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Abstract 
 
Background The identification of enhancer is a challenging task. Various types of epigenetic 
information including histone modification have been utilized in the construction of enhancer 
prediction models based on a diverse panel of machine learning models. However, DNA   
methylation profiles generated from the whole genome bisulfate sequencing (WGBS) have not 
been fully explored for their potential in enhancer prediction despite the fact that low methylated 
regions (LMRs) have been implied to be distal active regulatory regions. 
 
Method In this work we propose a prediction framework, LMethyR-SVM, using LMRs 
identified from cell-type-specific WGBS DNA methylation profiles based on an unlabeled-
negative learning framework. In LMethyR-SVM, the set of cell-type-specific LMRs is further 
divided into three sets:  reliable positive, like positive, and likely negative, according to their 
resemblance to a small set of experimentally validated enhancers in the VISTA database based 
on an estimated non-parametric density distribution. Then, the prediction model is trained by 
solving a weighted support vector machine. 
 
Results We demonstrate the performance of LMethyR-SVM by using the WGBS DNA 
methylation profiles derived from the H1 human embryonic stem cell type (H1) and the fetal 
lung fibroblast cell type (IMR90). The predicted enhancers are highly conserved with a 
reasonable validation rate based on a set of commonly used positive markers including 
transcription factors, p300 binding and DNase-I hypersensitive sites. In addition, we show 
evidence that the large fraction of LMethyR-SVM predicted enhancers are not predicted by 
ChromHMM in H1 cell type and they are more enriched for the FANTOM5 enhancers.  
 
Conclusion Our work suggests that low methylated regions detected from the WGBS data are 
useful as complementary resources to histone modification marks in developing models for the 
prediction of cell type-specific enhancers.  
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Introduction 
 

Enhancers play an important role in temporal and cell type-specific activation of gene expression 
[1]. Enhancers are short in their length and often consist of clusters of binding sites for 
transcription factors (TFs) [2]. The identification of enhancers is challenging both experimentally 
and computationally due to their distal locations from the transcription starting sites (TSSs) of 
the target genes [3]. There have been reported large-scale experimental approaches to enhancer 
discovery for human heart tissue [4]. The VISTA database reported 2,316 in vivo validated 
enhancers for mouse and human [5] (as of 06/09/2015). In addition, the FANTOM 5 CAGE gene 
expression atlas identified and characterized 43,011 enhancer candidates across the majority of 
human cell types and tissues from the 432 primary cell, 135 tissue and 241 cell type samples [6]. 
However, the number of validated enhancers (32,693 as of 04/28/2016) is far from the estimated 
500,000-1 million enhancers in the human genome [7], suggesting the importance of enhancer 
prediction using of computational models.  
 
The activity of enhancers has been shown to correlate with certain chromatin properties; such as 
accessibility of DNA to which TFs are bound and the post-translational modification in the tails 
of histone proteins in chromatin in the vicinity of the active enhancers [8-12]. Previous work has 
explored this information to build models for the prediction of enhancers [13-20]. Commonly, 
p300 sites overlapping with DNase-I hypersensitivity sites (DHSs), the sites marked by 
H3K4me1, H3K4me2, H3K4me3 and H3K27ac, are the most explored information in the model 
development [13, 14, 16, 17, 21, 22]. p300, a transcriptional co-activator recruited by TF 
complexes, has been found at a large number of enhancers. DHSs are the accessible chromatin 
regions that are functionally related to transcriptional activity. While these methods successfully 
identify many enhancers, the predicted enhancers tend to be bound by the known p300 binding 
sites. Thus, they may potentially miss out other types of enhancers. On the other hand, the 
analysis of whole genome bisulfate sequencing (WGBS) DNA methylation profiles has led to the 
identification of low methylated regions (LMRs) [23, 24]. LMRs are shown to be associated with 
distal regulatory elements, as they are enriched for active histone marks (e.g. H3K4me1), DHSs, 
p300 and TF binding sites (TFBSs) [23-26].  However, the potential of DNA methylation data 
for enhancer prediction has not been fully explored.   

 
Herein, we systematically assess the usefulness of LMRs for enhancer prediction. Three 
questions are specifically addressed: (i) Can LMRs be used as putative enhancer sequences to 
build a prediction model? (ii) How is the model compared to those using information derived 
from p300 binding sites, DHSs, and histone modification marks? (iii) Are the predicted 
enhancers cell-type specific? To this end, we propose a novel framework, called LMethyR-SVM, 
which builds a model for enhancer prediction from sequences of cell-type-specific LMRs based 
on a weighted support vector machine. Although LMRs are enriched for marks of active 
regulation, not all sequences of LMRs are necessarily enhancers. For this reason, LMRs are 
initially called unlabeled. To dissect the LMRs, in vivo validated enhancer sequences from the 
VISTA enhancer database [5] are explored to divide the unlabeled set into a reliable positive set, 
a likely positive set and a likely negative set, representing our confidence in the LMRs being 
putative enhancers. By encoding sequences based on a k-mer scheme, this division is achieved 
according to the density ranks of each LMRs on a density distribution estimated from the LMRs 
that overlap with the VISTA enhancers. With a random negative set, the weighted support vector 
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machine (wSVM) is then designed to learn a prediction model by best dividing the unlabeled set 
of the LMRs into three datasets, namely, reliable positive, likely positive and likely negative. 
LMethR-SVM trains on sequences of cell-type-specific LMRs and predicts enhancers by 
scanning the genome without using information of DNA methylation.  We compare the 
performance of LMethyR-SVM with existing methods using the WGBS data from the H1 human 
embryonic stem cell type (H1) and the fetal lung fibroblast cell type (IMR90). We further 
investigate the cell-specificity of the predicted enhancers.   
 
Materials and Methods  

 
Our framework, LMethyR-SVM, begins with a DNA methylation profile obtained from a 
specific cell type. Then the cell-type-specific LMRs are identified; the set of unlabeled LMRs 
and the VISTA enhances are used to build an estimated density distribution in the k-mer space.  
Then, each LMR sequence is assigned a rank based on its density. Finally, the wSVM learns a 
model from the unlabeled LMRs and a random dataset by determining the best division of the 
unlabeled LMR set into a reliable positive (RP) set, a likely positive (LP) set, and likely negative 
(LN) set. The proposed framework of LMethyR-SVM is shown in Fig 1.  
 
Fig 1. The proposed framework of LMethyR-SVM.   
 
Low methylated regions (LMRs) in H1 and IMR90 cell types 

The WGBS data of DNA methylation in H1 and IMR90 cell types were available from the 
website of the Salk Institute for Biological Studies [27]. The WGBS data were generated using 
the MethylC-seq technique and the raw data have been mapped and quantified for the 
methylation level at individual cytosines in the genome.  The downloaded data are processed 
methycytosine profiles.  We lifted the data to the UCSC hg19 assembly using liftOver provided 
at the USCS Genome Browser [28]. LMRs were computed using the Bioconductor package 
MethylSeekR [24] with the recommended parameters. MethylSeekR identifies hypomethylated 
regions as stretches of consecutive CpGs with methylation levels below a fixed threshold and 
further divides them into unmethylated and low methylated regions. Genome regions with SNPs, 
and X and Y chromosomes were excluded from the analysis since the LMRs could not be 
reliably detected.  More details about this procedure can be found in the previous publications 
[24, 25].  

 
The VISTA enhancers 
The VISTA Enhancer Browser is a central resource for experimentally validated human and 
mouse noncoding fragments with gene enhancer activity in transgenic mice [5].  The 
967 validated human enhancers were downloaded from the VISTA database (as of 6/09/2015). 
The VISTA enhancers are highly conserved in other vertebrates or rich for epigenomic evidence 
(ChIP-Seq) of putative enhancer marks.  Although these enhancers are not specific to a cell type, 
the subsets that overlap with the LMRs from H1 cell type and IMR90 were identified and used as 
putative cell-type-specific enhancers to estimate an underlying density distribution of putative 
enhancers. The density distribution for each cell type was used to assign a density rank to each 
sequence in a set of LMRs. 
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Weighted support vector machine (wSVM) for model learning from unlabeled and negative 
sets  
As suggested in the previous studies, LMRs are indicative for distal active regulatory regions 
that may include enhancers [23-26]. However, the functional role of LMRs in gene regulation is 
unclear. Since they may also include some sequences that are not relevant to enhancers, the set of 
LMRs is called unlabeled (U), instead of being labeled as a positive set of enhancers. From this 
unlabeled set, the LMRs were further divided into three sets: RP, LP, and LN according to their 
ranks of density, which indicate the degree of resemblance to the LMRs that overlap with the 
VISTA enhancers for each cell type (the procedure described in next section). To facilitate 
machine learning, a reliable negative (RN) set of random of sequences was constructed by 
randomly selecting loci that do not include the sequences from the UCSC exons and the LMRs. 
The shuffle function in BEDTools was used to randomly permute the genomic locations of a 
feature BED file (i.e., LMRs) on the human genome (hg19). The tool excludes loci of exons and 
LMRs while generating a set of sequences that preserve the distribution of length and number on 
each individual chromosomes as that of the LMRs. In addition, the random sequences containing 
base ‘N’ besides ‘ATGC’ were excluded. All sequences were represented using a k-mer 
encoding scheme, i.e., each sequence is encoded by a vector with entries, each of which 
indicates the number of times that a particular k-mer appears in the sequence.  In this work, we 
used k=5 based on our preliminary investigation in wSVM training. Furthermore, each vector 
was normalized by dividing the sum of all its entries in . 

 
To reflect our confidence in the given sets of RP, LP, and LN of LMRs, the wSVM model was 
proposed as the following optimization problem.  

 

      (1) 

       
where  is a slack variable that allows for error for misclassification, and n is the total number 

of training examples. For each , it is labeled as  if it is in RP or LP; and  

otherwise. The weights  are weight parameters for wSVM to 
penalize misclassified training examples in RP, LP, LN, and RN, respectively.  However, the 
division of LMRs along with the weights have to be learned based on a cross-validation 
procedure described below. We restrict  since we have more confidence in the reliable 
positive set RP than in the likely positive set LP. Consequently, a sequence from RP receives a 

larger penalty than a sequence from LP if it is classified as negative. Similarly, we set C−
RN ≥C−

LN  

for the reason that we have more confidence in RN than in LN and misclassification of a 
sequence from RN as positive receives a larger penalty than if a sequence from LN is 
misclassified as positive class.   
 
Partition of an unlabeled set of LMRs based on ranks of the LMRs on a density distribution 
The following scheme was used to determine our confidence for each sequence in the unlabeled 
set of the LMRs. The LMRs overlapping the VISTA enhancers were considered as putative 
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enhancers in that cell type. This subset of LMRs was used to generate an estimated underlying 
density distribution of the sequences in the k-mer space. The overlapping VISTA enhancer 
sequences themselves were not used because they contain primers of several hundred base pairs 
on flank regions, which may bring “noise” into model training. The R package pdfCluster [29] 
was used to detect the underlying cluster structure of the sequences based on the kernel density 
estimation. In contrast to traditional clustering methods based on metric of distance or 
dissimilarity, the density-based clustering method associates cluster(s) with the regions around 
the modes of the density underlying the data [30]. By measuring density of a LMR to its assigned 
density center in the k-mer space, the sequence was given a rank. The higher its rank is, the 
closer a sequence is to its cluster center. LMRs that were ranked at the top  quantile were 
labeled as RP; those under 15% quantile were labeled as LN; and the remainder were labeled as 
LP. The value of  was learned through the cross-validation (CV) procedure in wSVM training 
(more detail in Supporting Information S1 File).  

 
Protocol for training and testing  
The wSVM model described above can be solved as an optimization problem if a quantile 
threshold for dividing the LMRs into RP and LP, and a set of weights 

  are given. To determine the best values for these parameters, a 5-
fold CV procedure was used to choose a group of models with the highest cross-validated F-
scores.  The parameter set that generated the model with the highest precision from the group 
was chosen as the best parameter set. Here F-score is defined as  
 

         (2) 

where         (3) 

and TP and FN are the numbers of LMRs in RP and LP that are predicted as positive and 
negative, respectively; and PP is the number of LMRs that are predicted as positive. Note that 
the definition of F-score seems to be identical to the ones used in standard binary learning. 
However, it is different in the sense that is dependent on the RP and LP sets, which are 
determined by the value of quantile threshold . Therefore, the best model cannot be chosen 
merely based on F-score, rather determined by the one with highest precision among the models 
with the best F-scores.  In addition, genomic coverage, as an additional constraint in model 
selection was required. Genomic coverage is defined as the fraction of nucleotides that are 
covered by the predicted enhancers in the hg19 human genome. In the training process, the 
genomic coverage of the model’s prediction on Chromosome 1 was used as a proxy for the entire 
genome. In the CV process, models that predict enhancers on Chromosome 1 with genomic 
coverage more than a prescribed threshold value were excluded. With this additional constraint, 
we could effectively avoid generating models that predict a large fraction of the genome as 
enhancers. The details of parameter tuning and the cross-validation procedure can be found in 
the Supporting Document File S1, S1 Fig and S2 Fig). Libsvm [31] was used to train wSVMs 
with linear kernels during the CV process and for the final prediction model for each cell type, 
and the heuristic procedure was implemented using shell scripts.  
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The enhancer prediction was carried out by sliding a window of size 2,000 bp for every 500 bp 
on the human genome according to the score assigned to each window by the final wSVM 
model. Windows with positive scores were predicted as enhancer windows. Overlapping 
enhancer windows were joined and the covered region was reported as one enhancer; the covered 
region may be reported for more than one enhancer by separating at any possible negatively 
scored windows in it, a situation can occur by the way of window sliding. 
 
Validation procedure for predicted enhancers 
The publically available data on epigenetic marks associated with enhancer activities were used 
in validation according to the set of the same criteria as employed in the previous work [13].  A 
true positive marker (TPM) is defined as any of the DHS, CBP/p300 sites and enhancer-
associated TFs. The enhancer windows are classified as “validated”, “misclassified” or 
“unknown” as follow. 

 
1. If the nearest TPM lies within 1,000 bp of a predicted enhancer windows and the nearest 

TSS (we use the UCSC TSSs) is greater than 1,000 bp away from the TPM, then the 
enhancer is “validated”. 

2. If a TSS lies within 2,500 bp of the predicted enhancer window, and the nearest TPM is 
either greater than 1,000 bp away from the enhancer or within 1,000 bp of the TSS, the 
enhancer is “misclassified”. 

3. If there is neither TPM within 1,000 bp nor TSS within 2,500 bp of the enhancer, it is 
“unknown”. 
 

The “validated” enhancers were divided into 6 mutually exclusive states as in [13]: “p300+/-
DHS”, “DHS only”, “TF+DHS”, “TF only”, “TF+p300”, “p300+DHS+TF”. For example, 
“p300+DHS+TF” means that an enhancer window is validated by all the three markers; “p300+/-
DHS” includes “p300+DHS” and “p300”. The percentages of the predicted enhancer windows 
that were classified as “validated”, “misclassified” and “unknown” were calculated.  

 
The experimental data of DHSs and p300 binding sites for the two cell types, and enhancer-
associated TFs, i.e., NANOG, CEBPB, TEAD4 for H1 and CEBPB for IMR90, were 
downloaded from “ChIP-Seq Experiment Matrix” from the ENCODE website [32]. The p300 
binding sites for IMR90 were obtained from the previous publication RFECS [13]. The 
“uniform”, or “narrow peak” type of the ChIP-Seq data for each marker was selected. These 
types of data were consolidated from multiple experiment results and were controlled at a 
significantly small false positive rate. Meanwhile, since the total length/coverage of the sites are 
small, the validation by overlapping these markers is unlikely due to randomness.  
 
The FANTOM 5 enhancers 
The 32,693 enhancers reported from FANTOM5 – the Functional Annotation of the Mammalian 
Genome project were downloaded from the consortium website (as of 04/28/2016) [33]. The in 
vivo active enhancers are identified based on the distinct bidirectional CAGE (Cap Analysis of 
GENE Expression) pattern using the FANTOM5 panel of tissue and primary cell samples [6]. 
FANTOM5 CAGE expression atlas includes 43,011 enhancer candidates in 432 primary cell, 
135 tissue, and 241 cell type samples from human. Although both H1 and IMR90 cell types are 
not included, the FANTOM enhancers are used as a proxy of active enhancers to check the 
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extent of enrichment in the predicted enhancers. A predicted enhancer window is considered to 
be overlapping with a FANTOM enhancer if the overlap is at least by 1 bp.   
 
Statistical tests 
All statistical test results for proportional difference and enrichment were obtained using z-test in 
R.  
 
Results  
 
As described previously, MethylSeekR was used to identify LMRs from H1 and IMR90 WGBS 
methylation profiles. It found 29,138 and 37,033 LMR sequences for H1 and IMR90, 
respectively. The median length of LMRs is 410 bp in H1 and 622 bp in IMR90. As expected, 
they mostly reside in distal regions that are more than 2,000 bp away from TSSs (Fig 2 (a)).  In 
addition, only 9.2% and 44.2% of LMRs overlapped with the p300 binding sites in H1 and 
IMR90, respectively.  The higher percentage of the overlap in IMR90 may be due to a much 
larger number of p300 binding sites (52,878) in comparison to that in H1 (8,934). The LMR 
sequences with length less than 200 bp or greater than 3,000 bp were removed for subsequent 
model training, resulting in 23,017 and 34,174 LMR sequences in H1 and IRM90, respectively.   
 
We found that 106 LMRs overlap with 105 VISTA enhancers for H1 and 129 LMRs overlap 117 
Vista enhancers for IMR90 by at least 1 bp. These LMRs are called the VISTA-overlapping 
LMRs. Next, we applied pdfCluter to derive an estimated nonparametric density distribution of 
the VISTA-overlapping LMRs in each cell type and then assigned each LMR a rank according to 
its density. Then, the 5-fold CV procedure was applied to find the best quantile cutoff to divide 
the LMRs into sets of RP, LP, and LN, and the corresponding weights in wSVM for each cell 
type (Supporting document File S1). We chose genomic coverage at 5% for model selection, 
although models 10% and 15% of genomic coverage were also developed. The value of 5% was 
determined because the number of the predicted enhancers with this constraint generated a 
similar number of enhancers as other methods so that a fair comparison could be made. The 
quantile cutoffs between RP and LP learned from wSVM were both 95% for H1 and IMR90.   
 
A summary of the predicted enhancers is given in Table 1. The distributions of the genomic 
locations of all the enhancer windows with respect to the nearest TSSs are shown in Fig 2 (b)). It 
can be observed that the majority of them are distal to the nearest TSSs. Interesting, the 
distribution remained almost the same even after removing the LMR sequences overlap with 
promoter regions defined as 2000 bp up- and down- stream of the TSSs (S3. Fig in Supporting 
document File S1). 
 
The numbers of the enhancer windows are 98,045 and 77,762 in H1 and IMR90, respectively. 
We obtained the predicted enhancers by concatenating overlapping enhancer windows. This 
resulted in 34,437 and 35,203 enhancers in H1 and IMR90, respectively. Since some of the 
predicted enhancers are quite long, e.g. the longest enhancer in IMR90 is of 113,000 bp long, we 
further selected the highest-scored enhancer window from each enhancer as the representative of 
this enhancer for fair comparison with other methods.  
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Table 1. The summary of the predicted enhancers obtained from LMethyR-SVM.  
 Number of 

enhancer 
windows 

Number of 
enhancers(a) 

Estimated 
Genomic 

Coverage(b)  

Median length 
of enhancers 

Maximum 
Length of enhancers 

H1 98,045 34,437 3.67% 2,500 bp 66,000 bp 
IMR90 77,762 35,203 3.05% 2,500 bp  113,000 bp 

(a) Enhancers are the continuous regions obtained by concatenating all overlapping enhancer 
windows and removing regions covered by non-enhancer windows.   
(b) The genome coverage is the estimate from Chromosome 1. 
 
Fig 2. The distributions of the LMRs and predicted enhancer windows. (a): The distributions 
of the LMRs to the nearest TSSs; red for H1 and green for IMR90. (b): The distribution of all the 
enhancer windows to their nearest TSSs; blue for H1 and brown for IMR90. The distance was 
measured from the center point of a sequence to its nearest TSS. 
 
The performance of LMethyR-SVM  
Since there is no true set of cell-type-specific enhancers for validation, we evaluated the 
predicted enhancers from three aspects. We first compared our results with those obtained from 
three state-of-art enhancer prediction methods: ChromHMM [20], RFECS [13], and 
EnhancerFinder [16]. We also used a random set of sequences to serve as a baseline for 
comparison, which was generated by randomly selecting 2,000 bp windows to be enhancers with 
the same number as ours. The three methods utilize various types of chromatin modification 
information coupled with supervised or unsupervised machine learning models. However, none 
of them has used epigenetic modification information of DNA methylation. Since it would be 
ideal for fair comparison if the lengths of predicted enhancers were similar, we chose the 
highest-scored enhancer windows in this validation analysis. The results of the predicted 
enhancers at genomics coverage 5% based on the validation procedure using TPMs are shown in 
Fig 3. Note that for IMR90, RFECS is the only tool that has made prediction besides LMethyR-
SVM. In general, a high percentage of “validated” and low percentages of “misclassified” and 
“unknown” suggest high confidence in a prediction model. These criteria allow the performance 
comparison among different prediction models with relatively small bias if a common set of 
experimental markers is used. 
 
ChromHMM [20] used a hidden Markov model to segment the genome of 200 bp windows into 
multiple states on the basis of consensus on patterns. Then, domain experts manually annotated 
each state. ChromHMM integrated most of the existing ChIP-Seq data on chromatin 
modifications. It predicted enhancers for each of the 9 different cell types: H1, GM12878, 
Hepg2, Hmec, Hsmm, Huvec, K562, Nhek, and Nhlf. These data are available from the 
Annotation Database at the UCSC Genome Browser website. For H1 cell type, ChromHMM 
predicted 235,178 enhancers, which are further catalogued into either 217,350 “weak enhancers” 
or 17,828 “strong enhancers”. Since it used the ChIP-Seq data from ENCODE for model 
learning, it is not surprising that ChromHMM is one of the best performers, especially for its 
“strong enhancer” category (Fig 3 (a)). Its validation rate (86.65%) is significantly higher than 
that of LMethyR-SVM (74.87%, P < e-15). However, its “weak enhancers” category has far too 
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many enhancers, resulting in a worse validation rate (60.14%, P < e-15) compared to LMethR-
SVM (74.87%).    
 
The second method, RFECS, was trained with a random forest learning model on 24 ChIP-Seq 
histone modification data from ENCODE and the p300 binding data for IMR90 generated from 
their own study. The best model predicted enhancers with the use of the three key histone 
modifications. RFECS makes prediction by sliding windows of 1,500 bp - 2,500 bp. It has 
predicted 54,121 enhancers for H1 and 82,392 for IMR 90 [13]. However, the published 
enhancers are in the form of a 1bp locus. Therefore, we expanded this locus by 1,000 bp on both 
sides for fair comparison. The validation rate of the RFECS prediction is 76.14% for H1, 
indicating that LMethyR-SVM has a lightly worse performance (74.94%, P =2.6e-5) (Fig 3 (a)).  
Similarly, RFECS for IMR90 has a validation rate of 78.60%, which is better than LMethyR-
SVM (62.02%, P < e-15) (Fig 3 (b)). The performance of RFECS could be due to its extensive 
training based on the comprehensive ChIP-seq data. 
 
The third method, “EnhancerFinder”, uses a multiple kernel learning approach to integrate DNA 
sequence motifs, evolutionary patterns, and 2,469 functional genomics datasets generated by the 
ENCODE project and smaller scale studies [16]. The tool predicted enhancers for multiple cell 
types (including H1) as well as multiple organs, but not for IMR90. The published 82,490 
enhancers have a validation rate of 74.87%, which is not significantly different compared with 
LMethyR-SVM (74.94%, P =0.41) (Fig 3 (a)).  
 

In summary, the performance of LMethR-SVM evaluated using TPMs is highly encouraging, 
considering the fact that only DNA methylation data were used in building the prediction model 
and all the other methods relied on the abundant ChIP-Seq experiment data of histone 
modifications, and sites of p300 binding and DHSs.  The way of training and evaluation by all 
the other models could favor towards the validation of their results and may lead to 
overestimated performance. On the other hand, the experiment data of the DNA methylation 
used in LMethyR-SVM is independent of any of the ENCODE experiment results. This suggests 
that LMRs is informative as a source to build enhancer prediction models.    

 

Fig 3.  Results of comparison with other enhancer prediction models. (a) for H1 and (b) for 
IMR90. “Validation” rates were measured as percentages of overlaps with either DHSs, p300 
sites or cell-type-specific transcription factor binding sites (NANOG, CEBPB and TEAD4 for 
H1 and CEBPB for IMR90); “Misclassification” rates were measured as percentages of overlaps 
with the UCSC annotated TSSs.  “Validated” enhancers can be further divided into one of the 
mutually exclusive categories: “p300+/-DHS”, “DHS only”, “TF+DHS”, “TF only”, 
“TF+P300”, “p300+DHS+TF”. For LMethyR-SVM, the highest-scored enhancer windows were 
used. The total numbers of the enhancers in H1 predicted from the individual methods are 17,828 
(ChromHMM Strong), 217,350 (ChromHMM weak), 54,121 (RFECS), 37,263 
(EnhancerFinder), 34,437 (LMethyR-SVM) and 34,437 (Random). The total numbers of the 
enhancers in IMR90 predicted from the individual methods are 82,392 (RFECS), 35,203 
(LMethyR-SVM) and 35,203 (Random).  
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Next, we set out to examine the extent of overlaps between the predicted enhancers made by 
LMethyR-SVM and ChromHMM for H1; LMethyR-SVM and RFECS for IMR90. We used 
ChromHMM for H1 since it can be considered as “truth” on the basis that its prediction was 
made on the analysis of the most comprehensive ENCONE datasets. In addition, we also 
analyzed the overlap with the FANTOM5 enhancers. The results are summarized in Table 2. 
This part of the analysis was performed only on the predicted enhancers that were validated with 
the TPMs. From Table 2 we observe that 11.79% of the enhancer windows predicted by 
LMethyR-SVM in H1 overlap with the FANTOM5 enhancers, which is significantly higher than 
that of the ChromHMM enhancers (4.67%, P < e-15). Similarly, 14.24% of the enhancer 
windows predicted by LMethyR-SVM in IMR90 overlap with the FANTOM5 enhancers, 
representing a significantly higher proportion than that of RFECS (13.78%, P =0.013).  This 
result for IMR90 is interesting because RFECS has a better performance than LMethyR-SVM in 
terms of the validation rate based on the TPMs in IMR90.  Further, we took the enhancer 
windows that are uniquely predicted by each method and compared the enrichment for the 
FANTOM enhancers. It can be seen that 10.01 % of the enhancer windows uniquely predicted 
from LMethyR-SVM in H1 overlaps with the FANTOM5 enhancers, representing a significantly 
higher proportion than that of ChromHMM (4.12%, P < e-15).  However, the enhancer windows 
uniquely predicted from LMethyR-SVM in IMR90 have a lower proportion (8.63%) for the 
FANTOM5 enhancers compared to that of RFECS (12.35%, P < e-15).  Finally, the overlapped 
enhancer windows generated from the two corresponding methods in each cell type always 
included a significantly higher number of the FANTOM5 enhancers compared to the enhancers 
unique to each individual method (data not shown). This analysis provides further evidence 
indicating that LMRs may provide a complementary sequence profile other than the regions 
marked by histone modification, p300 binding and DNSs sites for enhancer prediction. 

 

Table 2. The summary of the overlap between the predicted enhancers and the FANTOM5 
enhancers.  

  Unique (a) 

(%FANTOM(c)) 
Total (b) 

(%FANTOM) 
H1 ChromHMM 120,539 

(4.12%) 
146,172 
(4.67%) 

LMethyR-
SVM 

45,629 
(10.01%) 

75,947 
(11.79%) 

IMR90 RFECS 55,665 
(12.35%) 

64,765 
(13.78%) 

LMethyR-
SVM 

32,775 
(8.63%) 

51,146 
(14.24%) 

(a) Unique: the number of the enhancer windows that were uniquely predicted by a method and 
validated by TPMs. 
(b) Total: the total number of the enhancer windows that were predicted by a method and 
validated by TPMs.  
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(c) %FANTOM: the percentage of the enhancer windows that overlap with the FANTOM5 
enhancers. 
 

Finally, we investigated if the LMethyR-SVM predicted cell-type-specific enhancers. This task 
is challenging because no complete set of validated enhancers exist for each cell type. Therefore, 
we evaluated the cell-type-specificity indirectly by comparing the LMethyR-SVM predicted 
enhancer windows for H1 with those predicted by ChromHMM for H1 and 8 other cell types 
(H1, GM12878, Hepg2, Hmec, Hsmm, Huvec, K562, Nhek and Nhlf). Our argument is that if 
the overlap between the LMethyR-SVM and ChromHMM predicted enhancers in H1 is higher 
than those between the LMethyR-SVM for H1 and ChromHMM for other cell types, it may 
suggest more cell-type-specific enhancers were predicted by LMethyR-SVM. Indeed, it is 
observed that the LMethyR-SVM predicted enhancer windows have the highest percentage of 
overlaps (39.2%) with the ChromHMM predicted enhancers windows for H1 cell type (Table 3). 
The proportion of overlap in H1 cell type is significantly higher than that in any of the other 8 
cell types (26.5% - 37.6%, P<e-15).   

Table 3.  The comparison of the number of enhancer windows in each cell type predicted 
by ChomeHMM and the number of windows that overlapped with the enhancer windows 
predicted by LMethyR-SVM in H1 cell type. 

Cell type 
# enhancers predicted 

by ChromHMM 

# overlaps between  
LMethyR-SVM and 

ChromHMM enhancers (a) 

Percent of 
overlap 

H1 235,178 38,397 0.392 
GM12878 236,344 25,934 0.265 

Hepg2 201,190 29,365 0.300 
Hmec 283,718 36,805 0.376 
Hsmm 267,423 30,743 0.314 
Huvec 228,423 30,347 0.310 
K562 242,306 32,598 0.332 
Nhek 272,728 28,908 0.295 
Nhlf 235,293 27,493 0.280 

(a) The number of enhancer windows predicted by LMethyR-SVM in H1 overlapped with 
those predicted by ChromHMM. 
 

 
The evolutionary conservation in the predicted enhancers by LMethyR-SVM  
Enhancers that are active during the early mammalian developmental stage tend to be conserved 
[34].  H1 cell type is one of the embryonic stem cells (ES cells) derived from the inner cell 
mass of a blastocyst, an early-stage pre-implantation embryo. In addition, most of the VISTA 
enhancers are ultra-conserved non-coding DNA sequences on the vertebrate genome when first 
being selected for testing. Indeed, 99.8% of the VISTA enhancers overlap at least 1 
phastCons46ways conserved regions at vertebrate level.  PhastCons is a computational tool that 
finds and annotates conserved segments on the human genome using comparative genomic 
information. The conserved information was downloaded from the track on the UCSC website 
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[28]. We wanted to check if our prediction model, which uses information on the VISTA 
enhancers, reflects this inclination of conservation. Since there are about 5 million conserved 
segments annotated by PhastCons on the entire human genome, they are densely populated, a 
window of 2,000 bp in length can easily include one conserved element by chance.  To avoid 
over-estimation, each predicted enhancer window was represented by its midpoint and any 
enhancer window overlapping with exons has been removed for this analysis. If the midpoint 
locates on any conserved segment, then the enhancer window is considered “conserved”. The 
random set was also included to serve as the baseline for comparison. 

 

Fig 4.  Comparison of the conservation rates for the predicted enhancers. Proportions of 
overlaps between the predicted enhancer windows from each method with the most-conserved 
segment from the UCSC PhastCons46Ways conservation annotation at vertebrate level. Each 
enhancer window is represented by its midpoint (1bp); (a) for H1 and (b) for IMR90. 

 

It is shown that for H1 cell type the predicted enhancers obtained from LMethyR-SVM have the 
second highest proportion of enhancers that overlap at least one conserved segment (Fig 4(a)), 
only after EnhanerFinder, which also has integrated the VISTA enhancer information. 
ChromHMM predicted the most heterogeneous type of enhancers because its non-supervised 
model was built based on data from multiple cell types. It shows moderate but above the 
conservation level of random. There is no significant difference in conservation between its 
“strong enhancers” and “weak enhancers” (data not shown). For IMR90 cell type, the RFECS 
predicted enhancers are slightly conserved than that of LMethyR-SVM (Fig 4 (b)). Together, 
LMethyR-SVM predicts the enhancers that tend to be more conserved in H1 cell type, which 
may be more relevant to the early developmental stage in H1 cell type.  

 
Taken all together, LMethyR-SVM is effective in learning from cell-type-specific LMRs for 
enhancer prediction.  The predicted enhancers are largely distinctive compared to those predicted 
from the ChromHMM and other models trained on multiple types of histone modification data in  
H1. The indirect evidence suggests that the predicted enhances may be cell-type-specific. In 
conclusion, the LMRs derived from a WGBS DNA methylation profile may be used as 
complimentary information to build models that predict enhancers missed by other models.    

 
Discussions 

 
We designed a novel framework (LMethyR-SVM) for the prediction of enhancers using cell-
type-specific low-methylated regions (LMRs) detected from the whole genome bisulfate 
sequencing (WGBS) data.  Our rationale is based on the observation in previous work that LMRs 
are potential distal active regulatory regions that may include enhancers [24, 25, 35]. The unique 
feature of our approach is that the training set is built on the single source of epigenetic profiles 
of DNA methylation, contrasting other methods that rely on data of multiple epigenetic profiles, 
such as large scale ChIP-seq studies of histone modification, co-activator p300 binding and 
DNase–I hypersensitive sites. In addition, LMethyR-SVM only uses LMRs for model training; 
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however, it does not depend on DNA methylation profile for prediction, while some of the other 
methods also requires ChIP-seq data for prediction. Using methylation data from the H1 human 
embryonic stem cell type (H1) and the fetal lung fibroblast cell type (IMR90), we have compared 
its performance with several state-of-art predictive models (ChromHMM [20], RFECS [13], and 
EnhancerFinder [16]). The validation using “true positive marker” (TPM) shows that our model 
has a considerably good performance in terms of validation and misclassification rates, the same 
criteria adopted by some of the best methods.  We further found that a large proportion of the 
TPM validated enhancers were not predicted by ChromHMM in H1 and were more enriched for 
the FANTOM enhancers, indicating LMethyR may have captured enhancers that were missed by 
ChromHMM. Although, we were unable to use this source to directly validate if the LMethyR-
SMV predicted enhancers are active in the specific cell types, we provided indirect evidence of 
cell-type-specificity of the predicted enhancers by LMethyR-SVM in H1 through comparing the 
enhancers predicted by ChromHMM for other 8 cell types. Our results collectively support that 
WGBS data may be used as a complementary type of data for identification of cell type-specific 
and tissue-specific enhancers. 
 
Only few work has explored methylation profile for developing enhancer prediction model, 
except the one that uses the methylation profile generated from the Illumina Infinium 
HumanMethylation450 BeadChip [36]. The array-based profile represents only a very small 
percentage of CpG sites in the genome. In that work, the sequence features of CpG neighboring 
regions of the selected methylated CpGs that are negatively correlated with the expression level 
of predicted target genes were used to develop a prediction model. In contrast, WGBS 
methylation data can provide comprehensive information on the methylation.  It should be noted 
that the bisulfite treatment also converts 5-hydroxymethylated cytosines. Therefore, the WGBS 
methylation data cannot distinguish between 5-methylated cytosines and 5-hydroxymethylated 
cytosines [37]. Therefore, it is not clear which mechanism of methylation regulates the activity 
of enhancers predicted from LMRs.  
 
The enhancers predicted from our method are generated by concatenating overlapping enhancer 
windows. The median length of the enhancers ranges between 2,500 bp to 3,000 bp, and the 
maximum length can be as long as ~113 kb, suggesting that they may be super-enhancers. Super-
enhancers are large clusters of transcriptional enhancers playing essential roles in gene 
expression regulation [38]. Recently, several databases of super-enhancers such as SEA [39] and 
dbSUPER [40] were released based on the analysis of large scale ChIP-seq for TFs and 
H3K27ac modification data in modENCODE [41], ENCODE and Human Epigenome Roadmap 
[42]. We checked the overlap between our predicted enhancers with the super-enhancers in 
dbSUPER for H1 and IMR90 (no data in SEA). The minimum, median and maximum length of 
super-enhancers are 876 bp, 9,590bp and 62,270 bp for H1 and 4,664 bp, 25,650 bp, 110,800 bp 
for IMR90, respectively. We found that 43% (295 out of 684) and 68.9% (346 out of 502) of the 
super-enhancers overlap with at least one LMethyR-SVM predicted enhancer windows in H1 
and IMR90 respectively, indicating the considerable proportions of overlap. A comprehensive 
evaluation will be further required to delineate the enhancers predicted from LMRs. It will be 
possible in near future when WGBS profiles are accumulated along with RNA-seq data, histone 
modification marks, DNase-I hypersensitive sites, p300 binding sites and other cell type specific 
TF binding sites across for multiple cell types and tissue/organs. In addition, it would be 
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interesting to investigate if better prediction models can be obtained by exploring information on 
ChIP-seq histone modifications and DNA methylation profiles.  
 
 
Various machine learning algorithms have been proposed to derive enhancer prediction models 
using epigenetic profiles other than DNA methylation.  They include support vector machines 
[15, 16], artificial neural network (CSI-ANN) [17],  random forest (RFECS),  a combination of 
Gibbs sampling and linear regression [19], hidden Markov model (ChromHMM), a two-step 
tissue-specific SVM model (EnhancerFinder), ensemble approach (DELTA) based on AdaBoosts  
[18],  and a recent method using diverse data sources from the ENCODE histone marks data, 
VISTA and FATOME enhancers (DEEP) [43].  The most successful methods built their models 
based on extensive ChIP-Seq experiment data for the model training. DEEP has been shown to 
out-perform others because of its usage of multiple types of data from ENCODE, VISTA and 
FANTOM. We did not choose to compare with DEEP, since our primary goal is to reveal if the 
LMRs from WGBS DNA methylation profiles have the potential for enhancer prediction.   
 
The designed unlabeled-negative learning framework was motivated from our early work for 
unlabeled-positive learning for text mining [44] and unlabeled-negative learning for prediction of 
MHC class II peptide binding [45], and a recent work for disease gene prediction in which an 
unlabeled-positive learning framework was designed based on a weighted support vector 
machine [46]. The commonality in the three applications is the existence of a true positive set in 
the unlabeled set. In contrast, in the current work, there is no golden truth available for enhancers 
for a specific cell type. Our choice of the nonparametric procedure (pdfCluster) was effective in 
retrieving a reliable set of LMR sequences (i.e., reliable positive set) to serve as putative 
enhancers. This was carried out based on the ranks on the distribution density of the LMRs 
overlapping with the VISTA enhancers estimated using pdfCluster. LMethyR-SVM also 
benefited from the design of the weighted support vector learning model by best separating the 
unlabeled LMR set into reliable positive, likely positive and likely negative sets (Supporting 
document).  
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