Cell Cycle� ACSN map does not
show enrichment in mutations and is omitted from the graph. (C) Absolute numbers of deleterious muta-
tions in gene maps and modules in the ancestral clones, and clones expanding and shrinking at relapse. (D)
Proportions of functional mutations in each module over the total number of detected deleterious mutations
in the ancestral, expanding and shrinking clones.
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neuritogenesis) (Fig. 6C). Similarly, in these clones, most of the corresponding gene modules (e.g., MAPK,275

WNT canonical or PI3K/AKT/mTOR) were also more frequently targeted. Although the absolute number276

of functional mutations in the expanding clones was about twice as high as in the shrinking ones, the pro-277

portion of such mutations among all deleterious ones was not signi�cantly di�erent between the shrinking278

and expanding clones (Fig. 6D).279

280

In addition to the MAPK pathway mutations previously reported for the relapse neuroblastoma samples281

(e.g., mutations in the NRAS gene (Eleveld et al., 2015)), in the expanding clones we observed coding variants282

a�ecting additional MAPK pathway genes such as NFE2L1, PIM1, FLT4 and RSK. These genes have been283

shown to be involved in tumorigenesis of prostate (Yu et al., 2015), colorectal (Xiao et al., 2014), breast284

(Malinen et al., 2013) and other cancers.285

Discussion286

Here we propose a pathway-based framework to detect functional mutations in cancer samples and associate287

the mutations to their corresponding clonal structure. The central part of our framework is represented by288

the QuantumClone method, which allows reconstruction of clonal populations based on both variant allele289

frequencies and genotype information. QuantumClone showed stable results on simulated data signi�cantly290

outperforming other methods in di�cult settings such as highly contaminated samples, heterogeneous tumors291

and relatively low depth of sequencing coverage.292

293

Our analysis framework is based on two central ideas. First, high-reliability passenger mutations must294

be used to reconstruct the clonal structure of tumors samples; then, low coverage functional mutations (with295

high variance in VAFs) should be mapped onto the inferred clonal structure. Second, we suggest to limit the296

set of functional mutations to those in genes known to be associated with cancer (e.g., Cancer Census genes)297

or to those in genes from gene modules/pathways frequently disrupted in a given cancer type (Fig. 1).298

299

We apply the proposed analysis framework to decipher clonal structure in neuroblastoma and assign to300

clones possible driver mutations. We detect 15 pathways as being altered by mutations in neuroblastoma.301

We identify genes associated with DNA repair, cell motility, apoptosis and survival to be enriched in func-302

tional mutations in neuroblastoma.For relapsed neuroblastoma samples, we recover the previously reported303

enrichment of mutations in the MAPK signaling pathway (Eleveld et al., 2015), while complementing this304

knowledge with discovery of accumulation of functional mutations at the relapse in such functional gene305
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modules as PI3K/AKT/mTOR, WNT, Hedgehog signaling and modules consisting of genes responsible for306

cell-matrix adhesion and epithelial�mesenchymal transition (EMT).307

308

We highlight the lack of enrichment in mutations of the cell cycle pathway in this pediatric cancer. This309

could be explained by the biological context of neuroblastoma that may already favor proliferation, which310

accompanies organism development, thus limiting the necessity to disrupt cell cycle mechanisms. However,311

this observation should be in the future con�rmed on a larger cohort.312

313

For the majority of neuroblastoma patients, we did not identify driver mutations in the ancestral clone.314

This is in line with the current understanding of neuroblastoma as a type of cancer driven by copy number315

alterations. In fact, it has been known that the aggressiveness of neuroblastoma is highly associated with316

changes of the chromosomal copy number pro�le (MYCN ampli�cation, 1p, 3p, 11q deletions, partial gain317

of chr17) (Janoueix-Lerosey et al., 2010). And indeed, copy number pro�ling often detected gain and losses318

in these recurrently a�ected chromosomal regions both in the diagnosis and relapse samples from our cohort319

(Suppl. Fig. 3).320

321

For most of our samples, we did not succeed in reliably reconstructing the phylogeny of clonal evolution322

based on cellular prevalence values for identi�ed mutation clusters (clones). Some contradictions between323

cellular prevalence values between diagnosis and relapse, as well as disappearance at relapse of many potential324

driver mutations seemingly present in the ancestral clone at diagnosis, may be due to tumor heterogeneity325

and the fact that biopsies were taken from di�erent tumor sites. This situation has been termed "illusion326

of clonality" (Bruin et al., 2014). However, the fact that for most of the samples we observed a number of327

shared mutations between diagnosis and relapse and that copy number breakpoints were consistent between328

the two time points ensures that there is a common phylogeny between diagnosis and relapse in neuroblas-329

toma (Bollet et al., 2008).330

331

In the application of our framework to neuroblastoma sequencing data, we excluded information about332

SVs and indels. The reason for this was that the analysis of clonal structure is based on the number of se-333

quencing reads supporting each genetic variant. While we suppose that the number of reads with a mismatch334

mutation is proportional to the number of DNA molecules harboring this variant, we expect that due to read335

mapping issues the fraction of reads indicating an indel or a large SV will be generally lower than the actual336

proportion of DNA molecules with the rearrangement. Eviction of large and small SVs seemingly resulted337

in a decrease in sensitivity of the detection of genetic driver events. In our neuroblastoma data, a large338
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proportion of observed clones did not contain any predicted driver mutation. In the future, the sensitivity339

can be improved by using higher depth of coverage data and combining the paired-end datasets with reads340

produced with the mate-pair protocol or with long PacBio reads.341

342

The proposed framework can be applied in the future to any type of cancer. The pre-requirements are343

su�cient number of candidate mutations (at least 50 mutations per sample) and a minimal read depth of344

coverage of 50×. These requirements are usually met by WGS or whole exome sequencing datasets. Our345

simulation results show that increasing the number of mutations used for clonal reconstruction above 50 does346

not improve signi�cantly the clonal reconstruction accuracy provided that mutations speci�c for every clone347

are present in the input.348

349

Methods350

Datasets351

Patient selection and collection of tumor samples. The inclusion criteria for this study were histopathologi-352

cal con�rmation of neuroblastoma at original diagnosis and the presence of biopsy material from a subsequent353

relapse specimen. Patients were included in this study after an informed consent was obtained from par-354

ents or guardians, with oversight from the ethics committees 'Comité de Protection des Personnes Sud-Est355

IV', reference L07-95/L12-171, and 'Comité de Protection des Personnes Ile-de-France', reference 0811728 in356

France, the review board at the Children's Hospital of Philadelphia and review boards at other Children's357

Oncology Group sites that submitted samples for patients on this study in the United States. In total we358

obtained material for 22 neuroblastoma patients (tumor tissue at diagnosis, relapse and constitutional DNA,359

Suppl. Table 1).360

361

Whole-genome sequencing of neuroblastoma samples. In the framework of this study, we carried out362

Illumina paired-end sequencing for 7 novel neuroblastoma patients (corresponding to 21 samples). Data for363

15 patients were taken and reanalyzed from the previous study (Eleveld et al., 2015). DNA from 7 patients364

from the previous study and 7 new ones have been sequenced using Illumina HiSeq 2500 instruments to an av-365

erage depth of coverage of 80× by Beijing Genomics Institute (BGI) and the Centre National de Génotypage366

(CNG) respectively. For 8 patients out of 15 previously reported, whole-genome sequencing was performed367

by Complete Genomics with an average read depth of coverage of 50×. DNA material for each patient368
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(lymphocytes, primary tumors and relapse tumors) was in each case sequenced using the same sequencing369

platform (see Suppl. Table 1 for more detail).370

371

Data processing. Sequenced reads were mapped to the human genome hg19 using BWA and the internal372

Complete Genomics tools for Illumina and Complete Genomics datasets respectively. Reads from datasets373

sequenced using the Illumina platform were realigned around indels with the Genome Analysis ToolKit374

(GATK) (McKenna et al., 2010), followed by a base recalibration. Due to the inherent structure of Complete375

Genomics reads, which contain an e�ective deletion relative to their corresponding genomic library, the indel376

realignment step was skipped for the Complete Genomics samples.377

378

Variant calling and �ltering379

Mutations were called using Varscan2 (Koboldt et al., 2013). Two sets of variants were created for each380

patient (see Fig. 1) using tolerant and stringent �ltering options. The `stringent' set was further used for381

clonal reconstruction, while the `tolerant' one was used for inference of recurrently altered pathways.382

383

Tolerant �lters for somatic mutations included those on minimal depth of coverage (30×), minimal per-384

centage of reads supporting the mutation (10%). In addition, mutations were required to be located in regions385

of high local mappability (36 bp mappability), outside of repeat and duplicated genomic regions (assessed386

by the UCSC repeat and segmental duplication region tracks). We further �ltered mutations that created a387

stretch of four or more identical nucleotides. Finally, we only kept mutations located in regions where the388

genotype evaluated by Control-FREEC was available.389

390

To obtain a set of high con�dence mutations, we required the minimal depth of coverage of 50×. We391

�ltered out variants corresponding to polymorphisms present in more than 1% of the population (snp138,392

1000Genomes, esp6500) except if it was a known cancer related variant (COSMIC database for coding and393

non-coding mutations). Strand bias was also tested by the Fisher exact test (in addition to the test in394

Varscan2) to reduce the number of informative mutations to a maximum of 500. We restricted the analysis395

to AB regions in case when after such �ltering we kept more than 100 mutations.396

397
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Copy number analysis398

Copy number alterations in patients were detected using the Control-FREEC method (Boeva et al., 2012)(ver-399

sion 7.2) (Suppl. Fig. 3). We selected the main ploidy value so that the predicted copy number and B-allele400

frequency pro�les were consistent. Control-FREEC also provided estimations of the level of contamination401

by normal cells, which, after manual con�rmation, was further used for the clonal reconstruction.402

403

Three samples with the estimated proportion of contamination by normal cells higher than 70% were404

excluded from the further analysis (NB0784:diagnosis, NB1434:relapse and NB1471:relapse).405

406

Comparison of clonal reconstruction between QuantumClone and existing meth-407

ods408

Data simulation. In silico validation data were generated using the QuantumCat method from package409

QuantumClone (version 0.15.12.10). QuantumCat simulates genomic mutations, copy number alterations410

and corresponding VAFs. It relies on the following set of rules:411

1. A binary phylogenetic tree is created to simulate the clonal architecture of the tumor. The mutation412

cellular prevalence values correspond to the nodes and leaves of the phylogenetic tree.413

2. Cellular prevalence values of mutations from each clone are independent across tumor samples. However,414

the cellular prevalence of each clone should be always coherent with the phylogenetic tree.415

3. The allelic copy number of all mutation loci was set to AB in the tests carried out to compare Quan-416

tumClone, sciClone and pyClone (Figure 2B). For QuantumClone validation on triploid and tetraploid417

genomes (Figure 3), the number of chromosomal copies bearing each mutation was randomly assigned418

between one and the number of A-alleles for the locus considered. Generation of the genotype, num-419

ber of chromosomal copies, normal contamination and cellular prevalence of a mutation allows for the420

computation of the exact VAF, which is the cellular prevalence (taking into account the contamination421

by normal cells) times the number of copies of the mutations divided by the number of copies of the422

locus in each cell. On the other hand, the observed VAF is determined by the ratio of the number423

of reads supporting the mutations divided by the read depth of coverage. Local depth of coverage at424

each given position was generated by the negative binomial distribution centered on the target depth425

of sequencing, �tted on experimental data. The number of reads supporting a mutation was simulated426

from the binomial distribution with the probability of success equal to the exact VAF.427
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Program versions and parameters. We used SciClone version 1.0.7 with the following changes to the default428

parameters: maximal number of clusters was set to 10 and the minimal depth of coverage was set to 0.429

430

PyClone version 0.12.9 was used with the following parameters : 10 iterations of the Markov chain Monte431

Carlo, alpha and beta parameters in the Beta base measure for Dirichlet Process set to 1, concentration prior432

shape set to 1 and the rate parameter in the Gamma prior on the concentration parameter set to 0.001. We433

used the default Beta binomial distribution with precision parameter set to 1000, prior shape set to 1, rate434

to 0.0001, and proposal precision set to 0.01.435

436

We used an implementation of the k -medoids algorithm provided by the R package �fpc�, version 2.1.10,437

with a range of clusters between 2 and 10.438

439

For clonal reconstruction, QuantumClone version 0.15.12.10 was used with default parameters except for440

the the maximal number of clusters, which was set to 10. For clonal reconstruction of neuroblastoma data,441

mutations used to compute centers of clusters (corresponding to clones) were selected using the stringent set442

of �lters. Copy number information from Control-FREEC (version 7.2) was also passed to the algorithm as443

well as the predicted value of contamination by normal cells.444

445

For simulated data, quality of clustering was assessed by using Normalized Mutual Information (NMI),446

which is given for a group of clones Ω and a group of reconstructed clusters C:447

NMI(Ω,C) = −2×

∑
k

∑
j
|ωk∩cj |
N log

(
N×|ωk∩cj |
|ωk||cj |

)
∑
k
|ωk|
N log

(
|ωk|
N

)
+
∑
j
|cj |
N log

(
|cj |
N

) , (1)

where N is the number of mutations observed, |ωk| the number of mutations in clone k , and |cj | the448

number of mutations attributed to cluster j.449

450

Clonal reconstruction451

In this section we describe QuantumClone, a method we have developed for the clonal reconstruction of a452

tumor. QuantumClone performs clustering of cellular prevalence values of mutations de�ned by:453

θ =
V AF ×NCh
NC × P

, (2)

22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2016. ; https://doi.org/10.1101/054346doi: bioRxiv preprint 

https://doi.org/10.1101/054346
http://creativecommons.org/licenses/by-nc-nd/4.0/


where θ is the cellular prevalence, NCh the number of copies of the corresponding locus, NC the number454

of chromosomal copies bearing the mutation, and P the tumor purity. For instance, only in case of a purely455

diploid tumor without loss of heterozygosity (LOH) regions, with no contamination of the sample by normal456

cells, the cellular prevalence is equal to 2× V AF . The latter assumption has been frequently used in cancer457

studies (Schramm et al., 2015). As we do not have information about the number of chromosomal copies458

bearing a mutation, our approach was to compute each possible value of cellular prevalence associated with459

the mutation VAF. For example, a mutation can have a VAF of 1/3 in a locus of genotype AAB when it is460

present in 100% of tumor cells on a single chromosome copy and when it is present in 50% of tumor cells461

on two chromosomes. Yet the latter case is rather improbable. Each mutation thus corresponds to several462

possible values of cellular prevalence; each solution is associated with a value of NC. In order to address463

the problem of non-uniqueness of solution, we use an EM algorithm based on the probability to observe464

a speci�c number of reads con�rming a mutation given the number of reads overlapping the position, the465

contamination and the cellularity of a clone. In more detail, we attribute to each possibility a probability to466

observe f reads supporting the variant given that the latter belongs to a clone of cellular prevalence θ, based467

on a binomial distribution:468

P (f |θ) =

(
d

f

)(
θ ×NC (1− c)

NCh

)f
×
(

1− (θ ×NC (1− c))
NCh

)d−f
, (3)

where469

• d is the depth of coverage of the variation470

• f is the number of reads supporting the variant471

• c is the sample contamination by normal cells472

We can then write the log likelihood function to maximize:473

L =
∑

i∈mutations

∑
k∈clones

∑
s∈samples

∑
p∈possibilities(i)

ω(i,p)t(i,k)log (Pi,s,p (fi,s,p|θk,s)) , (4)

where ωi,p are weights of the possibility computed for a corresponding genotype xAyB (major allele A is

present x times and the minor allele B is present y times):

ωi,p =
∏

s∈samples

(
xs

NCi,s,p

)
+
(

ys
NCi,s,p

)
2NChs

.

By adding weights that for each variant sum to one, we favour mutations with the lowest number of copies.474
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Each mutation is then attributed to its most likely possibility, which is the possibility with highest probability475

to belong to a clone. In the situation described above (a variant in a AAB region with the VAF of 1/3), this476

approach would assign probabilities of 2/3 and 1/2 to the presence of the mutation in 100% and 50% of cells477

respectively. However, if there is a second mutation present, for example, in a locus of genotype AB with a478

VAF of 1/2 and thus having unambiguously cellular prevalence of 100%, the �rst mutation will have a high479

density of probability for a cellular prevalence of 100% and our approach will assign both mutations to the480

same cluster corresponding to the same cellular prevalence (100%).481

482

The number of clones is determined by minimization of the Bayesian Information Criterion (BIC). Priors483

can be provided by the user, randomly generated or determined by the k -medoids clustering on mutations in484

A and AB sites when the latter contain enough mutations.485

486

QuantumClone-Single and QuantumClone-Alpha variants of QuantumClone. To test accuracy of predic-

tions for the number of copies with a variant and selection of the most likely mutation cellular prevalence, we

designed two alternatives of the QuantumClone method: QuantumClone-Single and QuantumClone-Alpha.

QuantumClone-Single is a modi�cation of QuantumClone that assigns to all variants a single copy state.

QuantumClone-Alpha uses the same EM algorithm as the default version of QuantumClone, except for the

selection of the most likely mutation where it chooses the possibility maximizing the quantity q:

qf,θ,p =

(
NCh
NC

)
× P (f |θ).

Analysis of mutation enrichment in signaling pathways and gene modules487

ACSNMineR (Deveau P., Barillot E., Boeva V., Zinovyev A., Bonnet E., In Press) version 0.16.01.29 was488

used to compute gene modules and pathways enriched in deleterious mutations. Gene modules included489

by default in ACSNMineR come from the manually curated Atlas of Cancer Signalling Networks (ACSN)490

(Kuperstein et al., 2015). In addition to the ACSN modules, we calculated mutation enrichment in a set of491

neuritogenesis genes frequently mutated in neuroblastoma (Molenaar et al. (2012), Suppl. Table 8). We called492

deleterious mutations as stop-gain mutation or variants that were predicted as possibly damaging or deleteri-493

ous by SIFT (Ng and Heniko�, 2003), PolyPhen-2 (Adzhubei et al., 2013), or FunSeq2 (Khurana et al., 2013).494

495

To get a list of genes to use as an input to ACSNMineR, we pooled mutations from all neuroblastoma496

patients; genes mutated at least once were included in the �nal list. Modules with a p-value lower than 0.05497
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after Benjamini-Hochberg correction were considered as enriched.498

499

Data access500

The whole-genome sequencing data have been deposited at the European Genome-phenome Archive (EGA)501

under accession number EGAS00001001184 for the French cases sequenced at BGI and under accession num-502

ber EGAS00001001825 for the French cases sequenced at CNG. Sequence data for the US cases are available503

in the database of Genotypes and Phenotypes (dbGaP) under accession number phs000467.504

505

QuantumClone is available at https://github.com/DeveauP/QuantumClone/ and can be downloaded as506

an R package from the CRAN repository.507
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