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Abstract

Metagenome shotgun sequencing presents opportunities to identify organisms that
may prevent or promote disease. Analysis of sample diversity is achieved by taxonomic
identification of metagenomic reads followed by generating an abundance profile.
Numerous tools have been developed for taxonomic identification based on different
design principles. Tools that have been designed to achieve high precision and practical
performance still lack sensitivity. Moreover, tools with the highest sensitivity suffer
from low precision, low specificity along with long computation time. In this paper,
we present WEVOTE (WEighted VOting Taxonomic idEntification), a method that
classifies metagenome shotgun sequencing DNA reads based on an ensemble of existing
methods using k-mer based, marker-based, and naive-similarity based approaches.
Our evaluation, based on fourteen benchmarking datasets, shows that WEVOTE
reduces occurrence of the false positives to half of that produced by other high sensitive
tools while also maintaining the same level of sensitivity. WEVOTE is an efficient,
automated tool that combines multiple individual taxonomic identification methods.
It is expandable and has the potential to reduce false positives and produce a more
accurate taxonomic identification for microbiome data. WEVOTE was implemented
using C++ and shell script and is available at https://bitbucket.org/ametwally/wevote.

Keywords: Metagenomics; Microbiome; Sequence Classification; Next-Generation
Sequencing; Whole Genome Sequencing.

Introduction

The microbiome plays a vital role in a broad range of host-related processes and has
a significant effect on host health. Over the past decade, the culture-independent
MetaGenome Shotgun (MGS) sequencing has become an emerging tool for studying the
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diversity and the ecology of microbial communities. One of the key steps in data anal-
ysis is the taxonomic classification of sequences assembled from a metagenomic dataset.

The existing taxonomic identification methods of MGS data can be primarily classi-
fied into four categories: naive-similarity based methods, methods based on analyzing
sequence alignment results, methods that are based on sequence composition, such
as k-mers, and marker-based methods. The naive-similarity-based methods rely on
mapping each read to a reference database, such as the NCBI nucleotide database,
and the taxonomic annotation of the best hit is assigned to the read if it passes a
pre-set threshold. Bowtie [1], BLASTN [2], and its faster version MegaBlast [3] are
the most commonly used algorithms in this category. Since the number of sequences
in the database is enormous, these methods have a high probability of finding a match,
but they demand extensive computational time. Therefore, these types of methods
usually achieve a higher level of sensitivity compared to other methods [4,5]. However,
one significant drawback is the increased rate of false positive annotations.

The category of analyzing the sequence alignment results includes MEGAN [6],
and PhymmBL [4]. This class of methods consists of a preprocessing step and a
post-analysis step. In MEGAN, an algorithm involving the lowest common ancestor
(LCA) assigns each read an NCBI taxonomic identification number (si. taxon / pl.
taxa) that reflects the level of conservation within the sequence. On the other hand,
PhymmBL constructs a large number of Interpolated Markov Models (IMMs) using a
BLASTN query against a reference database. It would subsequently compute scores
which correspond to the probability of the generated IMMs matching a given sequence.
Then it classifies the read using the clade labels belonging to the organism whose
IMM generated the best score for that read. The methods in this class usually require
more computational time than those in the naive-similarity methods.

In contrast, the marker-based methods utilize a curated collection of marker genes
where each marker gene set is used to identify a unique group of clades. The fun-
damental difference between these methods and the naive-similarity methods is in
the reference databases. Based on how the database of the marker genes is formed,
this type of methods is classified into two main subcategories: (i) methods that
depend on a database of a universal single copy of marker genes such as TIPP [7],
MetaPhyler [8], and mOTU [9], and (ii) methods that depend on a clade of specific
marker genes such as MetaPhlAn [10, 11]. These marker-gene based methods can
achieve high accuracy when the reads come from genomes represented by the marker
gene database. Otherwise, they only achieve low-level of sensitivity. The running time
varies depending on the statistical methods used in each method.

The k-mer based methods use DNA composition as a characteristic to achieve
taxonomic annotation. The key idea in these methods is to map the k-mers of each
read to a database of k-mers, and then, based on different decision criteria, each
read is assigned a taxonomic annotation [5,12–15]. For example, Kraken [5] uses an
exact match to align the overlapped k-mers of the queries with a k-mer reference
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database, instead of an inexact match of the complete sequence used in the naive-
similarity based methods. Because of the exact matching on short k-mers, many
efficient data structures can be implemented for searching the k-mer database which
allows the k-mers based methods to be extremely fast and require little computation
time. It was recently shown that these methods can achieve genus level sensitivity
comparable to the naive-similarity methods but with higher precision [16]. At the
same time, however, these methods are not robust to sequences that have a high se-
quencing error rate because they are based on exact matching to the reference database.

In addition to the benchmarking presented in this paper, the study [16] has also
revealed that different methods could generate variation in taxonomic output profiles
for the same input dataset. Sample type, sequencing error, and read length are the
main factors that cause variation. This inconsistency in the predicted taxonomic
annotations presents a challenge to investigators in the selection of the identification
methods and interpretation of annotations. Although it has been proven that the
taxonomic profile obtained from the naive-similarity methods produces a large number
of false positives, a vast array of researchers are still dependent on them because they
do not want to sacrifice the high level of sensitivity in order to obtain fewer false
positives.

In this work we present a novel framework, WEVOTE (WEighted VOting Tax-
onomic idEntification), which takes advantage of three categories of the taxonomic
identification methods; naive-similarity methods, k-mer methods, and marker-based
methods. WEVOTE combines the high sensitivity of the naive similarity methods, the
high precision of the k-mer methods, and the robustness of the marker-based methods
to identify novel members of a marker family from novel genomes [7].

Materials and Methods

The WEVOTE framework and core algorithm

The core of WEVOTE is a weighting scheme organized as a taxonomic tree tallying
the annotations from N different taxonomic identification methods. As shown in
Fig 1, the input to the WEVOTE is the raw reads of a microbiome sample. First,
each of the N identification methods independently assigns a taxon for each read. If
any method fails to classify the read based on the given threshold, the WEVOTE
preprocessing phase assigns 0 as a taxon, indicating that the read is unclassified by
the corresponding method. Then, WEVOTE identifies the taxonomic relationship of
the N taxa per read based on the pre-configured taxonomy tree structure and casts a
vote to the final taxon, which may be a common ancestor of the N taxa. Although
the current version of our method only includes five methods, the voting scheme is
flexible and allows for the inclusion or removal of different methods.
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Fig 1. Schematic diagram of the WEVOTE framework. The input to the
WEVOTE is the raw reads of the sample. First, each of the identification methods
independently assigns a taxon to each read. Then, WEVOTE identifies the taxonomic
relationship of the N taxa based on the pre-configured taxonomy tree structure and
determines the final taxon assigned to each read.

The WEVOTE utilizes a resolved version of the NCBI taxonomy tree as a backbone
for its decision algorithm. This resolved phylogeny tree only contains the nodes that
have a taxon corresponding to one of the standard taxonomic ranks (Super-kingdom,
Phylum, Class, Order, Family, Genus, and Species). This backbone structure facilitates
and accelerates the choice of a consensus taxon based on the taxonomic annotations
received from each identification tool. The decision scheme in WEVOTE is shown in
Algorithm 1. Here, N denotes the number of tools used in the WEVOTE pipeline;
C the number of tools that are able to classify the read at any taxonomic rank, i.e.,
taxon 6= 0; and A the number of tools that agreed upon the WEVOTE decision. The
relationship N > C > A always holds.

In the case that no single tool can classify the read, WEVOTE will accordingly
fail to classify the read and give it a taxon 0 and score of 0. Otherwise, WEVOTE
starts by building a weighted tree for each read from the taxa reported by individual
tools. The weighted tree is a tree that comprises the nodes of the identified taxa along
with their ancestors’ taxa including the root. For each identified taxon, the weight
of each node on the weight tree is incremented by one. The weight of any node on
the final weighted tree represents the number of tools that agreed on this particular
node. Afterwards, WEVOTE annotates the read with the taxon of the node that
has the highest weight from the root to that node taxon (RootToTaxon), with the
added condition that the node itself has more weight than the WEVOTE threshold.
This threshold can be set as half of the number of tools able to classify this read (C ).
In the case where more than one node satisfies the WEVOTE condition, then the
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Least Common Ancestor (LCA) of these nodes will be assigned as WEVOTEs decision.

The scoring scheme works as follows. If the number of tools that classified the
read (C ) equals the number of tools that agreed on the WEVOTE decision (A), then
the WEVOTE score will be calculated based on Eq.( 1)

score =
A

N
(1)

Otherwise, we have A < C; the score will be calculated using Eq.( 2), where k is an
arbitrary number > 1.

Score =
A

N
− 1

k ∗N
(2)

The choice of the constant k depends on how stringent one wishes to penalize the
disagreement among individual tools that are able to classify the read but do not agree
with the WEVOTE decision. A small value of k leads to a small WEVOTE score,
implying more penalty is placed on the WEVOTE decision score, and vice versa. This
scoring scheme makes the score satisfy the condition of (A− 1)/N < score < A/N .

Algorithm 1 The WEVOTE Decision Scheme

1: procedure WEVOTE (N taxa for each read)
2: for each (read ∈ sequence file) do
3: if (C == 0) then
4: read.Taxon = 0
5: read.DecisionScore = 0
6: read.NumAgreedTools = 0
7: else if (C > 1) then
8: build a weighted tree of the reported taxa
9: Threshold = ceiling(C/2)
10: MaxWeight = 0
11: MaxNode = 0
12: for each (node ∈ Weighted Tree and Weight(node) >

Threshold) do
13: if (RootToTaxon(node) > MaxWeight) then
14: Max=node
15: MaxTaxon=node
16: else if (RootToTaxon(node) == MaxWeight) then
17: MaxTaxon=LCA(node, MaxTaxon)

18: read.Taxon = MaxTaxon
19: read.NumAgreedTools = weight(read.Taxon)
20: if (A == C) then
21: read.DecisionScore← A/N
22: else
23: read.DecisionScore← (A/N)− (1/(k ∗N))
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In order to demonstrate the decision scheme described in the WEVOTE algorithm,
the case scenarios of WEVOTE for N = 3 are shown in Fig S1.

The tools used in the current implementation

In our current implementation of WEVOTE, we used BLASTN to represent the
naive-similarity method, Kraken [5] and CLARK [12] as the identification tools repre-
senting the k-mer methods, and TIPP [7] and MetaPhlAn [10, 11] representing the
marker-based methods. The five tools were chosen since they are widely used and
represent the three major categories of taxonomic identification methods.

We favored BLASTN over MegaBlast because of its greater sensitivity. The pri-
mary reason for the increased sensitivity in BLASTN is the use of a shorter word size
as a search seed. Thus, BLASTN is better than MegaBlast in finding alignments for
sequences that have a sequencing error that occurs after a short length of matched
bases (i.e., the initial exact match is shorter).

Kraken assigns taxonomic annotations to the reads by splitting each sequence into
overlapping k-mers [5]. Each k-mer is mapped to a pre-computed database where
each node in the database is the lowest common ancestor (LCA) taxon of all genomes
that contain that k-mer. For each read, a classification tree is computed by obtaining
all the taxa associated with the k-mers in that read. The number of k-mers mapped
to each node in the classification tree is assigned as a weight for this node. The node
that has the highest sum of weights from the root to leaf is used to classify the read.
Kraken is an ultra-fast and highly precise for data involving small sequencing error.
CLARK is a recently released tool that is very similar to Kraken and also based on
k-mers. It is reported to be faster and more accurate than Kraken at the genus/species
level [12]. The fundamental difference between Kraken and CLARK is their k-mers
database backbone. Kraken has only one database that can serve for the classification
of metagenomic reads at any taxonomic rank. If more than one genome shares the
same k-mer, Kraken assign this k-mer to their lowest common ancestor (LCA) taxon.
CLARK, on the other hand, builds an index for each taxonomic rank at which the
user wishes to classify. Each level’s index has only the discriminative k-mers that
distinguish its taxa from each other.

TIPP (Taxonomic Identification and Phylogenetic Profiling) is considered a state-
of-the-art tool based on a set of marker genes. It uses a customized database of 30
marker genes [17] which mostly are universal single-copy genes. First, it performs
multiple sequence alignment of each marker gene set, then builds a phylogeny tree
for each marker gene. Also, it builds a resolved taxonomy tree of these marker genes.
Then, it uses SATe [18] to decompose the tree of each marker gene to many sub-trees.
Afterward, TIPP uses HMMER software [19] to build a Hidden Markov Model (HMM)
for each of the sub-trees. For each query read, TIPP uses HMMER again to align
the query to the HMMs. Then, TIPP uses the alignments to the HMM that have an
alignment score and statistical support greater than a group of pre-set values, and
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places them on the precomputed taxonomic tree using pplacer [20] in order to assign
taxonomy to the query. Although the sensitivity of TIPP is low, it has been shown that
it can precisely identify the reads containing high sequencing error or novel members
of a marker family from novel genomes [7]. The other tool chosen for this category
in our implementation is MethPhlAn. MethPhlAn has a set of clade-specific marker
genes. The marker set was built from the genomes available from the Integrated
Microbial Genomes (IMG). For a given read, MetaPhlAn compares the read against
the precomputed marker set using nucleotide BLAST searches in order to provide
clade abundances for one or more sequenced metagenomes.

Results and Discussion

A dozen of simulated datasets have been used in the evaluation of various taxonomic
identification tools. In our assessment, we selected fourteen simulated datasets as
shown in Table 1. Our choice was based on the ability of these datasets to provide
the true identity assignment for each read rather than true relative abundance at each
taxonomic level. This information allows for the evaluation of WEVOTE based on
various metrics in addition to the assessment of relative abundance.

The first three datasets were used in the evaluation of Kraken [5]. The HiSeq and
MiSeq datasets are simulated from sequences obtained from non-simulated microbial
projects but were sequenced using two different platforms, i.e., Illumina HiSeq and
Illumina MiSeq. The simBA5 is a simulated dataset with a higher percentage of error
to mimic increased sequencing errors. Hence, it can be used to measure the ability of
each tool to handle non-simulated sequencing data. The simHC20 dataset was used to
benchmark CLARK [12] and it contains 20 subsets of long Sanger reads from various
known microbial genomes.

The other ten datasets were used in MetaPhlAn [10] evaluations. The HC1 and
HC2 consist of reads from high-complexity, evenly distributed metagenomes that con-
tain 100 genomes, and LC1–LC8 consist of low-complexity, log-normally distributed
metagenomes that contain 25 genomes. The reads from all ten MetaPhlAn were
sampled from KEGG v54 [21] with a length of 100 bp and an error model similar to
real Illumina reads.

The WEVOTE Benchmarking

Our benchmarking was carried out with two models of WEVOTE: (i) WEVOTE
(N = 3) including BLASTN, TIPP and Kraken; and (ii) WEVOTE (N = 5) including
BLASTN, TIPP, MetaPhlAn, Kraken, and CLARK. As described previously, BLASTN
represents the naive-similarity method; TIPP and MethPhlAn belong to the category
of the marker-based methods; and Kraken and CLARK belong to the category of the
k-mer based methods. The default parameter values were set for the individual tools
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Table 1. The Benchmarking Datasets

Source Dataset # reads length (bp) # genomes

Kraken
HiSeq 10,000 92 10
MiSeq 10,000 156 10
simBA5 10,000 100 1,967

CLARK simHC20 10,000 951 20

MetaPhlAn

HC1 999,998 88 100
HC2 999,991 88 100
LC1 249,995 88 25
LC2 250,000 88 25
LC3 250,000 88 25
LC4 249,999 88 25
LC5 249,999 88 25
LC6 250,002 88 25
LC7 250,000 88 25
LC8 250,000 88 25

and the score penalty in WEVOTE was set at k = 2 (see Appendix A for the full
details about the commands used in the command-line). Regarding WEVOTE, we
reported all results with a minimum number of tools which agree on the WEVOTE
decision equal to 1.

We first looked at how accurately individual reads have been annotated at each
taxonomic rank using sensitivity and precision, which are defined in Eq.( 3) and
Eq.( 4), respectively. For each rank l in a simulated dataset:

Sensitivity(l) =
TPl

Pl

(3)

Precision(l) =
TPl

TPl + FPl

(4)

where Pl denotes the number of reads annotated with some taxon at rank l in the
original dataset; TPl the number of reads correctly annotated at rank l; and FPl

the number of reads incorrectly annotated at rank l. It is observed from Fig 2 that
WEVOTE achieves the highest level of precision and a level of sensitivity that is second
only to BLASTN at the species rank. It is also interesting to observe that the precision
level achieved by WEVOTE (N = 5) is lower than that of WEVOTE (N = 3),
indicating that including multiple tools in each category may play against WEVOTE
for a correct annotation. At all other taxonomic ranks, WEVOTE outperforms all
the other individual tools in terms of sensitivity and precision in most cases (Table S2).

Since our motivation for the development of WEVOTE is the reduction of the
false positive rate FPR while maintaining a high level of sensitivity, we calculated the
FPR at each taxon level l as defined in Eq.( 5).
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Fig 2. The sensitivity and precision at the species level for all tools. The
sensitivity and precision reported for each tool at the species level on each simulated
dataset, with the exception of the datasets in MetaPhlAn-HC and MetaPhlAn-LC
being the average over two HC and eight LC datasets, respectively.

FPRl =
∑

x∈{Cl | Px>Tx}

(Px − Tx) (5)

Here, Cl is the union of all taxa that are in the true and predicted profiles at each
taxonomic rank l. For each taxon x at rank l, Px is the predicted relative abundance
and Tx is the true relative abundance at taxonomic rank l. FPR measures the deviation
of the relative abundance of reads annotated at a taxonomic rank from the true relative
abundance in addition to the relative abundance of reads annotated at a taxonomic
rank that is not originally present in the sample, i.e., Tx = 0 in this case. Another
important metric, classification rate (CR), is the percentage of the classified reads
at each taxonomic rank l. This quantity, defined in Eq. (6) was calculated at each
taxonomic rank l.

CR(l) =
TPl + FPl

Pl

(6)

This metric is crucial for WEVOTE because most of the tools that are based on an
LCA algorithm, such as MEGAN [6], need to move the annotation to an a higher
taxonomic rank, thus resulting in a lose of resolution at the lower taxonomic ranks;
genus and species.

It can be seen from Fig 3, Tables S5 and S6 that the FPRs obtained fromWEVOTE,
specifically with N = 3 are always lower than BLASTN, Kraken, and CLARK at all
taxonomic ranks. The effect of WEVOTE on the FPR reduction appears clearly at
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the species level. TIPP has nearly zero FPR at all taxonomic ranks, but it has a much
lower classification rate. Moreover, WEVOTE achieved the highest classification rate
among all tools at the ranks of Domain, Phylum, Class, Order, and Family. At the
Genus level, WEVOTE scored the second after BLASTN by a marginal difference.
At the species level, although WEVOTE is still second behind the BLASTN, the
difference is more detailed. This is because WEVOTE moves the annotation from
the Species level to the rank above if there is not enough support for classification at
the Species level. This slight loss of resolution is due to the correction for the false
positives as described in Fig 3 (the left panel). One reason for the low classification
rate in TIPP and MetaPhlAn may be because the current marker genes database used
in TIPP or MetaphlAn do not contain sufficient markers for the genomes represented
in the simulated datasets. Taken altogether, our analysis demonstrates that WEVOTE
can achieve a substantial improvement in reducing the FPR compared to using any
other individual tool that has a high level of sensitivity.

In addition, we calculated the Hellinger distance [22] (Hl) between a sample’s
metagenomic abundance profile generated by WEVOTE and its true abundance
profile at each taxonomic rank l. The Hellinger distance measures the deviation of
the predicted profile from the true profile. It is calculated as shown in Eq. (7). The√
2 is added to the denominator to keep 0 ≤ H ≤ 1. The definition of Cl, Px, and Tx

are the same as the ones used in calculating the FPR in Eq. (5).

Hl =

√∑
x∈Cl

(
√
Px −

√
Tx)2

√
2

(7)

As the Hellinger distance represents an error distance, a small value is always preferable.
Particularly, H = 0 means that the predicted profile is exactly the same as the true
profile; while H = 1 means that the predicted profile is completely different from the
true profile.

Fig 4 and Table S7 show the Hellinger distance between the true relative abundance
profile and the profiles generated by all tools at different taxonomic levels. For all
used simulated datasets, WEVOTE, particularly when N = 3, almost has the smallest
Hellinger distance among all other individual identification tools across all taxonomic
ranks. Although the Hellinger distance difference between WEVOTE and BLASTN is
sometimes small, the interpretation is quite different. The error that originates from
BLASTN is due to the false positive annotations while the error that originates from
WEVOTE is due to the lack of support in annotating the read at the corresponding
level. The large Hellinger distance in case of TIPP or MetaPhlAn is mainly because
we included all the taxa in our calculation. Since TIPP has a small Classification
Rate with Px being near zero for many taxa that present in the dataset, this has led
to the accumulation in the error distance.
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Fig 3. The False Positive Rate (FPR) and Classification Rate (CR). For sim-
ulated datasets, the FPRs (left) and CR (right) are calculated for all the tools. Results
shown are for: (a) Kraken-HiSeq dataset; (b) Kraken-MiSeq dataset; (c) Kraken-
simBA5 dataset; (d) CLARK-simHC20; (e) MetaPhlAn-HC and (f) MetaPhlAn-LC.
The smaller the FPR is, the more accurate a metagenomic abundance profile is. A
high Classification Rate at any taxonomic rank indicates that the corresponding
identification tool is highly sensitive at this rank.
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Fig 4. The Hellinger distance. The deviation between the predicted abundance
profile and the true abundant profile was measured in terms of the Hellinger distance
for each tool at different taxonomic ranks. Results shown are for: (a) Kraken-HiSeq
dataset; (b) Kraken-MiSeq dataset; (c) Kraken-simBA5 dataset; (d) CLARK-simHC20;
(e) MetaPhlAn-HC and (f) MetaPhlAn-LC. The lower the error, the more precise the
corresponding tool is at the corresponding rank. H = 0 means that the predicted
relative abundance profile is exactly the same as the true profile; while H = 1 means
that the predicted profile is completely different from the true profile.

Lastly, we examined the details of various case scenarios that were encountered in
the evaluation of the two WEVOTE variants, i.e., N = 3 and N = 5. The scatter plots
in Fig. 5 show the percentages of annotations in which the individual tools agreed
upon the WEVOTE decision for all the datasets. Table S4 shows the actual number of
tools that agreed on the WEVOTE decision per datasets. It can be observed that the
majority of WEVOTE annotations is determined based on more than N/2 agreements;
2 in the case of N = 3 and 3 in the case of N = 5. For only a small portion of each
dataset, all the tools agreed on the WEVOTE decision. The interesting observation is
that a very small portion out of all the annotated reads by WEVOTE, has agreed
with one tool annotation in the case of N=3, or either 1 or 2 in the case of N=5.
Therefore, if we set a threshold on WEVOTE to report the annotation that more than
half the tools have to agree on, then then WEVOTE will increases the precision and
its sensitivity will only be marginally affected as demonstrated in Fig. 6. We have
chosen Kraken-HiSeq and Kraken-Miseq datasets only for this analysis because they
had low precision among all the used taxonomic identification tools (Fig. 2), hence
providing room for improvement.

12/22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2016. ; https://doi.org/10.1101/054205doi: bioRxiv preprint 

https://doi.org/10.1101/054205
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 5. The percentage distribution of the number of individual tools that
agreed on the WEVOTE decision for the 14 datasets. Here, 0 means that
the read was not classified by any tools, 1 means that one tool has agreed on the
WEVOTE assigned taxon for the read, and so on. A=3 in the case of (a) means that
all the 3 tools agreed with WEVOTE on its assigned taxon for the corresponding
read, A=5 in case of (b) means that all the used 5 tools agreed with WEVOTE on its
assigned taxon for the corresponding read.

Fig 6. The sensitivity and precision at the species level for the WEVOTE
(N=5) using different thresholds for the minimum number of tools that
agreed with WEVOTE decision. (a) Kraken-HiSeq dataset; and (b) Kraken-
MiSeq dataset.

Computational resources and running performance

All the experiments were performed on the supercomputer (EXTREME) at the Uni-
versity of Illinois at Chicago. To benchmark different WEVOTE, we used only one
node with 16 cores (Intel Xeon E5-2670 @ 2.60 GHz, cache size of 20 MB, and 128
GB RAM). Since the WEVOTE core algorithm and all the used individual tools are
parallelizable, we utilized 16 threads for all experiments conducted in this work. Due to
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the high requirement on the memory for constructing Kraken and CLARK databases,
we used the Highmem machine on EXTREME which has 1TB RAM specification.

In order to achieve the maximum performance from Kraken and CLARK, we used
the default versions of the two tools, which require at least 80 GB of RAM. Therefore,
if there is only a limited amount of memory available, users can run these tools using
their mini versions, i.e., MiniKraken and CLARK-l, which only require 4 GB of RAM.
In this case, the output could be 11%-25% less sensitive, but it will still preserve a
high level of precision. The WEVOTE algorithm is particularly useful in this case
because it can exploit the high precision level of Kraken and CLARK without using
high memory machines and compensate the sensitivity by using BLASTN.

Table 2 shows the running time for each tool per dataset. For MetaPhlAn, which
include two HC datasets and eight LC datasets, the running time is presented as the
average over the datasets. The standard deviation of each category is also provided,
however, the details for all individual datasets can be found in Table S8. For all used
simulated datasets, Kraken and CLARK finished in less than 3 minutes. For BLASTN,
the most time-consuming tool that is currently implemented in WEVOTE pipeline, its
running time is proportional to the number of reads and the read length in a dataset.
The WEVOTE algorithm, whether with N = 3 or N = 5, finished in less than 33
seconds for all the datasets. The WEVOTE core algorithm is mainly affected by the
number of the used tools, and, more specifically, the number of tools that identified
taxa for the reads. The total time of the entire WEVOTE pipeline is the summation
of the running times of the individual tools and the WEVOTE algorithm. It can be
reduced if the tools are run in parallel, but it will be primarily dominated by the time
required by BLASTN.

Table 2. Running time of the used tools.

Simulated
Dataset

Kraken
(min)

BLASTN
(min)

TIPP
(min)

CLARK
(min)

MetaPhlAn
(min)

WEVOTE
algorithm
[N=3] (sec)

WEVOTE
algorithm
[N=5] (sec)

WEVOTE
Pipeline

[N=5](min)
HiSeq <1 2 4 1 1 0.1 1 10
MiSeq <1 8 4 1 1 0.2 1 16
simBA5 <1 7 3 1 1 0.1 1 14
simHC20 <1 9 5 1 1 0.3 1.5 19
HC (std) 2 (0.0) 30 (1.4) 14 (0.0) 3 (0.0) 2 (0.0) 5 (0.3) 32 (1.4) 53 (1.4)
LC (std) 1 (0.0) 9 (2.9) 8 (0.5) 2 (0.0) 1 (0.5) 1 (0.1) 7 (0.9) 23 (3.5)

Conclusion and future work

We have developed the WEVOTE framework for the consolidation of taxonomic
identifications obtained from different classification tools. The performance evaluation
based on the fourteen simulated microbiome datasets consistently demonstrates that
WEVOTE achieves a high level of sensitivity with the lowest false positive rate
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compared to the individual methods across different taxonomic levels. The major
advantage of the WEVOTE pipeline is that a user can make the choice of which tools
to use in order to explore the trade-off between sensitivity, precision, time, and memory.
The WEVOTE architecture is flexible such that additional taxonomic tools can be
easily added, or the current tools can be replaced by improved ones. Moreover, the
score assigned to the taxon for a read indicates the confidence level of the assignment.
This information is especially useful for the assessment of false positive annotations
at a particular taxonomic level. The classification score given by WEVOTE can be
used for any downstream analysis that requires the high confidence of the annotated
sequences. In our current implementation, we have used a uniform weight for each
method to vote. However, we will explore the potential of incorporating different
weighted votes for individual methods. Future work also includes the investigation of
clinical microbiome samples and experimental validation for species of interest.
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Appendix (A)

We provide information on the command line, the databases and the software ver-
sion that were used for the execution of the individual tools: Kraken, TIPP, BLASTN,
CLARK, and MethPhlAn. The complete path to each executable of database is not
shown here for clarity:

Kraken

Step 1: Map the reads file to the Kraken database:

$kraken --db <kraken-db> -fasta-input --threads 16 --output
<KrakenOutput> [input-file.fa]

Step 2: Generate Kraken report:

$kraken-report --db <kraken-db> <KrakenOutput> >
[KrakenOutput.report]

Software version: kraken-0.10.5-beta.

Database: used the kraken-build script to download and configure the standard
Kraken database. This downloads NCBI taxonomic information, as well as the
complete genomes in RefSeq for the bacterial, archaeal, and viral domains (Downloaded
on 11/14/2015).

BLASTN

Map the reads file to the NCBI database and report the top hit:

$blastn -db nt -query <input-file.fa> -out <NaiveOutput> -outfmt
"6 qseqid sseqid sgi staxids length qstart qend sstart send pident
evalue score bitscore stitle" -num threads 16 -perc identity 90
-max target seqs 1 -evalue 1e-5 -best hit score edge 0.05
-best hit overhang 0.25

Software version: ncbi-blast-2.2.29+-x64-linux

Database: NCBI NT (Downloaded on 12/20/2015).
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TIPP

Map the reads file to the database of 30 marker genes and reports the taxon of the
classified reads:

$run abundance.py -f [input-file.fa] -c /.sepp/tipp.config
-x 16 -d [TIPPOutput]

Software version: Downloaded the source code from:
https://github.com/smirarab/sepp.git on (Downloaded on 12/1/2015).

Database: Downloaded the references datasets from www.cs.utexas.edu/ phylo/soft-
ware/sepp/tipp.zip on (Downloaded on 12/1/2015).

CLARK

Step 1: Configure the setting and choose the database:

$set targets.sh <CLARK-DB> bacteria viruses

Step 2: Map the reads file to the CLARK database:

$classify metagenome.sh -O <input-file.fa> -R <output-prefix>
-n 16

Software version: CLARKSCV1.2.3

Database: used the download data.sh script to download NCBI taxonomic informa-
tion, as well as the complete bacterial and virus genomes (Downloaded on 4/20/2016).

MetaPhlAn

Map the reads file to the database of MetaPhlAn marker genes:

$python metaphlan.py <input-file.fa> --bowtie2db bowtie2db/mpa
--bt2 ps sensitive-local --bowtie2out <output-prefix.bt2out> --input type
multifasta --nproc 16 > <output-file>

Software version: MetaPhlAn version 1.7.7

Database: The same marker genes database that downloaded with MetaPhlAn
version 1.7.7 (Downloaded on 12/13/2015).
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WEVOTE

The input to WEVOTE algorithm is a CSV file. Each file has information about one
read from the sequence fasta file. This information is in the form of <read header,
tool #1 taxon, tool #2 taxon, ....., tool #N taxon >. In the case of inability of any
tool to classify a read, taxon should be zero. WEVOTE, then, use this input file along
with the NCBI taxonomy database to annotate the sequences:

$wevote -i <input-file.csv> -d <taxonomy-database> -p
<output-prefix> -n 16 -k 2

Software version: WEVOTE version 1.0.0

Database: NCBI taxonomy database (Downloaded on 4/17/2016).
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Supporting Information

1 WEVOTE (N=3 ) Case Scenarios:

Fig S1. WEVOTE case scenarios using three tools. C denotes the # tools
able to classify the read, A stands for the # of tools that agreed with the
WEVOTE Decision, and S stand for WEVOTE score. Scenarios are shown
for: (a) None of the three tools classified the read; (b) Only one tool classified the read;
(c) Two tools classified the read with the same taxon; (d, e) Two tools classified the
read with two different taxa; (f-i) Three tools classified the read with three different
taxa; (j, k) Three tools classified the read, two taxa are identical, and the other is
different; and (l) Three tools identified the read with the same taxon.
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