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   2	
  

Landscape connectivity of a noxious invasive weed: promises and challenges of landscape 23	
  

genomics for knowledge-based weed management? 24	
  

ABSTRACT 25	
  

 Examining how the landscape may influence gene flow is at the forefront of 26	
  

understanding population differentiation and adaptation. Such understanding is crucial in light of 27	
  

ongoing environmental changes and the elevated risk of ecosystems alteration. In particular, 28	
  

knowledge of how humans may influence the structure of populations is imperative to allow for 29	
  

informed decisions in management and conservation. Here we characterize the population genetic 30	
  

structure of Ipomoea purpurea, a noxious invasive weed, and assess the interaction between 31	
  

natural and human-driven landscapes on genetic differentiation. By combining rigorous statistical 32	
  

analyses and different molecular markers (nuclear microsatellites and a genome-wide panel of 33	
  

SNPs), we detect both common and marker-specific patterns of genetic connectivity and identify 34	
  

human population density as an important predictor of pairwise population differentiation, 35	
  

suggesting that the agricultural and/or horticultural trade may be involved in maintaining some 36	
  

level of connectivity across distant agricultural fields. Climatic variation appears as an additional 37	
  

predictor. We discuss the implications of these results and the approach we followed in the 38	
  

context of understanding agricultural weed and invasive species’ connectivity, as well as the 39	
  

challenges and promises of current landscape genomics research for knowledge-based weed 40	
  

management. 41	
  

Keywords: agricultural weeds, human-aided migration, landscape genetics, morning glory, 42	
  

population structure  43	
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INTRODUCTION 44	
  

 Elucidating routes and levels of migration between subpopulations of a species is 45	
  

essential to understand the interplay between gene flow, adaptation, genetic drift, and selection, 46	
  

and hence the forces that shape its evolutionary trajectory (Barrowclough, 1980; Slatkin, 1985). 47	
  

Landscape features—such as rivers, mountain ranges, crop fields, and urban areas—can impact 48	
  

levels of gene flow between populations by determining dispersal rates and routes (Cushman, 49	
  

McKelvey, Hayden, & Schwartz, 2006; McRae, 2006) as well as by influencing the likelihood of 50	
  

successful establishment of immigrants (Nosil, Egan, & Funk, 2008; Sexton, Hangartner, & 51	
  

Hoffmann, 2014; Wang & Bradburd, 2014). Landscape features can also indirectly condition the 52	
  

effect of gene flow through its effect on local effective population sizes since the actual role that 53	
  

migration plays in the evolution of a species is driven by the fraction of the local population size 54	
  

that correspond to immigrants (Slatkin, 1985; Wright, 1949). Consequently, the landscape, 55	
  

loosely defined as an area with spatially variable biotic and abiotic factors (Holderegger, Buehler, 56	
  

Gugerli, & Manel, 2010), creates the stage for spatially variable levels of effective gene flow 57	
  

among populations, conditioned by species’ specific physiological tolerances and behavioral 58	
  

preferences (Clobert, Baguette, Benton, Bullock, & Ducatez, 2012). In this way, the landscape 59	
  

plays a pivotal role in the evolution of species. 60	
  

 61	
  

In contrast to species that depend almost exclusively on natural dispersal agents, species 62	
  

in heavily human-dominated ecosystems may exploit human activities to maintain gene flow 63	
  

among populations and expand their ranges (Everman & Klawinski, 2013; Fountain, Duvaux, 64	
  

Horsburgh, Reinhardt, & Butlin, 2014). Such species may be capable of maintaining population 65	
  

connectivity over vast geographic ranges (Trakhtenbrot, Nathan, Perry, & Richardson, 2005) by 66	
  

overcoming landscape features that would otherwise represent natural barriers and reach dispersal 67	
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distances that could be orders of magnitude greater than those attained under natural agents or do 68	
  

it under much smaller time frames (Mack & Lonsdale, 2001; Ricciardi, 2007). In this way, by 69	
  

facilitating dispersal humans have the potential to: i) condition the balance between drift and 70	
  

selection (Lenormand, 2002; Slatkin, 1985), ii) introduce relevant genetic variation to local 71	
  

populations (Kolbe et al., 2004), iii) prevent local extinction or favor recolonization (Fountain et 72	
  

al., 2014), and alter the overall genetic constitution of populations (Bataille, Cunningham, Cruz, 73	
  

Cedeño, & Goodman, 2011). Human-aided migration—intentional or unintentional—is 74	
  

particularly prevalent in plants (Auffret & Cousins, 2013; Hodkinson, Thompson, Journal, & 75	
  

Dec, 2007; Wichmann et al., 2009), where it has had major impacts on the distribution of species 76	
  

and stability of communities (Simberloff, 2013 and references therein). Yet, the open question 77	
  

remains: how might the interaction between human-dominated and more natural landscapes 78	
  

affect population connectivity in plant populations, especially in human-exploiter species?  79	
  

 80	
  

 A particularly amenable system to study the interaction between natural and human-aided 81	
  

dispersal comes from agricultural weed populations. Agricultural weeds face a highly dynamic 82	
  

landscape characterized by frequent spatial rearrangements (expansion of agricultural front, 83	
  

increased fragmentation) and a constantly changing environment (crop rotation, agricultural 84	
  

chemical use, climatic abnormalities) (Meehan, Werling, Landis, & Gratton, 2011; Menchari, 85	
  

Délye, & Le Corre, 2007) that certainly impact their opportunities for survival and local 86	
  

adaptation through its effect on population connectivity (Margosian, Garrett, Hutchinson, & 87	
  

With, 2009). At the same time, natural features such as climate, soil type, and topography are 88	
  

expected to play a significant role in structuring populations provided intrinsic physiological 89	
  

requirements and species-specific traits (Cimalová & Lososová, 2009; Navas, 2012). Under these 90	
  

conditions, human-aided migration is expected to be critical for weeds’ success (Epperson & 91	
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Clegg, 1986), but knowledge on how or if weedy plant populations are able to maintain 92	
  

connectivity through a complex landscape matrix of croplands, grasslands, natural and urban 93	
  

areas is limited. Addressing this limitation should not only improve our understanding of the 94	
  

underlying processes governing weeds’ population structure, but should also offer practical tools 95	
  

to deal with this ever-growing agricultural problem that impose severe economic costs (on the 96	
  

order of 33B USD per year in US agriculture alone; Pimentel, Zuniga, & Morrison, 2005). 97	
  

 98	
  

 As a first step into investigating the interplay between natural factors and human activities 99	
  

on structuring genetic diversity in weed populations, we estimate the intensity and extent of 100	
  

migration from genetic data and, under the preliminary simplifying assumption of evolutionary 101	
  

equilibrium (Marko & Hart, 2011), evaluate how multiple landscape features influence genetic 102	
  

connectivity of a noxious agricultural weed, Ipomoea purpurea, using two different sets of 103	
  

molecular markers (nuclear microsatellites and a genome-wide panel of SNPs). Specifically, we 104	
  

ask the following questions: 1) Which natural and/or human-influenced landscape features—105	
  

soils, elevation, climate, landcover, crop types, human population density—promote or constrain 106	
  

genetic connectivity between populations of this agricultural weed? and 2) what additional 107	
  

insights can we gain from a broader representation of the genome than traditionally used in 108	
  

landscape genetics studies (typically microsatellites and organelle DNA)? By considering the 109	
  

possible interactions between natural and human effects on migration, the answers to these 110	
  

questions offer deeper knowledge of the interaction between human activities, landscape features, 111	
  

and population structure of noxious weeds and hence contribute to improve effective 112	
  

management and control of these damaging plants. More generally, these answers contribute to 113	
  

deepen our understanding of the interaction between environmental setting and population 114	
  

differentiation, adaptation, and persistence (Taylor, Fahrig, Henein, & Merriam, 1993). 115	
  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 16, 2017. ; https://doi.org/10.1101/054122doi: bioRxiv preprint 

https://doi.org/10.1101/054122
http://creativecommons.org/licenses/by/4.0/


	
   6	
  

 116	
  

MATERIALS AND METHODS 117	
  

Study system 118	
  

Ipomoea purpurea, the common morning glory, is an agricultural weed evolving under 119	
  

the influence of human-driven and natural landscape factors. This species is a noxious weed, of 120	
  

horticultural value (Defelice, 2001; Fang et al., 2013), with a widespread distribution that 121	
  

includes highly heterogeneous landscapes in the Eastern, South- and Mid-western regions of the 122	
  

United States (Culpepper, 2006; Webster & Nichols, 2012). It is a self-compatible annual 123	
  

bumblebee-pollinated vine, with heavy seeds, and is found primarily in agricultural fields and 124	
  

disturbed areas (Baucom & Mauricio, 2008; Tiffin & Rausher, 1999), as well as cultivated flower 125	
  

gardens and yards (Defelice, 2001). While most details on the history of I. purpurea remain 126	
  

unknown, it is hypothesized that I. purpurea originated in Central America, from where it was 127	
  

taken to Spain to be grown in monasteries as an ornamental during the XVI century (Defelice, 128	
  

2001; Fang et al., 2013). From there, it is hypothesized that its cultivation expanded to other 129	
  

European countries, including England, and later to North America (Defelice, 2001; Fang et al., 130	
  

2013). By the early XVIII century it became a popular plant in gardens in the United States, but 131	
  

also a known weed (Defelice, 2001). Since then, little is know about the demographic history of 132	
  

this species in the United States, other than the fact that gene flow has probably been maintained 133	
  

over time at least among populations in relatively close geographic proximity (Kuester, Chang, & 134	
  

Baucom, 2015). What is clear is that since its introduction its history has been tightly linked to 135	
  

human activities, making it suitable to assess the impact of natural and anthropogenic landscapes 136	
  

on structuring genetic variance. 137	
  

 138	
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Ipomoea purpurea is currently one of the most problematic agricultural weeds (Webster 139	
  

& Nichols, 2012) and is capable of infestations leading to substantial decline in crop (closely 140	
  

related Ipomoea species cause declines of up to 80% of crop yield; Rogers, Murray, Verhalen, & 141	
  

Claypool, 1996). This species exhibits resistance to the commonly used herbicide glyphosate 142	
  

(Baucom & Mauricio, 2004, 2008), although the exact resistance level varies widely among 143	
  

populations of this species (Kuester et al., 2015). This species is also a major concern for 144	
  

conservation given its naturalization in multiple regions throughout the world and its 145	
  

aggressiveness as an invasive (Chaney & Baucom, 2012; Fang et al., 2013). Hence, unraveling 146	
  

the population structure of this species and how it is affected by the landscape should not only 147	
  

improve our understanding of basic evolutionary processes, but should also inform practical 148	
  

decisions for its management and control (e.g., Is herbicide resistance better controlled by 149	
  

avoiding the spread of resistance genotypes or by local management of moderately isolated 150	
  

populations?). 151	
  

 152	
  

Data compilation 153	
  

To capture the plausible effect of both natural and disturbed landscapes on structuring genetic 154	
  

diversity in I. purpurea, we compiled a diverse set of GIS data for the continental US from a 155	
  

variety of sources (Table S1). These data encapsulate human activities (human population 156	
  

density, landcover, planted crops, and roads) as well as the geographical setting of I. purpurea 157	
  

(elevation, climate—19 variables summarizing central tendencies and variability patterns in 158	
  

temperature and precipitation, soil—8 variables summarizing the texture, pH, and organic and 159	
  

inorganic content of the top 20cm of soil). We focused on both sets of data because of the 160	
  

possible interaction between natural and human effects, which may lead to incorrect inferences if 161	
  

not accounted for (e.g., spurious associations due to spatial correlation between crops distribution 162	
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and climate; Eberhardt & Teal, 2013). We first processed all these data into landscape layers at a 163	
  

common spatial resolution of 10km2 and a common spatial extent around the US states with 164	
  

available samples (Fig. 1). These spatial resolution and extent were chosen to maintain a practical 165	
  

balance between scale and analytical manageability given available computational resources. To 166	
  

reduce dimensionality, we opted to perform two separate Principal Component Analyses (PCAs) 167	
  

on the 19 climatic and 8 soil layers, respectively. For all subsequent analyses we kept the 168	
  

resulting first two principal components of each of these analyses, which accounted for over 78% 169	
  

of the variance in each case, and primarily summarized temperature temporal gradients and 170	
  

precipitation seasonality, and soils’ pH, sandiness, and grain size, respectively (Table S2). 171	
  

 172	
  

With the objective of estimating the genetic connectivity of populations of I. purpurea, we 173	
  

compiled genetic data on an extensive panel of 15 previously optimized microsatellite loci 174	
  

(Molecular Ecology Resources Primer Development Consortium 2013), which quality has been 175	
  

verified by looking for scoring errors (Kuester et al., 2015) using Micro-Checker (Van 176	
  

Oosterhout, Hutchinson, Wills, & Shipley, 2004). These data encompass a total of 597 177	
  

individuals from 31 localities (with a minimum of 8 individuals per locality) (Fig. 1; Table S3). 178	
  

All individuals were collected in 2012 from farms across the range of I. purpurea in the United 179	
  

Sates (Kuester et al., 2015). In addition, to obtain a more comprehensive representation of the 180	
  

genome of I. purpurea and assess the robustness of results in light of coalescent and mutational 181	
  

variance (Nielsen & Slatkin, 2013), we generated a Next Generation Sequencing (NGS) dataset 182	
  

from an additional set of individuals (from 6 localities represented in the SSR dataset, plus 2 183	
  

additional localities in close geographic proximity to localities in the SSR dataset; Fig. 1).  184	
  

 185	
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To generate the NGS dataset, we constructed genome-wide Genotype By Sequencing (GBS) 186	
  

libraries for 80 individuals sampled across the 8 localities. The GBS library was developed using 187	
  

7ng of genomic DNA, extracted from leaf or cotyledon tissue, using SNPsaurus’ (Oregon, USA) 188	
  

nextRAD technology. This technology uses a selective PCR primer to amplify consistent 189	
  

genomic loci among individuals. Similarly to RAD-Seq sequences (Rowe, Renaut, & 190	
  

Guggisberg, 2011) in which the DNA flanking a restriction enzyme cut site is selected for 191	
  

amplification, nextRAD amplifies sequences that correspond to the DNA downstream of a short 192	
  

selective priming site. Samples were first fragmented and then ligated to short adapter and 193	
  

barcode sequences using a partial Nextera reaction (Illumina; California, USA) before being 194	
  

amplified using Phusion® Hot Start Flex DNA Polymerase (New England Biolabs; 195	
  

Massachusetts, USA). The 80 dual-barcoded PCR-amplified samples were pooled and the 196	
  

resulting libraries were purified using AMPure XP beads (Agencourt Bioscience Corporation; 197	
  

Massachusetts, USA) at 0.7x. The purified library was then size selected to 350-800 base pairs 198	
  

and sequenced using two runs of an Illumina NextSeq500 sequencer (Genomics Core Facility, 199	
  

University of Oregon). 200	
  

 201	
  

The resulting sequences were analytically processed using the SNPsaurus nextRAD pipeline 202	
  

(SNPsaurus, Oregon, USA; Siliceo-Cantero, García, Reynolds, Pacheco, & Lister, 2016). 203	
  

Specifically, reads of 16 randomly selected individuals (of the 80 sequenced) were combined to 204	
  

create a pseudo-reference genome. This was done after removing loci with read counts above 205	
  

20,000, which presumably corresponded to repetitive genomic material, and loci with read counts 206	
  

below 100, which presumably corresponded to off-target or read errors. The filtered reads were 207	
  

aligned to each other using BBMap (Bushnell, 2016). All parameters were set to default values 208	
  

with the exception of minimum alignment identity, which was set to 0.93 to identify alleles, as it 209	
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is a threshold found to work well for non-reference species (SNPsaurus, Oregon, USA). A single 210	
  

read instance was chosen to represent the locus in the pseudo-reference. This resulted in a total of 211	
  

263,658 loci. All reads from each of the 80 individuals were then aligned to the pseudo-reference 212	
  

using BBMap (Bushnell, 2016) and converted to a vcf genotype table, using Samtools (Li et al., 213	
  

2009) and bcftools (Li, 2011), after filtering out nucleotides with a quality score of 10 or worse 214	
  

(an empirically informed threshold; SNPsaurus, Oregon, USA). The resulting vcf table was 215	
  

filtered using vcftools (Danecek et al., 2011) for SNPs with a minimum allele frequency of 0.02, 216	
  

a minimum read depth of 5, and a maximum 15% of missing data. We chose this filtering scheme 217	
  

as a balance between accuracy and efficiency and to avoid inadvertent errors associated with our 218	
  

use of a pseudo-reference genome. This resulted in 9774 variable regions. Loci were further 219	
  

filtered using vcftools to exclude loci with less than 5 high quality base-calls and with more than 220	
  

20% missing data or an average of less than 20 high quality base calls. This resulted in a final 221	
  

panel of 8210 Single Nucleotide Polymorphisms (SNPs) that we used in all subsequent analyses. 222	
  

 223	
  

Population structure analyses 224	
  

We first conducted a series of preliminary analyses to characterize the overall genetic 225	
  

structure of I. purpurea. All analyses were run separately for the microsatellite (SSR, hereafter) 226	
  

and SNP datasets given their intrinsic differences and distinct geographic coverage (Fig. 1; Table 227	
  

S3). In addition, we repeated all population structure analyses, separate for the SSR and SNP 228	
  

datasets, for the subset of 6 localities with coincident data for both markers (referred as SSRc and 229	
  

SNPc, hereafter) to assess the robustness of results to the difference in geographic coverage.  230	
  

 231	
  

First, we examined population differentiation by estimating FST using GenAlex v6.5 (Peakall 232	
  

& Smouse, 2012) (because similar global FST and RST estimates were obtained for the SSR 233	
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dataset, we opted to report FST values only to allow direct comparisons with the SNP dataset). We 234	
  

then estimated contemporary effective population size for each sampled locality in NeEstimator 235	
  

v2 using the excess heterozygous method (Do et al., 2014). We performed this latter analysis to 236	
  

assess the possibility of whether differences in local population size underlie differences in 237	
  

genetic variation (Weckworth et al., 2013) and/or promote asymmetric effective migration rate 238	
  

(Nm).  239	
  

 240	
  

In addition, we assessed population admixture and spatial genetic clustering using TESS 241	
  

(Chen, Durand, Forbes, & François, 2007). TESS was run using the admixture algorithm and a 242	
  

BYM model (Durand, Jay, Gaggiotti, & François, 2009) with 10 runs per K value, and without 243	
  

using geographic weights. The TESS model, with the lowest DIC was chosen as the optimal 244	
  

model (Durand, Chen, & Francois, 2009). K values tested ranged from two to the maximum 245	
  

number of sampled localities. Additionally, following Wang et al. (2009), we complemented 246	
  

these analyses with Analyses of Molecular Variance (AMOVA; Excoffier, Smouse, & Quattro, 247	
  

1992) run in GenAlex (Peakall & Smouse, 2012) using 9999 permutation replicates. We run 248	
  

these AMOVAs either partitioning the variance into regions based on the spatial genetic clusters 249	
  

previously identified by TESS—to quantify the fraction of the genetic variance explained by 250	
  

these clusters, or leaving it ungrouped (i.e., no regions), for comparison. 251	
  

 252	
  

Additionally, we investigated population connectivity by estimating levels of recent 253	
  

migration between sampled localities through the identification of individuals of mixed ancestry 254	
  

using BayesAss (Wilson & Rannala, 2003). BayesAss is a program that uses individual 255	
  

multilocus genotypes and a Markov Chain Monte Carlo (MCMC) algorithm to probabilistically 256	
  

distinguish between immigrants and long-term native individuals (Wilson & Rannala, 2003). We 257	
  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 16, 2017. ; https://doi.org/10.1101/054122doi: bioRxiv preprint 

https://doi.org/10.1101/054122
http://creativecommons.org/licenses/by/4.0/


	
   12	
  

ran BayesAss for 6 million generations using default parameter settings, and discarded the first 258	
  

two million generations as burn-in (Dyer, 2009). For each marker dataset, we repeated this 259	
  

analysis three times (for a total of 18 million generations) and combined the results from the three 260	
  

replicates for our final inference. Then, using a posterior probability cut-off of 0.75 we assign 261	
  

individuals’ ancestry. We chose this cut-off value as a minimum credibility score to 262	
  

simultaneously maximize sample size and reliability (stringer thresholds show similar differences 263	
  

between marker sets; results not shown). It is important to note that because of computational 264	
  

limits we had to randomly subsample our set of SNPs to 400 SNPs for this analysis. The same 265	
  

subsampled set was used for the full and reduced (i.e., on the SSRc and SNPc datasets) analyses. 266	
  

 267	
  

Landscape genetics analyses 268	
  

After assessing overall population structure of I. purpurea, we evaluated the association 269	
  

between landscape features and genetic differentiation based on the full datasets. We limited our 270	
  

analyses to the full datasets because of the robust genetic structure recovered between the full and 271	
  

reduced datasets (see below) and the smaller sample size of the latter datasets, which limits 272	
  

statistical inference power. First, we estimated conditional genetic distances (Dyer, Nason, & 273	
  

Garrick, 2010) using GeneticStudio (Dyer, 2009). Briefly, conditional distances are measures of 274	
  

pairwise genetic distance derived from population networks, constructed based on the degree of 275	
  

genetic similarity between sampled localities (Dyer & Nason, 2004). Because these networks are 276	
  

pruned based on the principle of conditional independence of the total among population genetic 277	
  

covariance (using an edge deviance principle; Magwene, 2001), conditional distances reflect 278	
  

genetic similarity between localities that better capture direct gene flow as opposed to 279	
  

connectivity driven by intervening localities (Dyer, 2015b). The complexity of the associated 280	
  

conditional genetic network was summarized by their vertex connectivity (White & Harary, 281	
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2001), whereas the congruence between networks derived from different marker sets was 282	
  

measured by their structural congruence (a measure of wether the number of congruent edges 283	
  

between networks is greater than expected by chance) (Dyer, 2009). 284	
  

 285	
  

Climate, crops, elevation, landcover, population density, roads, and soils landscape layers 286	
  

(Table S1) were converted into landscape resistance layers by assigning a resistance value to each 287	
  

landscape feature in these layers to reflect the difficulty that each feature offers to the movement 288	
  

of gametes or individuals. It is important to note that in contrast to previous studies that typically 289	
  

rely on expert opinion for resistance assignment, we utilized an unbiased statistical optimization 290	
  

to avoid the sensitivity of results to subjective resistance assignment (Spear, Balkenhol, Fortin, 291	
  

McRae, & Scribner, 2010). Specifically, resistance values were optimized through a genetic 292	
  

algorithm approach (Mitchell, 1996). Briefly, in this search algorithm a population of individuals 293	
  

with traits encoded by unique combinations of model parameters (resistance assignment 294	
  

proposals in our case) is allowed to compete with each other based on the fitness associated with 295	
  

the traits it carries (Peterman, Connette, Semlitsch, & Eggert, 2014). Specifically, in Peterman’s 296	
  

(2014) implementation of this algorithm, which we followed here, individuals’ fitness is 297	
  

estimated by the relative quality of a MLPE.lmm model (Maximum Likelihood Population 298	
  

Effects – Linear Mixture Model) that evaluates the association between pairwise genetic distance 299	
  

and landscape cumulative resistance between localities, estimated in Circuitscape (Shah & 300	
  

McRae, 2008). Individuals with parameter settings (i.e., resistance assignments) that result in 301	
  

better models, as measured by a Deviance Information Criterion (DIC) score, are preferentially 302	
  

represented in the following generation. Offspring modifications introduced by mutations (i.e., 303	
  

small resistance assignment perturbations) allow for exploration of the parameter space. The 304	
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algorithm was stopped once 25 generations have passed without significant improvement in 305	
  

fitness. 306	
  

 307	
  

We implemented Peterman’s (2014) algorithm in R (package ResistanceGA; Peterman, 2014) 308	
  

allowing for the independent optimization of each of our landscape layers. The optimal resistance 309	
  

landscapes identified in this way were then used to run a final univariate MLPE.lmm model to 310	
  

characterize the association between landscape features and conditional genetic distances 311	
  

between localities. Because the roads-association resistance was not recovered as significant for 312	
  

either marker dataset, we dropped this layer for all subsequent analyses. Finally, to identify the 313	
  

simultaneous contribution of natural and human-driven landscape features we ran Multiple 314	
  

Regression on Distance Matrices (MRDM; Legendre, Lapointe, & Casgrain, 1994), which has 315	
  

been identified as one of the best performing methods for evaluating the interplay between 316	
  

landscape features and genetic connectivity (Balkenhol, Waits, & Dezzani, 2009). Before running 317	
  

these MRDM analyses, we standardized all optimized resistance layers to mean of zero and 318	
  

variance of one (Dyer et al., 2010). These final regressions included geographic distance as a null 319	
  

model predictor as well as effective population size and were run in R (package ecodist; Goslee 320	
  

& Urban, 2007) using 10,000 permutations to assess significance. In none of our analyses did we 321	
  

implement a Bonferroni correction for multiple testing because of the overly conservative nature 322	
  

of this correction (Glickman, Rao, & Schultz, 2014; Nakagawa, 2004). Instead we applied a false 323	
  

recovery rate correction (Benjamini & Hochberg, 1995) using the function p.adjust in R (R Core 324	
  

Development Team, 2016).  325	
  

 326	
  

RESULTS 327	
  

Population structure 328	
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The set of preliminary genetic analyses indicated that I. purpurea sampled localities were 329	
  

in no major violation of Hardy-Weinberg equilibrium, as judged by the small difference between 330	
  

expected and observed heterozygosity (mean He = 0.294±0.014 and 0.250±0.001; mean Ho = 331	
  

0.291±0.009 and 0.260±0.001, respectively for SSR and SNP datasets). Levels of expected and 332	
  

observed heterozygosity for the SSR dataset were only slightly greater than those estimated for 333	
  

the SNP dataset. Likewise, the estimated mean effective population size per sampled locality was 334	
  

only slightly greater and more variable for the SSR dataset than for the SNP dataset (13.71±5.59, 335	
  

9.49±0.13, respectively), but in neither case was there salient evidence of a plausible source-sink 336	
  

dynamic, as judged by the similar effective sizes among populations. Neither were there salient 337	
  

differences in FST estimates between datasets (0.151 and 0.140, respectively for SSR and SNP 338	
  

datasets; Fig. S1), with FST estimates being within the range of FST values of other broadly 339	
  

distributed agricultural weeds [FST: 0.14−0.38] (Bussell, 1999; Eschmann-Grupe, Neuffer, & 340	
  

Hurka, 2004; Müller-Schärer & Fischer, 2001). Congruently, no major differences in genetic 341	
  

estimates between the SSRc and SNPc estimates were found (Table S4). Further confirming the 342	
  

limited spatial structure in this species, spatial genetic clusters identified by the best TESS model 343	
  

(Fig. S2) explained less than 13% of the variance across datasets, and barely reduced the variance 344	
  

explained solely by geographic location when compared to a null model with no regions assigned 345	
  

(Tables 1, S5). 346	
  

 347	
  

Despite these similarities between the SSR and SNP datasets, the underlying genetic 348	
  

structure was markedly different. Estimates of recent ancestry differed between SSR and SNP 349	
  

datasets. The analysis on the SSR dataset indicated that migration among localities is more 350	
  

widespread and hardly geographically constrained, with only four localities being primarily 351	
  

constituted of native individuals (Fig. 2a). Across localities, on average 73.65% of individuals 352	
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were inferred to be 1st or 2nd generation immigrants (it is important to note, however, that such 353	
  

high migration rate surpasses the assumptions of the method, and hence they should be taken 354	
  

cautiously). On the other hand, the analysis of the SNP dataset showed that most populations 355	
  

have a much more limited number of recent immigrants, and that the relatively few inferred 356	
  

immigrants (on average 27.42% of individuals) did not come exclusively from geographically 357	
  

proximate localities (Fig. 2d). Accordingly, SSR and SNP pruned conditional genetic networks 358	
  

(Dyer & Nason, 2004) indicated remarkably different underlying patterns of genetic connectivity 359	
  

(structural congruence = 0.108; Fig. 2b,e). The SSR-based network was more interconnected 360	
  

(vertex connectivity: 5) than the SNP-based network (vertex connectivity: 0). Furthermore, 361	
  

strong admixture was recovered in the SSR dataset, whereas minimal admixture was identified in 362	
  

the SNP dataset (Fig. 2c,f). As before, these differences were consistent when analyzing the 363	
  

SSRc and SNPc datasets. The SNPc dataset was characterized by a smaller percentage of recent 364	
  

immigrants (28.25%) than the SSRc dataset (44.93%) (Fig. S3a,d), and the corresponding genetic 365	
  

networks were also clearly different from each other (structural congruence = 0.002)—with the 366	
  

SSR-based network being more connected (and vertex connectivity = 2) than the SNPc-base 367	
  

network (i.e., vertex connectivity = 0)—(Fig. S3b,e). Finally, as for the full data, a more admixed 368	
  

genetic composition of individuals was recovered in the SSRc dataset than in the SNPc dataset 369	
  

(Fig. S3c,f).  370	
  

 371	
  

Landscape genetics 372	
  

 Unsurprisingly, given the distinct underlying genetic patterns between SSR and SNP 373	
  

datasets (see above), the optimization of landscape resistance layers resulted in different 374	
  

resistance optimization solutions for each dataset (Fig. S4). It is important to note, however, that 375	
  

a formal comparison is unwarranted as the associations recovered are statistical associations 376	
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driven by the fit of the resistance parameterization to the data under the statistical model 377	
  

implemented (Martínez-Abraín, 2008). While these associations are expected to recapitulate real 378	
  

biological properties of the study system, they are constrained to the data at hand. Nonetheless, 379	
  

association patterns that are robust to the data used are expected to better reflect the actual impact 380	
  

that landscape features have on gene flow, independently of possible biases introduced by expert 381	
  

opinion. Therefore, we focus below on the common biological findings between marker types, 382	
  

while also denoting the most relevant differences. Such differences likely reflect not only the 383	
  

different environmental ranges covered by each dataset (Fig. 1), but most importantly, the 384	
  

particular population genetic structure underlying each dataset (Fig. 2).  385	
  

 386	
  

In spite of the distinct underlying genetic structure, there were some landscape features 387	
  

that showed consistent inferred conductance to migration between datasets (Fig. S5). For 388	
  

example, a tendency towards greater landscape conductivity in relatively warm and precipitation-389	
  

seasonal areas was observed in both datasets along with a steep decline in connectivity towards 390	
  

areas with the greatest temperatures and precipitation-seasonality values in the study area (Fig. 391	
  

S5). Likewise, cotton-dominated areas were recovered as substantially more permeable landscape 392	
  

features than areas dominated by soybean fields, evergreen forests, open shrublands, and 393	
  

grasslands (Fig. S5). Furthermore, both datasets pointed towards human-impacted landscapes 394	
  

playing an important role in shaping genetic connectivity in this species. While in both sets of 395	
  

MLPE.lmm models, null (geographic distance), natural (climate, elevation, and soils), and 396	
  

human-related landscapes (landcover and human population density) were identified as 397	
  

significant (hereafter, 0.01<p<=0.05 after correction for multiple testing) or marginally 398	
  

significant predictors (hereafter, p<=0.01 after correction for multiple testing) of genetic 399	
  

similarity between localities, the variable with the greatest association coefficient and lowest 400	
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AICc value in these models was in both cases a variable closely linked to human presence 401	
  

(landcover in the SSR dataset, and human population density in the SNP dataset; Table 2) (for 402	
  

comparison, Table S6 shows comparable analyses based on distance-based Redundancy 403	
  

Analysis—another commonly used algorithm in landscape genetics). However, when considering 404	
  

all variables together in a multivariate manner while accounting for geographic distance, human 405	
  

population density, local effective population size, and different aspects of climate were the only 406	
  

variables that remained as significant or marginally significant predictors of genetic 407	
  

differentiation across both SSR and SNP datasets (Table 2). Elevation and soil were identified as 408	
  

significant or marginally significant predictors only in the SNP dataset.  409	
  

 410	
  

In summary, across datasets results indicated that human-population-density resistance 411	
  

was robustly associated with population differentiation, with highly populated areas identified as 412	
  

less conducive areas for migration (although the exact association varied between datasets; Fig. 413	
  

S5). Local effective population size was also a significant predictor when considering all other 414	
  

variables. It is important to note, however, that these multivariate regressions explained a variable 415	
  

proportion of the variance (MRDM R2 for SSR and SNP dataset were 0.109 (F1,29 = 3.654, p-val. 416	
  

= 0.063) and 0.532 (F1,6 = 1.932, p-val. = 0.113), respectively). In addition to population density 417	
  

and effective population size, temperature was also recovered as a significant predictor of genetic 418	
  

dissimilarity across most analyses for the SSR dataset but not for the SNP dataset (Table 2). 419	
  

 420	
  

DISCUSSION 421	
  

 The results suggest that broadly distributed populations of I. purpurea are partially 422	
  

genetically distinct (more so when analyzing the SNP dataset), although there is some indication 423	
  

of long-distance and putatively human-mediated migration between localities—as suggested by 424	
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the recovered association between human population density and genetic similarity. The levels of 425	
  

differentiation observed and inferred long-distance migration strongly contrast with this species’ 426	
  

patchy distribution, which is tightly linked to isolated agricultural patches that are surrounded by 427	
  

a complex matrix of natural and urbanized areas. Contrary to what has been seen in other 428	
  

agricultural weeds (Menchari et al., 2007; Ye, Mu, Cao, & Ge, 2004), populations of I. purpurea 429	
  

in relatively close geographic proximity do not form clusters of genetically similar individuals. 430	
  

This finding, supported by our spatial population structure and landscape genetics analyses, 431	
  

suggests that the local agricultural matrix does not seem to have an overarching impact on the 432	
  

connectivity in this species at the landscape level—albeit it likely influences connectivity at the 433	
  

small spatial scales. Instead, climate and human population density were robustly recovered as 434	
  

predictors of genetic connectivity in this species across datasets and analyses. Of these landscape 435	
  

variables, climate has a stronger effect, as judged by its greater MRDM coefficient. Of note, 436	
  

temperature (summarized by climate PC1) was recovered as marginally significant only when 437	
  

considering the SSR dataset, which is the only dataset that covers the northern portion of the 438	
  

range, whereas precipitation seasonality (summarized by climate PC2) was recovered as 439	
  

marginally significant only in the SNP dataset. Otherwise, population density was the only 440	
  

variable across datasets with a marginally significant effect—even after accounting for multiple 441	
  

tests. In addition, local effective population size was found to be a significant predictor only after 442	
  

accounting for all landscape variables, suggesting a plausible superseding effect of genetic drift 443	
  

driving differentiation across localities (Weckworth et al., 2013). Taken together, these results 444	
  

highlight the significant interplay between human-driven and natural landscapes in structuring 445	
  

populations of this species. The role that humans play in this system is likely mediated by their 446	
  

impact on migration patterns themselves as well as by the reduction of population size of this 447	
  

weed through pest control (Barker, Thompson, & Godley, 1984; Baucom & Mauricio, 2008).  448	
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 449	
  

The results also highlight how inferences about population structure and patterns of 450	
  

connectivity may be dataset-dependent, with marked differences becoming apparent only after 451	
  

careful dissection of roughly similar FST and heterozygosity estimates across molecular markers. 452	
  

Such differences cannot be attributed to the more widespread samples of our SSR dataset, as our 453	
  

findings were robust to subsampling this dataset to match the available SNP samples (see 454	
  

Supporting Information). This represents a rather unexpected finding as both the overall 455	
  

population structure and the influence of landscape features on population connectivity should be 456	
  

inherent species properties and no marker specific realizations of common underlying biological 457	
  

processes (but see below). Next, we detail each of these novel findings and place them in the 458	
  

context of agricultural weed movement across the landscape, invasive species, and landscape 459	
  

genetics practice. 460	
  

 461	
  

Human impact 462	
  

Given that I. purpurea is a naturalized species in the United States that is found primarily 463	
  

associated with cultivated crops and horticultural gardens (Baucom & Mauricio, 2004; Defelice, 464	
  

2001; Fang et al., 2013), the finding that human population density is a predictor of genetic 465	
  

similarity in this species is at first glance unsurprising. Yet, because habitat requirements for 466	
  

establishment and migration are not always the same, especially for organisms with distinct 467	
  

migration stages (e.g., pollen or seeds in plants) and dormant stages (Murphy & Lovett-Doust, 468	
  

2004), this finding is not as straightforward as it seems. In particular, the fact that human 469	
  

population density is recovered as an informative predictor throughout the entire sampled 470	
  

distribution—even after accounting for climate and landcover variation, highlights the direct 471	
  

influence that humans most likely have on structuring the populations of this species and helps to 472	
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discern the factors involved in the spread of this noxious weed. In this sense, the results point 473	
  

towards humans not only as likely responsible for the introduction of this weed into the United 474	
  

States (Fang et al., 2013), but also as likely responsible for facilitating its current spatial 475	
  

connectivity and genetic structure, and hence its opportunities for thriving in the complex 476	
  

landscapes it inhabits. While further testing is required to formally test this hypothesis, especially 477	
  

considering the limitations of current landscape genetic approaches (see below), our findings 478	
  

suggest a multifaceted effect of human activities.  479	
  

 480	
  

For one, it is theoretically possible that human population density primarily facilitates 481	
  

connectivity at local to intermediate scales, which encompasses agricultural fields in relatively 482	
  

close geographic proximity, suggesting that factors such as regional sharing of contaminated 483	
  

agricultural machines, regional trade between farmers, or regional distribution of contaminated 484	
  

crop seeds were at play (Benvenuti, 2007; Boyd & White, 2009; Dastgheib, 1989; Thill & 485	
  

Mallory-Smith, 1997). Yet, the limited spatial clustering at the regional scale and the lack of a 486	
  

significant effect of roads (results not shown) make this possibility unlikely. Instead, considering 487	
  

that i) the horticultural trade has been recognized as the main source of invasive introductions and 488	
  

spread in the United States (Lehan, Murphy, Thorburn, & Bradley, 2013), ii) that I. purpurea is 489	
  

an appreciated horticultural species (Fang et al., 2013), and that, given current agricultural 490	
  

practices, crop seed contamination is unlikely to be a major factor (Economic Research Service, 491	
  

1998), it is probable that ornamentals’ trade between population centers may help explain both 492	
  

the long distance dispersal events recovered in both datasets and the overall population structure. 493	
  

Alternatively, the impact of human populations on the distribution and abundance of bumblebees 494	
  

(Jha, 2015; Martins, Goncalves, & Melo, 2013), which are I. purpurea’s predominant pollinators 495	
  

(Baucom & Mauricio, 2008; Ennos, 1981), could also be partially responsible for the landscape 496	
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genetic patterns recovered as changes in the pollinators community would have strong effects on 497	
  

gene flow (Jha & Kremen, 2013).  498	
  

 499	
  

In reality a combination of all these factors may be involved. While further analyses are 500	
  

needed to elucidate the ultimate causes behind the recovered association between human 501	
  

population density and genetic dissimilarity in I. purpurea, our findings bring much needed 502	
  

insight to limit the spread of this noxious weed. Our findings are not only relevant to I. purpurea 503	
  

and to the evolution of herbicide resistance in this species (i.e., is herbicide resistance evolving 504	
  

independently across populations or is it being disseminated through human-aided migration?), 505	
  

but also have important implications for other weeds of agricultural concern as well as other 506	
  

human-exploiter species (Blair, 2001), such as other invasives. Specifically, in line with previous 507	
  

work (Auffret, Berg, & Cousins, 2014; Banks, Paini, Bayliss, & Hodda, 2015; Bataille et al., 508	
  

2011), the results here point towards the need of better strategies to minimize the impact that 509	
  

humans have on the spread of species. In particular, our results further support that humans may 510	
  

not only facilitate the introduction of invasive species into non-colonized areas, but also 511	
  

contribute to the maintenance of gene flow among naturalized populations (Medley, Jenkins, & 512	
  

Hoffman, 2015), which may be critical in providing relevant genetic variants to respond to novel 513	
  

selective regimes as well as prevent inbreeding depression in these newly colonized areas 514	
  

(Edelaar & Bolnick, 2012; Kolbe et al., 2004). 515	
  

 516	
  

SSR- vs. SNP-based inferences 517	
  

The unique patterns observed for each marker offer the opportunity to explore the underlying 518	
  

causes for such differences and hence a more in-depth understanding of the plausible landscape 519	
  

influences on species’ genetic structure. For instance, an important consideration in any 520	
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landscape genetics study, including this one, is the spatial distribution of samples and spatial 521	
  

scale of environmental data (Wang & Bradburd, 2014), as it can strongly impact the associations 522	
  

recovered. It is thus theoretically possible that the particular geographic sampling of each dataset 523	
  

exclusively drives the differences in genetic structure recovered by the two markers. Yet, the 524	
  

robust differences that we report between the localities and regions common to both datasets 525	
  

(SSRc and SNPc subsampled datasets; see Supporting Information) renders this possibility highly 526	
  

unlikely and suggest that our results are at least moderately robust to sample distribution. Still, it 527	
  

is important to recognize that all our datasets contain sets of spatially clustered samples, partially 528	
  

in reflection of the also spatially cluster distribution of agricultural fields (Ramankutty, Evan, 529	
  

Monfreda, & Foley, 2008). Hence, it is in principle possible that our inferences on all 4 datasets 530	
  

might be strongly impacted by the lack of samples from intervening areas. However, our analyses 531	
  

do not show the pattern of genetic separation between geographic sample clusters that is expected 532	
  

under clustered sampling (Schwartz & McKelvey, 2009), suggesting that the patterns recovered 533	
  

are not simply a sampling artifact.  534	
  

 535	
  

Instead, differences between SSR- and SNP-based patterns might be related to the different 536	
  

mutation rates underlying the two type of markers (Wang, 2010, but see Bohonak and Vandergast 537	
  

2011). SSR mutation rates per generation per site (µ) are typically estimated to be between 10-3 538	
  

and 10-4 mutations per genome site per generation (Garza & Freimer, 1996), whereas SNP 539	
  

mutation rates are typically estimated to be on average orders of magnitudes slower, around 10-8-540	
  

10-10 (Morin, Luikart, & Wayne, 2004). All else being equal, the inferential power of population 541	
  

structure is tightly linked to the number of mutations (Hubisz, Falush, Stephens, & Pritchard, 542	
  

2009; Turakulov & Easteal, 2003). As a consequence, unless there is widespread homoplasy it is 543	
  

expected to be more likely to recover signatures of population differentiation using the faster 544	
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evolving SSR loci. This is true even considering the total number of loci on each dataset (15 SSR 545	
  

loci vs. 8210 SNP loci) (Selkoe & Toonen, 2006). Yet, our results are in contrast with this 546	
  

theoretical expectation as we recovered weaker population structure using the faster evolving 547	
  

SSR loci than using SNP loci. It is still possible that the greater number of expected mutations for 548	
  

SSR loci, which increase the opportunities for homoplasy (Garza & Freimer, 1996), may explain 549	
  

the lower degree of population differentiation in this dataset. Nonetheless, the likelihood that 550	
  

widespread loci homoplasy in SSR allele size across populations has been maintained over the 551	
  

temporal window since the introduction of I. purpurea to the US seems small. Hence, this 552	
  

mutation-differential hypothesis is unlikely to be solely responsible for the differences observed. 553	
  

In fact, a large proportion of genetic variation in current populations might, depending on 554	
  

effective population size and generation time, precede the temporal window of many landscape 555	
  

genetics studies. In this regard, the greater number of SNP loci translates into a better genomic 556	
  

representation. Since different genomic regions reflect different coalescent histories (Nielsen & 557	
  

Slatkin, 2013), increased genomic coverage should better capture the range of processes 558	
  

conditioning genetic patterns of populations and thus the combined effect of historical 559	
  

demographic processes and current landscapes. It is then important to consider the relative 560	
  

contribution of both processes: i) input from new mutations and ii) sorting of standing genetic 561	
  

variation, rather than exclusively focus on mutation rates differences. Such sorting is expected to 562	
  

be specific to different genomic regions, which most likely contribute to the differences observed 563	
  

between our SSR and SNP datasets. 564	
  

 565	
  

Advancing landscape genetics practice 566	
  

Signals of population structure may arise from a wide range of evolutionary processes, 567	
  

including historical demographic events (He, Edwards, & Knowles, 2013), local adaptation 568	
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(Orsini, Vanoverbeke, Swillen, Mergeay, & De Meester, 2013), and reproductive strategies (e.g., 569	
  

selfing in mixed mating species such as I. purpurea can lead to a spurious identification of 570	
  

structure; Gao, Williamson, & Bustamante, 2007). Yet, landscape genetics approaches 571	
  

traditionally overlook these plausible confounding processes by working under the assumptions 572	
  

of an equilibrium between migration and genetic drift and an implicit predominance of recent 573	
  

landscape configurations over alternative explanations for the observed population structure 574	
  

(Dyer, 2015b; He et al., 2013; Marko & Hart, 2011). Thus, traditional landscape genetics 575	
  

analyses presumably present an incomplete picture of the evolutionary processes driving current 576	
  

patterns of genetic diversity (Wang & Bradburd, 2014). Nonetheless, these approaches 577	
  

undoubtedly offer a valuable hypothesis-generation framework about the possible role that 578	
  

environmental setting plays in structuring genetic diversity against which the effect of other 579	
  

demographic processes can be evaluated. Arguably, the integration of landscape genetics with 580	
  

historical demographic reconstruction is key for robust population genetics inference since 581	
  

disregarding the plausible effects of either current landscape processes or historical demographic 582	
  

changes would impair the ability to understand species’ complex responses to spatio-temporal 583	
  

environmental variation. 584	
  

 585	
  

In this context, considering the likely complex demographic dynamics of this introduced 586	
  

agricultural weed, our results should be taken as a working hypothesis of the possible role of the 587	
  

interaction between natural and anthropogenic landscapes in structuring I. purpurea populations.  588	
  

Nonetheless, our analyses represent a step towards integrating traditional landscape genetics with 589	
  

modern population genetics inference by taking advantage of recent analytical developments and 590	
  

richer molecular datasets. On one hand, our analyses use novel methodological tools that i) 591	
  

surpass the need of arbitrary landscape resistance assignment that make inferences sensitive to 592	
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subjectivity of expert opinion (Dyer, 2015a), ii) account for the indirect genetic similarity of 593	
  

populations (Dyer & Nason, 2004), iii) use rigorous statistical inferences (Balkenhol et al., 2009; 594	
  

Peterman et al., 2014), and account for plausible confounding processes (i.e., local effective 595	
  

population size; Weckworth et al., 2013)—although more work on accounting for additional 596	
  

processes such as historical demographic changes is needed. On the other hand, in contrast to the 597	
  

common practice in the field of using a single analysis (commonly Mantel test; Guillot & 598	
  

Rousset, 2013) and one or a few loci (although a few notable exceptions exist; e.g. Perry et al., 599	
  

2013), which prevents an assessment of common patterns across the genome (Bohonak & 600	
  

Vandergast, 2011), our inferences are derived from common findings among two rather different 601	
  

sets of molecular markers. In doing so, we provide not only statistically robust inferences, but 602	
  

also a better representation of the genome. Hence, our inferences are not only less sensitive to 603	
  

ascertainment bias (Brandström & Ellegren, 2008) and coalescent and mutational variance 604	
  

(Buschiazzo & Gemmell, 2006; Nielsen & Slatkin, 2013; Steiner, Putnam, Hoeck, & Ryder, 605	
  

2013), but have also the ability to uncover differences in the underlying population dynamics. 606	
  

Such differences have strikingly important implications. For example, when evaluating plausible 607	
  

approaches to the threat of an invasive species such as I. purpurea, recommendations would be 608	
  

quite different depending on whether gene flow is believed to be relatively widespread (as 609	
  

inferred by the SSR dataset) or whether it is believed to be minimal (as inferred by the SNP 610	
  

dataset). In this example, it is clear that knowledge-based management would clearly benefit 611	
  

from recognizing the current uncertainty in regards to the exact population connectivity as 612	
  

opposed to automatically relying on a single-marker story.  613	
  

 614	
  

Given recent advances in next generation sequencing, it seems straightforward to focus on 615	
  

landscape genomics instead of few loci. Hence, development of methods for explicitly integrating 616	
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inferences from multiple genome regions and marker types, as it is customary in population 617	
  

genetics, would be of great value. By incorporating multiple loci and coupling traditional 618	
  

landscape genetic tools with coalescent-based simulations to explicitly model landscape effects 619	
  

on genetic population structure, a robust hypothesis framework could be develop to 620	
  

simultaneously account for both current landscape processes and demographic history of species 621	
  

(Balkenhol & Landguth, 2011; Hoban, Bertorelle, & Gaggiotti, 2012). Advances in this area are 622	
  

already being developed with promising perspectives (Alvarado-Serrano & Knowles, 2014; 623	
  

Harris et al., 2016; He et al., 2013).  624	
  

 625	
  

Final remarks 626	
  

By offering a working hypothesis of the effect of current landscapes on genetic 627	
  

differentiation, traditional landscape genetics results serve the purpose of identifying relevant 628	
  

models for further testing (Baguette, Blanchet, Legrand, Stevens, & Turlure, 2013; Dyer, 2015a). 629	
  

Under this framework, our results pave the way for rigorous simulation-based assessments of the 630	
  

role of landscape features in promoting or deterring population differentiation in a noxious 631	
  

agricultural weed, and hence for successful knowledge-based invasive management. Specifically, 632	
  

we identify a probably major role of human-driven gene flow and long distance dispersal events 633	
  

in the demographic history of this species. If this weed was, as hypothesized, singly introduced 634	
  

through horticulture from a European bottlenecked population during the European colonization 635	
  

of North America (Fang et al., 2013), distinct ancestral structure (pre-dating US introduction) 636	
  

would be unlikely. Under this scenario, the rather distinct clustering of individual subpopulations 637	
  

recovered would likely reflect the connectivity driven by agricultural and horticultural activities 638	
  

and the complex natural/human landscape I. purpurea has experienced post-introduction to the 639	
  

US. Alternatively, human trade might have allowed for recurrent introduction events, which 640	
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effects would have probably been amplified by local agricultural and horticultural activities. 641	
  

Regardless, these findings call for future model-based inference that explicitly considers the 642	
  

impact of human population density in conjunction with climate to further investigate the 643	
  

evolutionary drivers of population structure in this noxious weed. 644	
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TABLES	
  954	
  

Table	
  1.	
  Analysis	
  of	
  Molecular	
  Variance	
  (AMOVA)	
  of	
  SSR	
  and	
  SNP	
  data.	
  The	
  contribution	
  of	
  955	
  

spatial	
  clusters	
  (regions),	
  localities,	
  and	
  individuals	
  is	
  shown.	
  For	
  comparison,	
  results	
  from	
  956	
  

an	
  AMOVA	
  analysis	
  with	
  no	
  region	
  category	
  defined	
  are	
  presented	
  in	
  parentheses	
  957	
  

underneath.	
  958	
  

	
  959	
  
Effect	
   F-­‐statistic	
   Variance	
  explained	
   F-­‐value	
   P-­‐value	
  

SSR	
   SNP	
   SSR	
   SNP	
   SSR	
   SNP	
  
Regions	
   FRT	
   3.94%	
   8.51%	
   0.006	
   0.085	
   0.001	
   0.001	
  
Localities	
   FSR	
   9.05%	
  

(11.06%)	
  
6.10%	
  

(13.02%)	
  
0.106	
   0.067	
   0.001	
   0.001	
  

Individuals	
  
(among)	
  

FST	
   0.67%	
  
(38.33%)	
  

24.85%	
  
(25.31%)	
  

0.112	
  
(0.111)	
  

0.146	
  
(0.130)	
  

0.001	
  
(0.001)	
  

0.001	
  
(0.001)	
  

Individuals	
  
(within)	
  

FIS	
   86.33%	
  
(50.61%)	
  

60.54%	
  
(61.67%)	
  

0.431	
  
(0.431)	
  

0.291	
  
(0.291)	
  

0.001	
  
(0.001)	
  

0.001	
  
(0.001)	
  

Total	
   FIT	
   100%	
  
(100%)	
  

100%	
  
(100%)	
  

0.494	
  
(0.494)	
  

0.395	
  
(0.383)	
  

0.001	
  
(0.001)	
  

0.001	
  
(0.001)	
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Table	
  2.	
  Summary	
  of	
  landscape	
  genetics	
  models.	
  Model	
  coefficients	
  are	
  reported	
  followed	
  961	
  

by	
  associated	
  p-­‐value	
  (in	
  parenthesis)	
  and,	
  for	
  MLPE.lmm	
  models,	
  followed	
  by	
  AICc	
  962	
  

difference	
  and	
  ranking	
  (in	
  square	
  brackets).	
  Significant	
  coefficients	
  are	
  in	
  bold,	
  marginally	
  963	
  

significant	
  coefficients	
  are	
  marked	
  with	
  an	
  asterisk.	
  964	
  

	
  965	
  
Feature	
   MLPE.lmm	
   MRDM	
  

SSR	
   SNP	
   SSR	
   SNP	
  
Intrinsic	
  variables	
  

Geographic	
  
distance	
  

0.187*	
  
(0.052)	
  
+12.303	
  
[8]	
  

0.780*	
  
(0.055)	
  
+0.396	
  
[4]	
  

0.051	
  
(0.121)	
  

0.255*	
  
(0.056)	
  

Population	
  
size	
  (Ne)	
  

—	
   —	
   -­‐0.550	
  
(0.001)	
  

-­‐2.650*	
  
(0.051)	
  

Natural	
  environment	
  variables	
  
Climate	
  
PC1	
  	
  

0.243	
  
(0.034)	
  
+10.356	
  
[3]	
  

0.967	
  
(0.045)	
  
+0.032	
  
[2]	
  

0.533*	
  
(0.064)	
  

1.782	
  
(0.517)	
  

Climate	
  
PC2	
  

0.205	
  
(0.048)	
  
+12.030	
  
[7]	
  

0.814*	
  
(0.055)	
  
+1.560	
  
[7]	
  

-­‐0.029	
  
(0.978)	
  

21.443*	
  
(0.075)	
  

Elevation	
   0.244	
  
(0.034)	
  
+10.742	
  
[4]	
  

0.840*	
  
(0.054)	
  
+1.423	
  
[6]	
  

-­‐0.607	
  
(0.480)	
  

-­‐
31.789*	
  
(0.095)	
  

Soil	
  PC1	
   0.208	
  
(0.039)	
  
+11.378	
  
[6]	
  

1.044	
  
(0.045)	
  
+0.471	
  
[5]	
  

0.305	
  
(0.510)	
  

15.789	
  
(0.038)	
  

Soil	
  PC2	
   0.320	
  
(0.018)	
  
+8.139	
  
[2]	
  

0.941	
  
(0.045)	
  
+	
  0.284	
  
[3]	
  

0.187	
  
(0.703)	
  

-­‐6.838	
  
(0.476)	
  

Human-­‐impact	
  variables	
  
Crops	
   -­‐0.226	
  

(0.134)	
  
+14.491	
  
[9]	
  

0.858*	
  
(0.054)	
  
+15.371	
  
[8]	
  

0.154	
  
(0.526)	
  

0.360	
  
(0.840)	
  

Landcover	
   0.582	
   	
  1.358	
   0.340	
   	
  3.887	
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(<0.001)	
  
−	
  	
  
[1]	
  

(0.003)	
  
+39.775	
  
[9]	
  

(0.218)	
   (0.184)	
  

Population	
  
density	
  

0.227	
  
(0.034)	
  
+10.821	
  
[5]	
  

0.912	
  
(0.045)	
  
−	
  	
  
[1]	
  

-­‐0.519*	
  
(0.095)	
  

-­‐3.271	
  
	
  (0.037)	
  

  966	
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FIGURES 967	
  

 968	
  

Figure	
  1.	
  Distribution	
  of	
  Ipomoea	
  purpurea’s	
  sampled	
  localities.	
  Sample	
  sizes	
  for	
  both	
  SSR	
  969	
  

(black	
  bars)	
  and	
  SNP	
  (white	
  bars)	
  datasets	
  are	
  indicated	
  (locality	
  numbers	
  are	
  given	
  in	
  970	
  

squares).	
  Elevation	
  is	
  provided	
  as	
  background.  971	
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 972	
  

Figure	
  2.	
  Inferred	
  population	
  connectivity.	
  The	
  estimated	
  origin	
  of	
  individuals	
  for	
  each	
  973	
  

sampled	
  locality	
  (i.e.,	
  sink)	
  is	
  depicted	
  according	
  to	
  the	
  locality	
  they	
  were	
  inferred	
  to	
  have	
  974	
  

originated	
  from	
  (source)	
  (a,	
  d).	
  The	
  color	
  of	
  each	
  cell	
  in	
  these	
  plots	
  depicts	
  the	
  proportion	
  975	
  

of	
  individuals	
  in	
  the	
  sink	
  population	
  that	
  were	
  estimated	
  to	
  be	
  recent	
  immigrants	
  from	
  each	
  976	
  

locality	
  along	
  the	
  x-­‐axis.	
  Cells	
  on	
  the	
  minor	
  diagonal	
  correspond	
  to	
  the	
  proportion	
  of	
  native	
  977	
  

individuals.	
  Pruned	
  conditional	
  genetic	
  networks	
  (b,	
  e)	
  and	
  posterior	
  estimates	
  of	
  978	
  

admixture	
  proportion	
  identified	
  by	
  TESS	
  analysis	
  (c,	
  f)	
  are	
  also	
  displayed.	
  The	
  top	
  row	
  979	
  

shows	
  SSR-­‐based	
  results,	
  the	
  bottom	
  shows	
  the	
  SNP-­‐based	
  results.	
  Locality	
  numbers	
  follow	
  980	
  

Fig.	
  1.	
  Localities	
  shared	
  between	
  SSR	
  and	
  SNP	
  datasets	
  are	
  denoted	
  by	
  unique	
  colors	
  in	
  all	
  981	
  

panels	
  (for	
  a	
  corresponding	
  figure	
  based	
  exclusively	
  on	
  these	
  shared	
  localities,	
  see	
  Fig.	
  S3).  982	
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