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Abstract 
Epigenetic modifications and other chromatin features partition the genome on multiple 

length scales. They define chromatin domains with distinct biological functions that come in 

sizes ranging from single modified DNA bases to several megabases in case of 

heterochromatic histone modifications. Due to chromatin folding, domains that are well 

separated along the linear nucleosome chain can form long-range interactions in three-

dimensional space. It has now become a routine task to map epigenetic marks and 

chromatin structure by deep sequencing methods. However, assessing and comparing the 

properties of chromatin domains and their positional relationships across data sets without a 

priori assumptions remains challenging. Here, we introduce multi-scale correlation 

evaluation (MCORE), which uses the fluctuation spectrum of mapped sequencing reads to 

quantify and compare chromatin patterns over a broad range of length scales in a model-

independent manner. We applied MCORE to map the chromatin landscape in mouse 

embryonic stem cells and differentiated neural cells. We integrated sequencing data from 

chromatin immunoprecipitation, RNA expression, DNA methylation and chromosome 

conformation capture experiments into network models that reflect the positional 

relationships among these features on different genomic scales. Furthermore, we used 

MCORE to compare our experimental data to models for heterochromatin reorganization 

during differentiation. The application of correlation functions to deep sequencing data 

complements current evaluation schemes and will support the development of quantitative 

descriptions of chromatin networks. 

 

Introduction 

Most processes in eukaryotic cells that involve interactions with the genome are controlled 

by the chromatin context. Accordingly, DNA replication, DNA repair, RNA expression and 

RNA splicing have been found to be regulated by different combinations of DNA methylation 

(5mC) and histone modifications (1, 2). The genome-wide distribution of these and other 

chromatin features, like binding sites of transcription factors, contact frequencies between 

genomic loci and transcriptional activity, can routinely be assessed by deep sequencing (1). 

Recent methodological developments enable the analysis of low cell numbers or even single 

cells (3-5), the simultaneous readout of various features (6), and the measurement of site-

specific binding dynamics (7). Thus, sequencing data at unprecedented resolution and 

throughput are becoming available, providing a rich source of information on molecular 

networks that shape the chromatin landscape. However, there is a gap between the widely 

used techniques for the qualitative analysis of sequencing data and what is needed for 
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testing biophysical models that quantitatively describe the dynamics of chromatin states and 

long-range gene regulation (8). Specific objectives are for example to relate the size and 

shape of modified domains to the underlying formation mechanism, to assess the 

contribution of chromatin contacts to the establishment and maintenance of chromatin 

states, and to describe the positional relationship among different marks, which is an 

important step towards understanding the function of distal regulatory elements. 

Currently, deep sequencing data are mostly analyzed on the basis of local enrichments of 

read density, with the goal to identify regions scoring positive for one or more features of 

interest. Most of these approaches (see Table S1 for an incomplete list) fall into two 

categories, namely peak calling algorithms (9-11) and probabilistic network models (12-14). 

Identification of enriched regions typically involves assumptions about their characteristic 

width and enrichment level, and regions above a certain significance level are considered 

positive. While this strategy is suitable for finding the most highly enriched genomic regions, 

it does not preserve the information content of complex patterns that involve different 

enrichment levels and are incompatible with binarization (Fig. S1). Furthermore, 

undersampling, noise and technical bias represent complications that can change the 

apparent read density at individual loci, thereby introducing or masking similarities between 

data sets when comparing them based on sets of local enrichments (15-17). Due to these 

difficulties, peak calling results depend on user-defined input parameters and the specific 

algorithm used (18, 19). In turn, chromatin state annotations differ with respect to state 

number, state identity and spatial extension of the corresponding chromatin domains (12, 

13). These uncertainties are particularly critical for the study of heterochromatic regions, 

which contain a combination of broadly distributed histone marks, 5mC and associated 

proteins (20, 21). Accordingly, quantitative comparisons between the genome-wide topology 

of heterochromatin domains and the predictions from mechanistic models for the formation 

and maintenance of heterochromatin states (e.g. (22-24) and references therein) are 

currently fraught with difficulties. 

Here, we introduce an approach termed multi-scale correlation evaluation (MCORE) that 

complements the above-mentioned repertoire of analysis methods for deep sequencing 

data. MCORE avoids assumptions about the shape and the amplitude of enriched regions 

and evaluates all mapped sequencing reads without filtering. It retrieves information from 

correlation functions, which are used for the discovery of patterns in noisy and possibly 

undersampled data sets in many fields of research (25-29). The use of correlation functions 

in the context of deep sequencing has mostly been restricted to strand cross correlation for 

measuring fragment lengths (18, 30) and short-range autocorrelation for comparing ChIP-

seq data sets to each other (31). Key advantages of correlation functions are the intrinsic 
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removal of (white) noise, robust identification of characteristic length scales and 

straightforward assessment of spatial relationships between two different features. 

Conveniently, correlation functions can be used to retrieve information about patterns with 

unknown geometry (Fig. S1). We used MCORE to analyze the chromatin landscape of 

embryonic stem cells (ESCs) and neural cells (neural progenitor/brain cells, NCs) as their 

differentiated counterparts, focusing on 11 different chromatin features (Table S2). These 

data sets covered histone modifications, DNA methylation, RNA expression, genome folding 

and binding of chromatin-associated proteins. For each feature we identified the associated 

nucleosome repeat length and the characteristic domain sizes along with their relative 

abundance in the genome. In a pair-wise analysis we determined the (anti-)colocalization 

and positional relationship between features on different genomic scales and used the 

results to construct network models for chromatin signaling. We compared ESCs to NCs to 

retrieve information about the spatial reorganization of chromatin during differentiation and to 

map the global transitions that occurred at active and repressive chromatin domains. 

Alterations were most pronounced for heterochromatic H3K9me3/H3K27me3 regions that 

changed their size, their location within chromosome territories and their positioning relative 

to DNA methylation and to each other. 

 

Materials and Methods 
Calculation of normalized occupancy profiles 

Sequencing reads were mapped to the mouse mm9 assembly using Bowtie (32). Only 

uniquely mapping hits without mismatches were considered and duplicates were removed. 

Mapped reads were processed according to the following steps: Bisulfite sequencing (BS-

seq) data, which are used to map DNA methylation at single base pair resolution, are usually 

available as methylation scores calculated from the ratio of converted reads divided by the 

sum of converted and unconverted reads at a given position. These can be directly used for 

computing the correlation function as described below. For all other sequencing readouts, 

the coverage was initially calculated for each chromosome by extending the reads to 

fragment length, yielding a histogram with the genomic coordinate on the x-axis and the 

number of reads per base pair on the y-axis. For Hi-C and ChIA-PET data only inter-

chromosomal reads were considered to identify the surface of chromosome territories. To 

calculate normalized occupancy profiles, samples were processed depending on the type of 

experiment. In general, it is important to account for fragmentation bias, library preparation 

bias and genome mappability. These multiplicative biases are also included in the input 

sample and should cancel out in the ratio of specific signal A and input signal I ( ). In A I
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RNA-seq experiments the input signal can be replaced by a sample of nucleosome-free, 

fragmented genomic DNA. For immunoprecipitation experiments, it is additionally important 

to account for non-specific binding during sample preparation to obtain meaningful 

correlation functions (Fig. S2 B). This is of increasing importance for decreasing signal-to-

background ratio (Fig. S2 C). The appropriate control C can be obtained from an 

immunoprecipitation with a non-specifically binding antibody (e.g. IgG control) or from a 

sample that lacks the antigen of interest (e.g. a knockout cell line). We devised the following 

strategy to compute normalized occupancy profiles that were used in the subsequent 

analysis. First, the normalized coverage of the control Cnorm and of the specific 

immunoprecipitation Anorm were obtained by dividing by input signal I according to Eq. 1: 

 and  (1) 

Here, …  denotes averaging along the genomic coordinate. For the calculation of coverage 

(  and ) and average values (  and ), positions with zero input 

coverage were neglected. Subsequently, the coverage at these positions was set to the 

respective average value (  or ) that was calculated for the remaining positions, 

thus eliminating fluctuations and corresponding contributions to the correlation coefficient 

from these positions. In the next step, non-specific background signal was removed to obtain 

the normalized read occupancy O:   

O = Anorm −b ⋅Cnorm  (2) 

In Eq. 2, the parameter b quantifies the contribution of the control signal present as 

background in the sample (IP). To estimate b, we minimized the absolute value of the 

Pearson correlation coefficient r0 at zero shift distance between the normalized occupancy O 

and the control coverage Cnorm according to Eq. 3: 

 (3) 

Here, n denotes the maximum genomic position considered for the calculation, which is 

typically the chromosome length. For the minimization procedure, b was changed between 0 

and 1. Because the minimum correlation r0(b) indicates the lowest similarity between 

normalized occupancy profile and control, the corresponding b value was used for 

normalization according to Eq. 2.  

 

Cnorm = C I
C I

Anorm = A I
A I

C / I A / I C / I A / I

C / I A / I

r0 =
Oi − O( ) Cnorm,i − Cnorm( )

i=1

n

∑

Oi − O( )
i=1

n

∑
2

⋅ Cnorm,i − Cnorm( )
i=1

n

∑
2
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Computation of correlation functions 

The Pearson correlation coefficient r at shift distance ∆x was calculated for the corrected 

data sets after shifting the two occupancy profiles O1 and O2 with respect to each other by 

∆x base pairs according to Eq. 4 (similar to Eq. 3 but with a second shifted occupancy 

instead of the control coverage): 

  

r(Δx) =

1
2 n − Δx( ) O1,i − O1( ) O2,i+Δx − O2( ) + O1,i+Δx − O1( ) O2,i − O2( )⎡

⎣
⎤
⎦

i=1

n−Δx

∑
1
n

O1,i − O1( )2

i=1

n

∑ O2,i − O2( )2

i=1

n

∑
 (4) 

To sample the correlation function in a quasi-logarithmic manner (33), profiles were binned 

by a factor of 2 after 25 shift operations to double the step size. To preserve high resolution 

for small shift distances, the first binning operation was carried out at a shift of ∆x = 50 bp. 

This calculation was done for each chromosome separately because continuous domains 

cannot exceed chromosomal ends. Most correlation functions shown in the manuscript refer 

to chromosome 1, which is representative for all chromosomes as judged by the relatively 

small deviations among chromosomes (Figs. 2, A and B, and S8 B). However, correlation 

functions can also be calculated for smaller genomic regions (see Fig. S1 for the correlation 

function for a single domain). 

To compare cross-correlation functions between different features, normalization to the 

geometric mean of the two replicate correlation functions was conducted according to: 

         (5) 

Here, rc is the cross-correlation coefficient at a given shift distance ∆x, and r1 and r2 are the 

replicate correlation coefficients of the data sets used. This normalization step accounts for 

differences in the distributions of the features involved. For calculating the cross-correlation 

functions between two different features or the same feature in two different cell types at 

least two replicates for each sample were used. Accordingly, a cross-correlation function for 

each combination of replicates was computed, which results in n2 functions for n replicates 

of each sample, and the average of these correlation functions was reported. 

 

Statistical analysis of correlation functions 

Statistical analysis of data was conducted by computing standard errors and 95% 

confidence intervals. To assess significance and associated errors/confidence intervals for a 

given correlation function we considered several types of errors: 

rnorm (∆ x) =
rc (∆ x)
r1(0) ⋅ r2 (0)
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Statistical error of the computed correlation function. Because correlation functions are 

calculated from millions of regions they typically have a very small statistical error. The 

sample size N for each shift distance  is given by the distance between the first and last 

position that is covered on the chromosome (Pmin and Pmax) subtracted by the shift length 

(∆x) according to N ∆x  = Pmax-Pmin-∆x. Based on the sample size, 95% confidence intervals 

can be obtained using the Fisher transformation (Fig. S8 A) (34, 35). If normalized 

occupancy values Oi follow a normal distribution reasonably well (Fig. S8 D), the Fisher 

transformation is a good way to rapidly estimate confidence intervals for correlation 

coefficients. An alternate non-parametric option that is compatible with arbitrary sample 

distributions is bootstrapping (36). In this case, occupancy profiles are resampled with 

replacement in pairs (O1,i, O2,i+∆x) and subsequently used for calculation of the correlation 

coefficient according to Eq. 4. This procedure is repeated multiple times to obtain a 

distribution of correlation coefficients for every pair of resampled occupancy profiles (Fig. S8 

E) and every shift distance ∆x. Based on the width of this distribution estimates for 

confidence intervals are obtained. For the cases tested here, bootstrapping yielded 

moderately larger confidence intervals than those obtained using Fisher transformation, but 

intervals from both methods were of the same order of magnitude (Fig. S8 F). 

Variation among chromosomes. An estimate for the error of genome-wide domain structures 

or positional relationships can be obtained by comparing correlation functions calculated for 

different chromosomes as shown in Fig. S8 B. If the relationship is governed by the same 

biological mechanism on all chromosomes this variation can be used to evaluate the error. 

Reproducibility of experiments. Sample preparation might introduce a global bias into a 

given data set. This is generally true for deep sequencing experiments irrespectively of 

which method is used for downstream analysis. Such variations among replicates might not 

be captured by statistical comparisons conducted on the basis of a single data set or a pair 

of data sets. Experimental reproducibility can be assessed with MCORE for data sets with at 

least three different replicates by computing the correlation function for all possible 

combinations of samples, i.e. n·(n-1)/2 correlation functions for n replicates. Subsequently, 

average and standard errors are calculated. We found this approach to be particularly useful 

to identify variations due to different experimental conditions. For example, we evaluated the 

changes of ChIP-seq results after using antibodies from different companies (Fig. S10). 

Statistical comparison of two correlation functions. After correlation functions, associated 

errors and confidence intervals have been computed two functions can be compared 

according to standard statistical tests. An R-script that uses a t-test to assess the difference 

between two functions for each shift distance ∆x (Fig. S8 G) is included in the Supporting 

Material. 

Δx
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Quantification of MCORE correlation functions 

Correlation functions obtained by MCORE provide information on the overall degree of 

(anti-)correlation between two deep sequencing data sets but also reflect the underlying 

chromatin domain structure with respect to (i) the number of chromatin domains, (ii) the 

relative domain abundance, (iii) the length of the respective domains, and (iv) the 

nucleosome repeat length. To extract the domain size distribution of a given chromatin 

feature, two different strategies were implemented in MCORE, which differ in the level of 

complexity but yield similar information. The first approach is independent of user-defined 

settings and computes parameters for the domain size distribution from the inflection points 

of the correlation function in logarithmic representation and a Gardner transformation of the 

correlation function. The Gardner transformation characterizes the decay spectrum of a 

function in a non-parametric manner (37). This workflow represents a robust approach to 

evaluate genome-wide features from deep sequencing data without input parameters. In 

particular, inflection points are completely model-independent, whereas the Gardner 

spectrum makes the generic assumption that the decay spectrum can be approximated by a 

superposition of exponential functions. The second approach can be used to quantitatively 

describe the domain size distribution based on a fit function. For this purpose, it is crucial to 

avoid over-fitting of the data. Accordingly, we implemented a complementary set of four fit 

options that allow for an in-depth analysis of correlation functions reporting fit parameters 

and their errors, thus determining domain sizes and their relative abundance. The 

performance of the different fit approaches is described below and in the MCORE software 

manual. The workflow we used in this manuscript is validated with simulated data in Fig. S7.  

Least-squares spectrum fit. The exponential decay spectrum for the correlation function is 

optimized by conventional non-linear least squares fitting. The amplitudes for a given 

number of (logarithmically spaced) domains are optimized to obtain a good fit. The goal of 

the spectrum fitting process is it to determine the length scales that are present in the decay 

spectrum of the curve. To this end it is not always necessary to exactly describe the shape 

of the correlation function. For example, the initial decay of the function is frequently too 

steep to be adequately fitted with a superposition of exponential functions. Nevertheless, 

decay lengths are typically obtained in a reliable manner. The multi-exponential fit described 

below often performs equally well in identifying length scales and provides a good 

description of the correlation function. Thus, the least-squares spectrum fit is only 

recommended if the multi-exponential fit does not converge properly, i.e., if it yields length 

scales that are very different from those determined by inflection points. 

Maximum entropy method (MEM) spectrum fit. The exponential decay spectrum is fitted 

similar to the least-squares method. However, the entropy of the amplitude spectrum is 
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maximized along with the fit quality. To this end, optimization is carried out in a parameter 

space that is spanned by the first derivative of the entropy and the first and second 

derivatives of the fit quality according to the approach described previously (38). This fit 

option is only recommended if the number of components obtained from the least-squares 

spectrum fit is much larger than the number of inflection points. 

Multi-exponential fit implemented in MCORE. For multi-exponential fitting the following 

equation consisting of a combination of exponential functions is used:  

 (6) 

The exponential terms describe the domain structure of the correlation function, with ai, bi 

and ni yielding the relative abundance, the half width and the fuzziness of the i-th domain, 

respectively. Small exponents ni correspond to long-tail decays in the domain size 

distribution. 

Multi-exponential fit in R. The multi-exponential fit implemented in R (39) uses a sum of 

exponential functions (see Eq. 6) multiplied with an additional oscillatory term to describe the 

correlation function: 

 (7) 

The oscillatory term accounts for the nucleosomal pattern, with parameters c1 for the 

strength of the nucleosomal oscillation, c2 representing the nucleosomal repeat length and c3 

the scale on which regular nucleosomal spacing is lost. When using this approach, the 

minimal number of exponential terms that yielded uncorrelated fit residuals was chosen. 

 

MCORE runtime 

Generation of normalized occupancy profiles and calculation of the respective correlation 

function for the entire chromosome 1 takes 15-20 minutes on a laptop computer with a 2.7 

GHz Intel Core i5 processor and 8 GB memory. For smaller chromosomes or genomic 

regions of interest the calculation is faster.  

 

Peak calling 

Peak calling was done using MACS (10) and SICER (11). Prior to peak calling reads were 

preprocessed as described above including mapping to the mouse mm9 assembly by 

Bowtie (32), considering only uniquely mapping hits without mismatches and removing 

duplicates. Peak calling was done using default parameters and the input as control file. For 

F(∆ x) = ai ⋅exp −∆ x
bi

⎛
⎝⎜

⎞
⎠⎟

ni

i
∑

F(∆ x) = c1 + (1− c1) ⋅cos
∆ x
c2

π
⎛
⎝⎜

⎞
⎠⎟
⋅exp −∆ x

c3

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
⋅ ai ⋅exp −∆ x

bi

⎛
⎝⎜

⎞
⎠⎟

ni

i
∑
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H3K36me3 MACS mfold levels 5, 10 and 30 were tested, and mfold 5 was selected. For 

SICER the FDR threshold was set to 0.0001, a window size of 200 bp and a gap size of 600 

bp were used for H3K9me3 and H3K36me3, and a window size of 200 bp and a gap size of 

200 bp were used for H3K4me3. 

 

Network models 

Graphs for network models were created and plotted using Gephi (http://gephi.github.io). 

Nodes were manually prearranged, and their layout was optimized using the Fruchterman-

Reingold algorithm (40), which adjusts node positions based on forces that act between 

nodes according to the respective correlation strength. 

 

Sample preparation for histone ChIP-seq 

ESCs and neural progenitor cells from 129P2/Ola mice were cultured and differentiated as 

published (41). ChIP-seq experiments and mapping of reads to the mm9 assembly of the 

mouse genome was conducted as described previously (22). In brief, 106 cells were cross-

linked with 1% PFA and cell nuclei were prepared. Chromatin was sheared by sonication to 

mononucleosomal fragments. ChIP was carried out with antibodies (Abcam) against 

H3K4me1 (ab8895), H3K4me3 (ab8580), H3K9me3 (ab8898), H3K27ac (ab4729), 

H3K27me3 (ab6002), H3K36me3 (ab9050) or an unspecific IgG from Acris (RA073 or 

PP500P) (Table S5). Libraries were prepared according to Illumina standard protocols with 

external barcodes and were sequenced with 51 bp single-end reads on an Illumina HiSeq 

2000 system. After sequencing, cluster imaging and base calling were conducted with the 

Illumina pipeline (Illumina). 20 - 30 Mio reads were obtained for each sample. Reads were 

uniquely mapped without mismatches to the mm9 mouse genome using Bowtie. For RNA-

seq, cells were harvested and long RNAs were isolated with the RNeasy Mini Kit (Qiagen), 

DNA was digested by DNase I (Promega) for 30 min at 37°C, and libraries were prepared 

using the Encore Complete RNA-Seq Library Systems (NuGEN). 

 

Data and software 

ChIP-seq data have been deposited to the GEO database under the accession number 

GSE61874. An executable Java program, including a test data set and an R script for 

statistical testing of the difference between two correlation functions, is available in the 

supplemental material and can be downloaded at http://malone.bioquant.uni-

heidelberg.de/software/mcore. 
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Results 
Comparison of MCORE to other sequencing analysis workflows  

The MCORE workflow in comparison to the currently most common approaches for deep 

sequencing analysis is illustrated in Figs. 1 and S2 A. First, all types of data sets were 

transformed into normalized read occupancy profiles. Among others, this normalization step 

takes into account the propensity of a DNA fragment to be ligated, amplified, sequenced and 

mapped. To correct for these multiplicative biases, the sample read density was divided by 

the input read density for immunoprecipitation (IP) and Hi-C experiments or by the sum of 

converted and unconverted read densities for bisulfite sequencing (BS-seq). We expect that 

Hi-C data that have already been normalized with other methods (42, 43) in a similar 

manner can be used for MCORE without further correction. IP experiments such as ChIP-

seq yielded significant background correlation due to non-specific binding of DNA and 

proteins to beads or bead-antibody complexes (44). Accordingly, these data sets were 

further corrected by subtraction of a weighted control IP signal obtained from an IP with non-

specific antibodies (Fig. S2 B). The weighting factor reflects the contribution of non-

specifically precipitated DNA in each sample and removes the correlation between specific 

IP and control IP (Materials and Methods). As expected, the contribution of non-specific 

signal depended on the quality of the antibody and on the enrichment levels of the specific 

IP-signal. H3K9me3 ChIP-seq data, for example, were affected more strongly by this 

correction than H3K4me3 ChIP-seq data (Fig. S2 C), because H3K4me3 domains were 

more distinct and exhibited larger enrichment levels than H3K9me3 domains. Normalized 

occupancy profiles can be exported and also be used for other downstream analysis 

methods. 

Peak calling or dynamic network models use occupancy profiles from mapped reads to 

define peaks or chromatin states based on local enrichments (Fig. 1 A). In contrast, MCORE 

computes correlation functions from the sequencing read occupancy without binarizing the 

data. To this end, normalized occupancy profiles from two different data sets were shifted 

with respect to each other along the genomic coordinate, and the normalized Pearson 

correlation coefficient for each shifting distance ∆x was calculated and analyzed (Materials 

and Methods). In contrast to rank correlations the Pearson correlation coefficient accounts 

for the enrichment values within the normalized occupancy profile and therefore preserves 

the biologically relevant information (Fig. S3). We computed three types of correlation 

functions with different biological meaning: (i) the correlation function between two 

replicates, yielding the domain topology for a chromatin feature (Fig. 1 B), (ii) the correlation 

function between the same feature in two different cell types, providing information on the 

positional conservation of a given chromatin mark across cell types (Fig. 1 C), and (iii) the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 6, 2017. ; https://doi.org/10.1101/054049doi: bioRxiv preprint 

https://doi.org/10.1101/054049
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

correlation function between two different features in the same cell type, reflecting their 

genome-wide positional relationship such as co-localization or shifted localization (Fig. 1 C). 

The use of at least two independent data sets (either two replicates or two samples 

interrogating different features or cell types, see Eq. 4) for the calculation of each type of 

correlation function suppresses spurious noise that is uncorrelated between independent 

experiments and does therefore not contribute to the correlation. 

To compare co-localization values among differently distributed marks we normalized cross-

correlation functions with respect to their replicate correlation (Materials and Methods, Eq. 

5). This step was required because broadly distributed marks tended to yield smaller cross- 

and replicate correlation coefficients than marks forming narrow and well-positioned 

domains. As illustrated in Fig. 1 C, positive correlation indicated co-localization at a given 

shift distance, whereas negative correlation reflected mutually exclusive modification or 

binding. Each decay length and its contribution to the correlation function encoded a domain 

size and its abundance, whereas superimposed oscillations reflected nucleosome spacing 

(31, 41). Where necessary, the correlation function can be used as a starting point to identify 

individual regions of interest as described below. 

MCORE is complementary to peak calling, which generally aims to identify enriched regions 

without larger gaps. As the probability to find modified regions without spurious gaps 

decreases with size, broad regions are prone to get lost or fragmented in such analyses. 

This phenomenon is more or less pronounced depending on the settings and the algorithm 

used as shown for H3K9me3 in Fig. S4 B. Further, it is often challenging to identify and 

remove false-positive/negative peaks that are caused by the inherent properties of 

sequencing data sets like noise, artificial overrepresentation of particular genomic regions 

(45, 46) or insufficient read coverage (15). An example for H3K36me3 is shown in Fig. S4 C. 

MCORE retrieves information about patterns upstream of peak calling analyses and is 

relatively robust towards uncertainties at individual loci because correlation functions are 

calculated from the entire collection of sequencing reads in a large genomic region (see 

Figs. S5 and S6 for the influence of read coverage). 

 

Interpretation and quantification of correlation functions 

We quantified the information contained in correlation functions by first analyzing their decay 

spectrum in a model-independent manner and by subsequently fitting a generic model 

function (29) as described in the Materials and Methods section. This is illustrated for a 

simulated data set in Fig. S7. As a first step, inflection points (in logarithmic representation) 

were numerically determined, yielding the decay lengths that are present in the correlation 

function. Depending on the type of function these decay lengths λi represent domain sizes or 
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separation distances (Fig. 1 C). Next, the Gardner transformation was computed, which 

exhibited peaks at the characteristic decay lengths (37). Both approaches were independent 

of input parameters or model assumptions. Finally, we fitted the correlation function to 

quantitatively describe the domain size spectrum (Materials and Methods). Because decay 

lengths and nucleosome repeat length follow from the change of the correlation coefficient 

with shift distance, these parameters are independent of the absolute correlation amplitude, 

which is beneficial for the analysis of data sets that are not properly normalized, e.g. due to 

low sequencing depth or lack of suitable control samples. 

Correlation functions can be compared to each other based on errors obtained from Fisher 

transformation or bootstrapping (Fig. S8, Materials and Methods). These errors reflect 

variations of the correlation coefficient among different positions within the genomic region of 

interest. If more than two replicates were available, replicate correlation functions calculated 

for each combination of independent samples were combined to account for differences 

among experiments (Fig. S8). We found these errors most meaningful because the 

variability among replicates can typically not be neglected and should be used as a 

reference when comparing different correlation functions to each other. The shape and the 

amplitudes of correlation functions were well reproducible when normalized according to the 

workflow described above. This was also true when comparing our samples with published 

histone modification ChIP-seq samples from other labs (Figs. S8 C and S9 A). 

In summary, MCORE yields compact genome-wide representations of chromatin features in 

the form of correlation functions that can be quantitatively evaluated and compared to each 

other. It can be used to (i) determine domain topologies (Fig. 1 B), (ii) assess positional 

relationships (Fig. 1 C), (iii) test the reproducibility of experiments, or (iv) assess variations 

caused by changes in experimental conditions, e.g. the use of antibodies from different 

suppliers (Fig. S10). In contrast to the Pearson correlation coefficient between two data sets 

alone, the normalized correlation function provides insight into the similarity of the data sets 

on a broad range of length scales. Thus, MCORE can detect changes in domain size, 

amplitude or relative genomic position and can be used to track the reorganization of the 

epigenome among different cell types as shown below. 

 

Domain structure and nucleosome pattern of modified regions in ESCs and NCs 

We used replicate correlation functions to dissect the domain structures and nucleosome 

patterns in ESCs and NCs throughout the genome (Figs. 2, A and B, and S11; Tables S3 

and S4). These quantities reflect the activity of the cellular machinery that shapes the 

chromatin landscape and thereby regulates chromatin function. Most features studied here, 

such as H3K9me3, displayed complex domain size distributions with multiple characteristic 
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decay lengths (Fig. 2, A and B). An exception was H3K4me3, which in agreement with 

published data (47) formed almost exclusively distinct peaks of roughly 1900 bp or 9-10 

nucleosomes in size in both ESCs and NCs. For H3K36me3 we found a typical domain size 

of 24-30 kb, which is of the same order of magnitude as the average gene length in the 

mouse genome (according to NCBI Build 37, mm9). The nucleosome repeat length varied 

among domains carrying different histone modifications, with 218 bp for H3K27me3 in NCs 

and 182 bp for H3K9me3 and H3K36me3 in NCs (Tables S3 and S4). This observation 

suggests that nucleosome spacing is differentially regulated and linked to the chromatin 

state, consistent with previous reports (31, 48). 

The initial decay of most replicate correlation functions is caused by the reduced probability 

to find the same modification at the neighboring nucleosome and is therefore associated 

with a domain size of a single nucleosome. Notably, a prerequisite for this interpretation is 

that the occupancy profile is properly normalized and not heavily undersampled, which is 

validated for representative profiles in Figs. S5 and S6. Accordingly, homogenous domains 

that primarily contain equally modified nucleosomes produce a weaker initial decay than 

domains that contain a mixture of modified and non-modified or differently modified 

nucleosomes. Whereas the subtle initial decay for H3K4me3 in ESCs and NCs (Fig. 2, A 

and B; Tables S3 and S4) is indicative of homogenous domains, the pronounced decay for 

H3K9me3 in NCs (Fig. 2 B and Table S4) suggests that this modification forms 

discontinuous domains with gaps. This is corroborated by the absence of isolated 

nucleosomes with high H3K9me3 enrichment levels outside broader domains (Fig. S12), 

which could also be responsible for a steep decay in the correlation function because such 

nucleosomes would have unmethylated neighbors. 

In summary, these results indicate that different histone modifications form domains with 

different size and structure. Based on the domain size and frequency distribution obtained 

from MCORE, an assignment to specific genomic loci can be made, e.g. by evaluating the 

normalized occupancy profiles with a sliding window corresponding to a domain size of 

interest. This procedure is illustrated in Figs. 2 C and S13 for broad H3K9me3 domains, 

which according to MCORE prevailed in NCs. 

 

Changes in chromatin patterns during stem cell differentiation  

To identify changes of chromatin features during stem cell differentiation we conducted a 

comparative MCORE analysis of more than 60 deep sequencing data sets from ChIP-seq 

(histone modifications: H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3, H3K36me3, 

binding sites of RNA polymerase II (RNAP II) and transcription factors TAF3, Oct4 and 

Otx2), BS-seq, RNA-sequencing (RNA-seq), Hi-C and RNAP II ChIA-PET experiments in 
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ESCs and NCs (Figs. 2, 3, S14-17; Tables S2 and S5). Normalized correlation amplitudes 

at zero shift distance were assembled into a matrix (Fig. 3 A, red/blue), reflecting co-

localization or mutually exclusive localization of different features. In both cell types we 

found more co-localizations than mutual exclusions, which suggests that the set of 

chromatin features analyzed here tends to localize to the same part of the genome. In 

general, mutual exclusions were weaker than co-localizations as judged by the absolute 

values of the respective normalized correlation coefficients. 

In ESCs, the strongest co-localizations were found among features related to actively 

transcribed genes (H3K4me1, H3K4me3, H3K27ac, H3K36me3, RNAP II, RNAP II ChIA-

PET). Notably, H3K36me3, which is known to be associated with active genes, also co-

localized with H3K9me3/H3K27me3, which are traditionally considered heterochromatin 

marks. This might reflect (i) the presence of repressed genes not devoid of H3K36me3 (49), 

(ii) the occurrence of H3K9me3 and H3K27me3 at active genes (47), and/or (iii) the 

presence of H3K36me3 domains outside of coding genes. Mutual exclusion was found 

between RNAP II and the repressive marks H3K27me3 and 5mC (but not H3K9me3) in 

ESCs. Furthermore, inter-chromosomal contact sites were depleted around H3K27me3 in 

ESCs, indicating that H3K27me3 domains localized preferentially inside chromosome 

territories. 

In NCs, co-localization among features associated with active chromatin was conserved and 

tended to become stronger (Fig. 3 A). Most activating modifications retained their domain 

size structures and genomic positions on a global level (Fig. S15). In contrast, H3K9me3 

and H3K27me3 redistributed during differentiation in a way that their co-localization with 

each other, with 5mC and with some of the activating marks like H3K4me1 increased (Figs. 

3, A and D, and S16). In particular, the following changes are noteworthy: (i) Both H3K9me3 

and H3K27me3 formed broader domains in NCs compared to ESCs, which led to a 

stretched decay in correlation functions for NCs compared to the steeper decays in 

correlation functions for ESCs (Figs. 2, A and B, and 3 B). (ii) The normalized correlation of 

H3K9me3 between ESCs and NCs decreased compared to the normalized correlation 

between replicates from the same cell type (Fig. 3 B). The same tendency was observed for 

H3K27me3. These differences suggest partial re-location of H3K9me3/H3K27me3 during 

differentiation because otherwise correlation functions between ESCs and NCs would 

resemble the correlation function calculated for the replicates from the same cell type, and 

all curves in each panel would essentially be identical. (iii) The normalized correlation 

between H3K9me3 and H3K27me3 increased in NCs (Fig. 3 C), which is indicative of 

stronger co-localization of both marks in NC ensembles. (iv) Correlation functions for 5mC in 

ESCs, NCs and between both cell types were similar (Fig. S15). Thus, global changes in the 
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genome-wide 5mC pattern were minor, consistent with previous findings (47). (v) The 

normalized correlation between H3K27me3 and 5mC was higher in NCs compared to ESCs 

(Figs. 3 A and S17 A), suggesting re-localization of H3K27me3 to 5mC domains. 

Normalized correlation between H3K9me3 and 5mC increased for large shift distances in 

NCs, implying that extended H3K9me3 domains formed in the vicinity of pre-existing 5mC 

sites (Fig. S17 A). (vi) Substantial mutual exclusion was found between H3K9me3 and inter-

chromosomal contacts in NCs but not in ESCs, which suggests that H3K9me3 was re-

localized to the interior part of chromosome territories (Fig. 3 C). H3K27me3 resided 

preferentially inside chromosome territories already in ESCs and did not change its position 

in NCs (Fig. 3 C). 

 

Differential relationships among chromatin features in ESCs and NCs 

Next, we determined the characteristic genomic separation distance for each pair of features 

(Fig. 3 A, green color coding). Whereas correlation functions for co-localizing features tend 

to decrease monotonously, correlation functions for shifted features exhibit local maxima at 

their characteristic separation distance (Fig. 1 C). Correlation functions for features that co-

localize at some regions in the genome and are shifted with respect to each other at other 

places exhibit an initial decay that is followed by local maxima (Fig. 3, C and D). This type of 

information is lost in evaluation schemes that exclusively assess overlap (Fig. 3 E). For 

simple cases, such as H3K4me3 and H3K36me3 that localize side by side at promoters and 

bodies of active genes (Fig. S4), similar information is obtained by determining distances 

between adjacent peaks across data sets (compare Fig. 3, D and F). 

Examples for pairs of features that are shifted with respect to each other in ESCs but 

overlap and co-localize in NCs are H3K4me1-H3K9me3 (Fig. 3, A and D), H3K4me3-

H3K27me3 and H3K9me3-H3K27ac (Fig. 3 A). These changes are in agreement with the 

global reorganization of H3K9me3 and H3K27me3 in NCs described above. 

 

Network models for relationships among chromatin features on multiple scales 

The cross-correlation functions introduced above represent the scale-dependent 

relationships between pairs of chromatin features. Accordingly, we used these values to 

construct network models that reflect the associations among all features assessed here for 

a particular genomic distance (Fig. 4). Features were arranged based on their associations 

at zero shift distance, with positively correlated features positioned close to each other 

(Materials and Methods). As described above, activating histone modifications such as 

H3K4me1, H3K4me3 and H3K27ac co-localized with RNAP II and RNAP II ChIA-PET sites 

in both ESCs and NCs. Repressive marks including H3K9me3, H3K27me3 and 5mC were 
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also positively associated with each other, with stronger correlations in NCs than in ESCs. 

This observation suggests that in NCs a larger fraction of the genome is heterochromatic. 

H3K36me3 exhibited positive correlations with both activating and repressive marks, 

indicating partial overlap of the respective domains. Associations among different features 

changed in a characteristic manner with genomic distance, reflecting the mechanisms that 

establish chromatin patterns on different scales. Activating features remained associated 

with the adjacent nucleosome (200 bp shift), indicative of chromatin domains that extend 

beyond a single nucleosome. In contrast, the cross-correlation among repressive marks at 

neighboring nucleosomes decreased considerably compared to their correlation at the same 

nucleosome. This points to the presence of nucleosomes (without an equally modified 

neighbor) that either carry at least two repressive marks simultaneously, transition between 

two different repressive marks over time, or stably carry different repressive marks in 

different cells. All of these scenarios would produce positive correlation in the ensemble 

average. At a shift distance of about ten nucleosomes (2000 bp), most associations among 

activating histone modifications were lost, reflecting the relatively limited spatial extension of 

the respective domains (Tables S3 and S4). In contrast, correlations between repressive 

marks decreased only moderately, which is consistent with their occurrence in broad 

domains with low enrichment levels. The differential scale-dependence found for 

relationships among active and among repressive marks suggests distinct topologies of the 

respective chromatin domains and thus points to fundamental differences in the 

mechanisms for their establishment and maintenance. 

 

Reorganization of heterochromatin components 

To further investigate the changes in heterochromatin organization during differentiation of 

ESCs into NCs inferred from the MCORE analysis above, we dissected the core part of the 

network around H3K9me3. To this end we compared the distributions of the H3K9me3 mark, 

the histone methyltransferase SUV39H1 that sets this mark in pericentric heterochromatin, 

and the heterochromatin protein 1 isoforms HP1α and HP1β to each other. Both SUV39H1 

and HP1 contain chromodomains that recognize H3K9me3, but the contribution of these 

interactions to their genome-wide binding profiles has not been studied comprehensively. 

First, we asked if the two HP1 isoforms displayed cell type-specific chromatin interaction 

patterns. We found that the genomic distributions of HP1α and HP1β were different from 

each other in both ESCs (Fig. 5, A-C) and NCs (Fig. 5, D-F). In ESCs, HP1β formed 

broader domains than HP1α (Fig. 5 A) that were less correlated with H3K9me3 (Fig. 5 B) 

but rather overlapped with H3K36me3 (Fig. 5 C). This finding supports recent work, which 

showed that HP1β but not HP1α is enriched in exons and essential for proper differentiation 
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and maintenance of pluripotency in ESCs (50). The nuclear distribution of HP1β in ESCs 

might be related to its function in splicing (51). In NCs, HP1α and HP1β displayed moderate 

differences in their domain structure (Fig. 5, D and G), with a stronger preference of HP1α  

for broad domains. In contrast to ESCs, both isoforms strongly co-localized with H3K9me3 in 

NCs (Fig. 5 E), in line with their well-established role as heterochromatin components in 

differentiated cells ((22) and references therein). Co-localization with H3K36me3 was also 

observed (Fig. 5 F), consistent with the overlap between H3K9me3 and H3K36me3 domains 

in NCs found above. Next, we focused on the composition of H3K9me3 domains in NCs. 

Whereas H3K9me3 formed both broad and intermediately sized domains, SUV39H1 did not 

form intermediate domains but rather broad domains containing gaps (Fig. 5, D and G) as 

suggested by the fast decay of its replicate correlation function (Fig. 5 D, red). Consistently, 

co-localization among HP1α/β, SUV39H1 and H3K9me3 was not found in intermediate but 

rather in broad domains (Fig. 5 E). These findings point to the presence of SUV39H1-

independent H3K9me3 domains with intermediate size in NCs, which have also been 

described in ESCs (52), indicating that H3K9me3 is not sufficient for stably recruiting 

SUV39H1 or HP1 to chromatin. This is in line with a looping model in which well-separated 

high-affinity binding sites (nucleation sites), which reside within broad heterochromatic 

regions, recruit SUV39H1 to establish and maintain H3K9me3 (Fig. 5 H). 

 

Model for changes of chromatin features during differentiation 

The MCORE results on domain size distributions, co-localizations and separation distances 

(Figs. 2-4) lead us to a model for the reorganization of chromatin during differentiation of 

ESCs into NCs depicted in Fig. 6. H3K9me3 and H3K27me3 domains became larger and 

stronger co-localized with sites of preexisting 5mC during the transition from ESCs to NCs 

(Figs. 3, B and C, and S17 A). This rearrangement leads to a number of alterations in the 

relationships between H3K9me3/H3K27me3/5mC and other chromatin features in NCs: 

(i) H3K27me3 and H3K9me3 co-localized stronger with active marks including H3K4me1, 

H3K4me3, H3K27ac and RNAP II as well as H3K36me3 (Figs. 3 A and 4). (ii) 5mC co-

localized somewhat stronger with H3K36me3 (Figs. 3 A and S17 A). (iii) Whereas 5mC and 

H3K27me3 were already depleted from the surface of the chromosome territory in ESCs 

(Figs. 3 C and S17 B), H3K9me3 moved into the interior of the territory in NCs (Fig. 3 C). 

The positive correlations between H3K4me1-H3K27me3 and H3K4me1-H3K9me3 remained 

stronger in NCs than in ESCs also on larger genomic scales up to ten nucleosomes (Figs. 3 

D, 4 C, S16), indicating that they are caused by NC-specific broad domains. In summary, 

these findings suggest that the main chromatin transition during differentiation from ESCs 

into NCs is the rearrangement of H3K9me3/H3K27me3 domains, which in NCs extend 
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beyond repressive heterochromatin and overlap at least to some extent with chromatin 

regions that carry activating histone marks. 

 

Discussion 

The quantitative understanding of how cells organize their genome into cell type-specific 

chromatin states is important for the description of all processes that require access to the 

genetic information. While the effects of soluble enzymes can be represented by simple rate 

equations, the polymeric nature of chromatin introduces a spatial relationship among 

nucleosome states. As a result, nucleosomes are influenced by the adjacent chromatin 

segments and patterns can form along the genomic coordinate. These patterns are present 

on different length scales and represent an extra layer of complexity, which is an essential 

part of the regulatory networks that control genome functions. For example, repressive 

histone modifications form broad domains that are relatively independent from the 

underlying DNA sequence and can be transmitted through at least several cell divisions (22, 

53-55). Furthermore, chromosomes fold into topological domains that determine the contact 

frequencies between genomic loci and the proteins they are decorated with (56), thereby 

creating three-dimensional structural patterns that might be relevant for long-range gene 

regulation. Elucidating the mechanistic basis of these phenomena and the functional 

relationships among them requires techniques that can identify, quantitate and compare 

different patterns along the genome. 

 

Global analysis of deep sequencing data by correlation functions 

The analysis of deep sequencing data on the level of individual genomic positions is 

complicated by noise, bias and undersampling (15-17). It is often not straightforward to 

choose a threshold value for classifying enriched regions because low values lead to false-

positive peaks and high values lead to false-negative results. Consequently, identifying 

differences in the chromatin domain landscape between samples is currently fraught with 

difficulties, which is evident from a comparison of 14 different software tools for differential 

ChIP-seq analysis that yield different results (57). These problems are especially detrimental 

for the analysis of broad regions with low enrichment levels that are common to 

heterochromatin. 

The MCORE method introduced here uses correlation functions to find and quantify 

chromatin patterns. It computes Pearson correlation coefficients as underlying metrics, 

which is a convenient measure that has extensively been used for data comparison and 

statistical inference in many fields including deep sequencing analysis (18, 30, 31, 58). 
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When calculating correlation functions, MCORE implicitly combines multiple genomic 

regions to gain a correlation coefficient for each shift distance, yielding statistical robustness 

from a large number of reads. In this manner MCORE can quickly retrieve information on the 

spatial distribution of chromatin features on all length scales, while avoiding assumptions or 

model-dependent parameter settings like significance thresholds. In contrast to aggregate 

plots (59-61) MCORE does not rely on any a priori knowledge about annotated genomic 

elements. Compared to peak calling (15), MCORE has a relatively low sensitivity to 

undersampling. This might be beneficial for the analysis of data sets that have low 

complexity, e.g. due to limitations in input material as it is the case for low input sequencing 

samples, or insufficient sequencing depth, which seems to be the norm for broadly 

distributed histone modifications (15). Domain abundances obtained from data sets with 

different coverage values exhibited somewhat larger changes than domain sizes. Therefore, 

sufficient coverage should be ensured in order to interpret these parameters, e.g. by 

applying MCORE to diluted data as shown in Figs. S5 and S6. 

A crucial step in the MCORE workflow is correction for bias and background. Without this 

step artificially overrepresented regions and non-specific signal can induce similarities 

between data sets that are unrelated to the chromatin feature of interest. These phenomena 

are well known from other deep sequencing analysis methods. Because different artifacts 

affect the signal on different scales, their contribution and successful correction can better 

be assessed by multi-scale methods than by techniques that operate on a single scale. In 

particular, non-specific background leads to a characteristic correlation spectrum whose 

removal can and should be validated using the proper controls. Based on a single 

correlation coefficient between data sets this task is more difficult to accomplish. Occupancy 

profiles that have been normalized according to the workflow presented here might serve as 

a useful resource for other downstream analysis methods. 

 

Genome-wide topology of chromatin domains 

MCORE extends previous techniques that assess co-localizations of chromatin features 

based on correlation coefficients. By evaluating entire correlation functions instead of single 

correlation coefficients the spatial extension of chromatin patterns on multiple genomic 

scales is retrieved. With this analysis we found predominantly small domain sizes of less 

than 2 kb for promoter/enhancer marks H3K4me1, H3K4me3, H3K27ac and RNAP II, 

intermediate domain sizes of 20-30 kb for H3K36me3 that marks the whole gene body 

including flanking regions, and domain sizes up to several megabases for 

H3K9me3/H3K27me3. This is consistent with the size of promoters, enhancers and active 
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genes, and with the estimates for repressive domains that were made based on visual 

inspection of selected genomic regions (62). 

The scale-dependent relationships determined by MCORE for different histone modifications 

suggest that there are three types of domain topologies: (i) Short domains formed by 

activating marks are relatively homogenously modified, which is reflected by a large 

probability for finding the same or another activating modification at the next nucleosome. 

Accordingly, correlation functions for activating marks such as H3K4me3 displayed only a 

moderate initial decay (Fig. 2). (ii) H3K36me3 formed domains of intermediate size that 

were 1-2 orders of magnitude broader than H3K4me3 domains. The stronger initial decay 

(Fig. 2) suggests the presence of single nucleosomes without an equally modified neighbor, 

which is consistent with the presence of more gaps in H3K36me3 domains as compared to 

H3K4me3 domains. (iii) Especially in NCs, replicate correlation functions for H3K9me3 or 

H3K27me3 displayed long-range correlations that extended to shift distances of several 

megabases. Similar scale-dependence was also seen for correlation functions between 

H3K9me3 and H3K27me3 (Fig. 3 C), suggesting that these domains are intermingled. The 

respective correlation functions displayed a relatively fast decay at a shift distance of one 

nucleosome (Figs. 2 and 3), indicating that many modified nucleosomes within these broad 

domains localize next to a non-modified or differently modified one. Such a domain structure 

fits well to the experimental observation of broad domains and low enrichment levels in the 

cell ensemble. In particular, the experimentally determined methylation levels that are below 

50 % even for H3K9me3 in pericentric heterochromatin (see (22) and references therein) are 

incompatible with large genomic regions containing exclusively fully H3K9me3-modified 

nucleosomes. Broad H3K9me3/H3K27me3 domains with gaps are consistent with a model 

in which methylation marks are stochastically propagated from well-positioned nucleation 

sites via dynamic chromatin looping (22, 63). 

 

Comparison of chromatin domains in ESCs versus NCs 

The comparative analysis of 11 different chromatin features in ESCs and NCs conducted 

here shows that MCORE can efficiently identify and compare chromatin domain patterns. By 

integrating genome-wide data sets with very different readouts MCORE is well suited to 

generate hypotheses that can be further validated in downstream applications. 

The positive correlations we found among activating histone modifications (H3K4me1, 

H3K4me3, H3K27ac, H3K36me3), among repressive histone modifications (H3K9me3, 

H3K27me3, 5mC) and between H3K36me3 and repressive marks are in qualitative 

agreement with previous studies conducted with ESCs and other cell types (62, 64, 65). 

Genome-wide co-localization of marks that were originally thought to affect transcription 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 6, 2017. ; https://doi.org/10.1101/054049doi: bioRxiv preprint 

https://doi.org/10.1101/054049
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

antagonistically might reflect the additional functions of these marks that are unrelated to the 

regulation of gene expression. For example, H3K9me3 is not restricted to heterochromatin 

but is also found at active genes (47, 66). Furthermore, H3K9me3, H3K27me3 and 

H3K36me3 have been linked to alternative splicing (51, 67) and large portions of H3K9me3 

and H3K27me3 localize to intergenic regions where they might serve completely different 

functions (64). Because sequencing data reflect the average of the cell population that was 

analyzed, positive correlations might also arise from gene loci carrying different marks 

during different cell cycle stages, alleles within the same cell carrying different marks, or loci 

carrying different marks in different cells. The finding that correlations were generally smaller 

in ESCs than in NCs fits to the model of plastic and ‘hyperactive’ chromatin in stem cells, 

which acquires distinct patterns only upon differentiation (68). The fact that most 5mC 

regions persisted in ESCs and NCs, were moderately depleted for inter-chromosomal 

contacts in both cell types, and gained H3K9me3 in NCs suggests a model in which 

heterochromatic regions newly established in NCs are preferentially buried within 

chromosome territories (Fig. 6). H3K27me3 domains behaved similarly in both cell types, 

which fits very well to the previously reported localization of inactive domains such as the 

Hox cluster inside chromosome territories in differentiated cells (13, 69-71). The observation 

that only a subset of H3K9me3 domains is broad and enriched for SUV39H1 suggests that 

heterochromatin extension is not merely caused by recruitment of trans-acting enzymes to 

preexisting H3K9me3 but rather by site-specific recruitment of methyltransferases to 

domains that are to be extended during differentiation. Although further experiments are 

required to fully understand the underlying molecular details of heterochromatin 

reorganization during differentiation, these insights provide a starting point to uncover the 

pathways that are responsible for establishing differently sized heterochromatin domains 

with distinct molecular composition. 

 

Conclusions 

The MCORE method introduced here enables the quantitative retrieval and comparison of 

patterns and spatial relationships for different chromatin features from noisy data sets. 

These features make MCORE complementary to model-dependent approaches that assess 

the local read density at individual loci to find enriched regions. MCORE is relatively fast and 

yields a coarse-grained comparison of data sets without the requirement of user-defined 

input parameters, providing an unbiased starting point for in-depth analyses conducted 

downstream. We anticipate that MCORE will aid in the design and validation of mechanistic 

models for chromatin patterning and long-range gene regulation. 
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Figure 1. MCORE can identify and compare patterns in deep sequencing data sets. 
(A) MCORE is suited for the analysis of deep sequencing data from various methods. 
Initially, mapped reads are used to compute occupancy profiles of two samples (black/blue). 
Subsequently, in case of MCORE the profiles are normalized using the input sample and, if 
applicable, the control sample. In contrast to other methods like peak calling, hidden Markov 
models (HMM) or dynamic Bayesian networks (DBN), which use control and IP samples for 
the detection of enriched regions, MCORE does not score enriched regions but rather shifts 
normalized occupancy profiles with respect to each other to compute correlation functions, 
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which contain information about chromatin patterns as illustrated in panels B and C and Fig. 
S1. To this end it uses all sequencing reads without filtering and avoids any assumptions 
about the enrichment pattern. (B) Correlation functions between replicates for the same 
chromatin feature contain information about its domain topology. Whereas the correlation 
coefficient at shift distance zero quantifies the reproducibility of the experiment, the shape of 
the function reflects the distribution of the feature along the genomic coordinate. Continuous 
domains lead to a steep decay at the shift distance that coincides with half the domain size λ 
(top), whereas broad domains containing small highly enriched regions yield multiple decay 
lengths λi (center). Arrays of equally spaced domains cause an oscillating contribution in the 
correlation function (bottom). Mixtures of domains with different topology yield a 
superposition of the respective correlation functions. (C) Correlation functions between two 
different chromatin features reflect their spatial relationship. Co-localizing features yield 
monotonously decaying functions (top) that resemble those between replicates discussed in 
the previous panel. Correlation functions for features that are shifted with respect to each 
other exhibit a local maximum at the shift distance d (center). Mutually exclusive features are 
recognized by negative correlation amplitudes (bottom). Features that do not exhibit any 
spatial relationship with respect to each other yield no correlation for any shift distance. 
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Figure 2. Quantification of domain sizes for different histone marks. 
(A) Correlation functions for replicates in ESCs. Correlation functions calculated between 
replicates for chromosome 1 (black) and their fit functions (red) with characteristic domain 
sizes obtained from the fit (vertical dotted lines) are shown. Gray regions indicate maximum 
variation between chromosomes. Fit residuals are plotted above the correlation curves. 
Domain sizes and abundances calculated from the respective fit parameters are shown 
below the correlation curves. (B) Same as in panel A for NCs. (C) As shown in panels A and 
B, MCORE identified broad H3K9me3 domains spanning on average 128 kb and 7.6 Mb in 
NCs, which were absent in ESCs. To annotate the genomic positions of these domains, read 
counts in a sliding window of 128 kb, which corresponded to the smaller domain size, were 
evaluated. An example of a domain that became broader in NCs is shown (‘#1’ and ‘#2’ 
denote replicates). For clarity, the occupancy profiles were smoothed with 0.2-times the 
window size (‘smooth’). For window size 7.6 Mb see Fig. S13.  
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Figure 3. MCORE reveals genome-wide relationships between chromatin features. 
(A) Co-localization (top, red/blue) and separation distance (shift distance for the largest local 
maximum, bottom, green) between pairs of different features in ESCs (left) and NCs (right) 
are shown. Stars indicate correlation functions for which the local maximum is also the 
global maximum. Hi-C trans, Hi-C inter-chromosomal contacts; RNA, RNA-seq; RNAP II-
ChIA, RNAP II ChIA-PET. (B) Correlation functions for replicates of H3K9me3, H3K27me3 
and inter-chromosomal contacts (Hi-C trans) in ESCs (blue) and NCs (black) show the 
spatial extension of these features. Average cross-correlation functions (red) between ESCs 
and NCs quantify the co-localization of a given feature across cell types. Averages were 
calculated from the four possible combinations of the two replicates for each sample 
(Materials and Methods). Error bars, s.e.m. (C) Cross-correlations between H3K9me3 and 
H3K27me3 (top) or H3K9me3/H3K27me3 and inter-chromosomal contact sites (Hi-C trans, 
center/bottom) in ESCs and NCs. Repressive domains co-localize in NCs (top) and have a 
tendency to be depleted for inter-chromosomal contacts (bottom). Error bars, s.e.m. 
(D) Cross-correlations between H3K4me3 and H3K27ac (top) indicate co-localization of both 
marks in small domains, whereas cross-correlations of H3K4me3 and H3K36me3 (center) 
reveal a relative displacement of roughly 5 kb between the two marks. In NCs, there is an 
additional co-localization at zero shift distance that is weaker in ESCs. Cross-correlations 
between H3K4me1 and H3K9me3 (bottom) show that both marks are stronger co-localized 
in NCs than in ESCs. The local maximum at 100 kb shift distance in ESCs suggests a 
separation of H3K4me1 from broad H3K9me3 domains. Error bars, s.e.m. (E) Peak calling 
in NCs as readout for co-localization. Red, peaks called by MACS for H3K4me3; blue, peaks 
called by SICER for H3K36me3 or by MACS for H3K27ac. The numbers of (overlapping) 
peaks are indicated. (F) Distribution of distances between called peaks. Distances were 
calculated from the center of the H3K4me3 peak to the center of the nearest peak in the 
second data set (H3K27ac or H3K36me3). 
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Figure 4. Network models for scale-dependent relationships among chromatin 
features. 
(A) Network models illustrating the relationships among different chromatin features in ESCs 
on different scales (blue: positive correlation, red: negative correlation). Features were 
grouped according to their correlation at zero shift distance (left), yielding a cluster of 
features associated with active transcription and a cluster of marks related to gene silencing, 
whereas H3K36me3 co-localizes with members of both groups. The correlations among 
features on adjacent nucleosomes (200 bp shift distance) differ from the correlations among 
features at the same nucleosome (0 bp shift distance), indicating that only some features 
form continuous domains that extend beyond a single nucleosome. For the even larger shift 
distance of roughly ten nucleosomes (2000 bp), only a few long-range correlations remain, 
which either reflect large domains of co-localizing features or features that are shifted with 
respect to each other. The latter two possibilities can be distinguished based on the shape of 
the correlation function (Fig. 1 C). (B) Same as in panel A but for NCs.  (C) Network models 
illustrating changing relationships among different chromatin features in ESCs and NCs. The 
difference NC-ESC is colored in blue if correlations became stronger in NCs and red if 
correlations became weaker in NCs. Positive correlations among repressive marks were 
stronger in NCs than in ESCs, particularly on larger scales. 
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Figure 5. Interplay among H3K9me3, SUV39H1 and HP1. 
(A) Replicate correlation functions of HP1α (blue), HP1β (black) and H3K9me3 (green) in 
ESCs. (B) Cross correlation functions of HP1α (blue) or HP1β (black) with H3K9me3 in 
ESCs. (C) Cross correlation functions of HP1α (blue) or HP1β (black) with H3K36me3 in 
ESCs. (D) Same as in panel A but for NPCs and including SUV39H1 (red). H3K9me3 and 
HP1α/β exhibit small, intermediate and (very) broad domains. The short domain size of one 
nucleosome is present in the correlation functions for all marks, suggesting that domains 
consist of nucleation sites and gaps (as explained in the text). SUV39H1 does not form 
intermediately sized domains. (E) Same as in panel B but for NCs and including SUV39H1 
(red). SUV39H1, HP1α, HP1β and H3K9me3 strongly co-localized. Intermediate domains 
are not present in the cross correlation function between SUV39H1and H3K9me3, indicating 
that both features only co-localize in short and broad domains. In contrast, HP1α and HP1β 
essentially follow the H3K9me3 distribution, indicating that they do not distinguish between 
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differently sized H3K9me3 domains. (F) Same as in panel C but for NCs. (G) Domain size 
distribution for correlation functions in panels D and E. (H) Schematic illustration of a 
nucleation-and-looping mechanism for the formation of SUV39H1-dependent H3K9me3 
domains, which is consistent with the MCORE results for NPCs. 
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Figure 6. Alterations of chromatin features during differentiation of ESCs into NCs. 
Model for the re-organization of chromatin domains during differentiation from ESCs to NCs 
based on the MCORE analysis of the data sets used in this study. Active domains mostly 
retained their organization, with H3K4me1 being partly separated from the smaller 
H3K4me3/H3K27ac domains in both cell types. The overlap between those marks and 
H3K36me3 increased in NCs, which might be due to elevated transcription of enhancers or 
activation of genes enriched for H3K4me1/3 or H3K27ac. Domains enriched for H3K9me3 
and H3K27me3 became extended at sites of 5mC and were preferentially buried inside 
chromosome territories. The newly established H3K9me3/H3K27me3 domains in NCs 
appeared discontinuous, i.e. contained many modified nucleosomes without an equally 
modified neighbor. Further, they exhibited increased overlap with activating marks such as 
H3K4me1 and H3K4me3, which suggests that they do not exclusively contain 
heterochromatin but rather enclose both active and repressive chromatin domains. 
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Figure S1 | Strategies to retrieve information about complex patterns. (A) Peak calling 
result for a complex domain structure involving different enrichment levels (MACS, standard 
settings mfold =10,30, pvalue = 1e-5). The pattern is reduced to regions that are compatible 
with the threshold and significance settings while others are ignored. (B) Correlation function 
(black dots) and multi-exponential fit according to Eq. 6 (red line) for the pattern in panel A. 
The correlation function yields the different length scales that are present in the pattern, 
including the width of highly enriched regions, the characteristic size of clusters formed by 
adjacent peaks, and the size of the entire enriched region. 
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Figure S2 | MCORE workflow and background correction. (A) Schematic representation 
of the MCORE workflow. (B) Fragmentation of total chromatin (black) containing a chromatin 
feature of interest (red) occurs with some bias and is frequently incomplete. As a result, only 
a fraction of chromatin (blue) is present in the input sample due to size selection during 
library preparation. Subsequent immunoprecipitation occurs in the presence of non-specific 
binding. The latter contribution can be assessed in a separate control reaction, e.g. by using 
an antibody that does not bind specifically to the antigen. Sequencing reads obtained from 
samples with the specific antibody A, the control C and the input I are used to calculate 
normalized occupancy profiles for the analysis of a given chromatin feature according to 
Eqs. 1-3. In brief, the read densities from the specific IP and from the control are divided by 
the input density (A / I and C / I, see Eq. 1) to account for multiplicative biases such as 
mappability or preferences in immunoprecipitation, ligation, amplification and sequencing. 
Next, the weighted control signal is subtracted from the specific antibody signal to remove 
additive bias caused by non-specific binding (Eqs. 2-3). Resulting profiles are used for 
calculating correlation functions (Eq. 4). (C) Correlation functions for the uncorrected (black) 
and corrected (blue) occupancies for control IP (IgG, top), H3K4me3 (center) and H3K9me3 
(bottom) ChIP-seq replicates in neural progenitor cells. Subtraction of the weighted control 
IP signal removes the background correlation and thus eliminates correlation between 
control IP signals (top). Normalization has little effect for H3K4me3, which displays distinct 
peaks with considerable enrichment (Fig. S4). In contrast, it causes a significant correction 
for H3K9me3, which forms broad domains with moderate enrichment levels.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 6, 2017. ; https://doi.org/10.1101/054049doi: bioRxiv preprint 

https://doi.org/10.1101/054049
http://creativecommons.org/licenses/by-nc-nd/4.0/


MCORE - Supporting Material 

4 

 
 
Figure S3 | Statistics and Spearman correlation functions for representative ChIP-seq 
data. (A) Box plots (left), histograms (center) and percentiles (right) for normalized 
occupancy profiles from H3K4me3, H3K9me3 and H3K36me3 ChIP-seq experiments in 
ESCs. For box plots, the median is colored in red and the ends of the whiskers represent the 
1st and 99th percentile. Minimum and maximum occupancy values are listed in the 
histograms. The background comprises a large part of the data and its distribution is similar 
for all profiles (see box plots and histograms). (B) Pearson (left, green) and Spearman (right, 
green) correlation functions for the occupancy profiles analyzed in panel A. To assess the 
contribution of enriched regions to the different correlation functions we replaced occupancy 
values above the 90th (blue) or 99th (black) percentile with the average occupancy within the 
rest of the genome. Spearman correlation functions exhibited only slight changes upon 
removal of highly enriched regions and primarily reflected the structure of the background 
signal that was independent of the interrogated histone mark (compare top, center and 
bottom in the right column). In contrast, Pearson correlation functions reflected the 
properties of enriched regions, which carry the biological information, and changed their 
shape when these regions were omitted from the analysis. After removal of enriched regions 
(left column, blue), Pearson correlation functions were dominated by the background signal 
and resembled Spearman correlation functions (right column). The stronger background 
signal in Spearman correlation functions is due to the correction procedure that minimizes 
the background according to the Pearson metric (Eq. 3). 
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Figure S4 | Peak calling for representative ChIP-seq data. (A) Read distribution (black) 
for sample, control (IP with a non-specific antibody) and input, normalized occupancy 
(red/blue), and peaks (green) called by MACS (M) and SICER (S) for H3K4me3, H3K9me3 
and H3K36me3 ChIP-seq in NCs. Distinct H3K4me3 domains were reliably identified by 
both peak callers, results for H3K9me3 and H3K36me3 depended on the specific algorithm 
used (e.g. MACS and SICER). (B) Peak size distributions for clusters called by MACS and 
SICER for the ChIP-seq experiments in ESCs and NCs. Resulting cluster sizes differed 
between both methods. (C) Example of the read distribution (black) and normalized 
occupancy (red/blue) for H3K36me3 ChIP-seq in NCs, including input and control. The 
highlighted region contains an apparent enrichment in H3K36me3 that is identified as a 
peak. However, similar enrichment is present in the control IP, suggesting that the signal 
corresponds to non-specific background. 
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Figure S5 | Robustness of correlation functions towards undersampling. (A) Replicate 
correlation functions for ChIP-seq data sets of H3K4me3 in ESCs containing different 
numbers of reads. The red curve corresponds to the entire set of reads reported in this study 
(100%, corresponding to 30 million reads). The other functions reflect data sets that were 
diluted in silico by randomly selecting only a fraction of reads from the entire set. Correlation 
functions were normalized to the 100% curve at a shift distance of one nucleosome 
(according to the fit parameters c2 in Table S3) because correlation coefficients for smaller 
shift distances do not contain information about domain structures (see Fig. S6 for domain 
sizes obtained by fitting). (B) Same as in panel A but for H3K9me3. (C) Same as in panel A 
but for H3K36me3. (D) Quantification of the similarity of correlation functions for diluted data 
sets with respect to the curve for the undiluted data set based on the coefficient of 
determination (R2). Correlation functions for diluted data sets are similar to each other and to 
the result for the undiluted data set, with R2 > 0.9. Above 40% read density, which 
corresponds to 12 million reads, a plateau is reached for all modifications assessed here.  
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Figure S6 | Dependence of fit results on coverage. The correlation curves plotted in Fig. 
S5 were fitted with Eq. 6. Fit results for the domain sizes and the respective amplitudes are 
plotted versus coverage (domain numbers are indicated in the top panel). Gray regions 
show the variation of the fit results for dilution down to 50% of the reads. The most abundant 
domains, which represent the characteristic domain sizes for a given modification, were 
accurately quantified from diluted functions (top panels). Only lowly abundant large domains 
like the largest domain for H3K4me3 or H3K9me3 with abundance below 10% (see Table 
S3 for values) changed their apparent size when coverage was reduced. Due to their low 
abundance we did not interpret these domains. 
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Figure S7 | MCORE for simulated data sets. (A) Correlation functions (dotted lines) for 
randomly distributed fragments of different size exhibit a single decay length that can be 
retrieved by assessing inflection points (arrowheads), by fitting the model function in Eq. 7 
(solid lines) or by evaluating the decay spectrum obtained from the Gardner transformation 
shown below the curves. (B) Fit parameters obtained for the curves shown in panel A yield 
half domain sizes (green), whereas the positions of inflection points correspond to 0.7-times 
the domain sizes (black). (C) Correlation functions (dotted lines) for nucleosomal arrays 
(instead of continuous fragments as in panel A) display global decay lengths that correspond 
to array sizes. The decay lengths coincide with the largest inflection points depicted by the 
arrowheads. In addition, correlation functions exhibit an oscillatory contribution due to the 
nucleosomal pattern within the arrays. The nucleosome repeat length of 200 bp used for the 
simulation was retrieved by fitting with Eq. 7 (solid lines). (D) The array size in panel C is 
either obtained from the analysis of inflection points (black), the peaks of the decay 
spectrum or the fitted half domain sizes (green), with the same scaling found for continuous 
domains in panel B.   
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Figure S8 | Errors and statistical comparison of correlation functions. 
Panels A-F refer to H3K36me3 in ESCs. (A) Replicate correlation function (black) and its 
confidence interval (gray) obtained using the Fisher transformation (Materials and Methods). 
Due to the large sample size the confidence interval is smaller than 10-3 and within the line 
thickness. (B) Average (black) and confidence interval (gray) of correlation functions 
calculated for all autosomes (1-17) based on the H3K36me3 data sets generated in this 
study. (C) Average (black) and confidence interval (gray) of three replicate correlation 
functions calculated from three independent biological replicates (rep1 x rep2, rep1 x rep3, 
rep2 x rep3), yielding information on experimental reproducibility. The correlation function for 
ENCODE data for H3K36me3 in ESCs (red) is similar to the correlation function computed 
from the data sets generated in this study. The amplitude of the first domain that covers the 
length scale below 200 bp shift distance is different. This might be due to incomplete 
correction of background signal in the ENCODE data set that lacks a control IP reference, 
which should, however, not strongly affect the quantitation of domain sizes beyond the scale 
of a nucleosome. (D) Distribution of normalized occupancy values (Oi – <O>) that were used 
for calculating the correlation function in panel A. The distribution is relatively symmetric and 
unimodal. (E) Distribution of correlation coefficients obtained by bootstrapping for the 
correlation coefficient at zero shift distance. Each correlation coefficient was calculated after 
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resampling the occupancy profiles with replacement as described in the Materials and 
Methods section. Correlation coefficients are given relative to the mean value. The 95% 
confidence interval obtained by this approach is roughly 3-times larger than the estimate 
based on Fisher transformation (shown in red). (F) Correlation function from panel A with 
non-parametric bootstrap confidence intervals for each shift distance. (G) Based on 95% 
confidence intervals, the statistical significance of differences between correlation functions 
can be assessed. p-values for the difference of two functions at each shift distance are 
shown, which were calculated based on a t-test for each pair of correlation coefficients. The 
red dashed lines indicate a p-value of 0.05. Top: Comparison between H3K9me3 in ESCs 
and NCs. Correlation curves are shown in Fig. 3 B (top, black/blue). Bottom: Comparison 
between H3K27me3 in ESCs and NCs. Correlation functions are shown in Fig. 3 B (center, 
black/blue). 
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Figure S9 | MCORE for different H3K27ac data sets. (A) Correlation functions for 
H3K27ac data sets from this manuscript (‘Molitor’) and from the study of Creyghton et al. (1) 
(‘Creyghton’). Both data sets yielded similar results in the MCORE analysis. (B) H3K27ac 
enrichment at the enhancers identified by Creyghton et al. was found for all data sets 
assessed here. (C) The enhancers identified by Creyghton et al. were not the only genomic 
regions enriched for H3K27ac. 
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Figure S10 | Quality control of ChIP-seq data. (A) Replicate correlation functions from 
three ChIP-seq experiments of H3K36me3 in ESCs for all pairwise combinations, replicate 1 
and 2 (black), replicate 1 and 3 (red), replicate 2 and 3 (blue). The correlation functions 
show variations that reflect the biological reproducibility of the experiment. (B) Evaluation of 
two different antibodies used for ChIP-seq of H3K9ac in ESCs. Two ChIP-seq experiments 
were conducted with polyclonal antibodies from abcam (ab4441, replicate ab1 and ab2) or 
Active Motif (#39137, replicates am1 and am2). Replicate correlation functions of 
experiments with the same antibody showed significant correlation (ab1 and ab2, red line; 
am1 and am2 black line) with a difference in the amplitude that indicates a higher similarity 
and therefore a better reproducibility of ChIP-experiments conducted with the Abcam 
antibody. Cross-correlation functions calculated for data sets using different antibodies (blue 
curves for every combination of two replicates, ab1 x am1, ab1 x am2, ab2 x am1, ab2 x 
am2) yielded negative correlations. Thus, the two antibodies recognize different chromatin 
features and further validation is necessary to make conclusions on the H3K9ac distribution. 
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Figure S11 | Fitted correlation functions for H3K27me3. Correlation functions calculated 
between replicates on chromosome 1 (black) and fit functions according to Eq. 7 (red) with 
half domain sizes obtained from the fit (vertical dotted lines). Gray regions indicate maximum 
variation among chromosomes. Fit residuals for the correlation functions are shown below 
the curves. Fit parameters are summarized in Tables S3 and S4. 
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Figure S12 | Peak calling summary for H3K9me3. MACS and SICER were used to 
identify peaks of H3K9me3 in NCs. Parameters were used as indicated in the Material and 
Methods section. Numbers of peaks with different sizes are given. 100% refers to all of the 
peaks identified by MACS (3630 peaks containing 0.4% of all mapped reads) or SICER 
(35780 peaks containing 9.45% of all mapped reads). 
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Figure S13 | MCORE-directed annotation of chromatin features. MCORE identified 
broad H3K9me3 domains spanning on average 128 kb and 7.6 Mb in NCs. These domains 
were absent in ESCs, suggesting broadening of H3K9me3 domains during differentiation of 
ESCs into NCs (Fig. 2, A and B; Tables S3 and S4). (A) To identify broad regions enriched 
for H3K9me3 in NCs but to a lesser extent in ESCs, the coverage difference for normalized 
occupancy profiles in ESCs and NCs was calculated in a sliding window of 128 kb in size. A 
histogram for the obtained values is shown. The histogram is relatively symmetric and 
centered at zero, indicating that most genomic regions (that do not contain repetitive 
sequences) are not differentially modified with H3K9me3 in ESCs or NCs. The tails (blue 
rectangles) show that the largest coverage differences are found in regions that gain 
H3K9me3 in NCs. (B) The coverage difference along chromosome 1 (left, maximum and 
minimum values within 10 kb bins are plotted) and a zoom-in including the genomic region in 
Fig. 2 C (88.7 - 89.3 Mb, right) are shown. (C) To annotate the genomic positions of broad 
H3K9me3 domains, reads were counted and evaluated in a sliding window with the 
respective size. An example of a domain with ~7.6 Mb that became broader in NCs is 
shown. For clarity the occupancy profiles were smoothed with 0.2-times the window size. An 
example for window size 128 kb is shown in Fig. 2 C. 
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Figure S14 | MCORE for transcription factor binding. Co-localization of transcription 
factors with different histone modifications was studied in ESCs. Cross-correlation functions 
of TAF3, Oct4 or Otx2 vs. H3K4me3, H3K9me3, H3K27ac and H3K36me3 are shown. 
Binding of TAF3 strongly correlates with H3K4me3 and H3K27ac, which mark active 
promoters and enhancers in mouse ESCs (1, 2). The binding of TAF3 to enhancers is in line 
with publications showing that active enhancers are transcribed by the RNA Polymerase II 
machinery (3) and that TAF3 mediates chromatin-looping events that regulate transcriptional 
activation (4). Oct4 and Otx2 are two transcription factors that regulate pluripotency and 
differentiation. Their binding correlates with H3K27ac in agreement with previous reports (5). 
The peaks in the correlation curves reflect the ~300 bp distance between the binding site of 
the transcription factor and the modified nucleosome, which was also found recently (6). For 
each of the three transcription factors, maximum correlation with H3K36me3 was found at 
shift distances around 10 kb, which is similar to the average gene length and indicates that 
these factors globally bind adjacent to active genes. TAF3, Oct4 and Otx2 binding is 
uncorrelated with H3K9me3, which is consistent with their role in active transcription.  
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Figure S15 | Spatial extension and co-localization of different features in ESCs versus 
NCs. Correlation functions for replicates of H3K4me1, H3K4me3, H3K27ac, H3K36me3 and 
RNA Polymerase II (RNAP II) ChIP-seq, RNA-seq (RNA) and RNAP II ChIA-PET data 
(RNAP II-ChIA) in ESCs (blue) and NCs (black) reflect the domain structures of the 
respective features. Cross-correlation functions (red) between the same feature in ESCs and 
NCs quantify the co-localization of this feature in both cell types. Most features depicted 
here did not drastically change their global distribution during differentiation because cross- 
and replicate correlation functions are similar to each other. 
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Figure S16 | Heterochromatin reorganization during differentiation. Cross correlation 
functions between H3K27me3 and H3K4me1/H3K36me3 in ESCs (blue) or NCs (black) are 
shown. H3K27me3 exhibited increased co-localization with activating marks in NCs. Error 
bars indicate s.e.m. among replicates. 
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Figure S17 | DNA methylation and inter-chromosomal contacts. (A) Cross correlation 
functions for DNA methylation and different histone modifications in ESCs (left) and NCs 
(right) are shown. Error bars indicate s.e.m. among replicates. (B) Cross-correlation 
functions for inter-chromosomal contact sites (Hi-C trans) and DNA methylation (5mC), RNA 
Polymerase II (RNAP II) and RNAP II ChIA-PET (RNAP II-ChIA) in ESCs (left) and NCs 
(right) are shown. RNAP II and RNAP II contact sites became moderately enriched at the 
surface of the chromosome territory in NCs, whereas 5mC tended to localize inside 
chromosome territories in both cell types. Small absolute values of correlation coefficients 
might be due to the relatively low number of inter-chromosomal contacts across the genome. 
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Correlation 

function 
Sliding win-

dow binning a 
Peak a 
calling 

Multi-scale 
representation 

Probabilistic 
network 
models 

Deconvolved 
correlation 

Strand-speci-
fic correlation 

Tool(s) MCORE cisGenome, 
SiSSRs, SPP MACS, SICER MSR ChromHMM, 

Segway Arpeggio SPP 

Platform Java various Python Matlab script or 
compiler runtime  

Java, 
Python  

Java R-script 

Sequencing 
data type Unrestricted Unrestricted ChIP-seq Unrestricted Unrestricted ChIP-seq ChIP-seq 

Mixed data 
type analysis 
implemented 

Yes No No No b Yes No No 

Applications 
Quality control, 
domain features, 
spatial relations 

Local feature 
enrichment 

Local feature 
enrichment 

Multi-scale 
feature 
enrichment 

Segmentation 
into feature 
states  

Comparison of 
data sets, local 
structure 

Quality control 
for sequencing 
data 

Correction c Input and/or 
control Input or control Input or control 

Mappability, GC 
content, input or 
control 

Input or control Input or control None 

Detected 
feature scale 

1 bp –  
1 chromosome 

1 bp –  
1 chromosome 

< 10 kb (MACS) 
variable (SICER) 

1 bp –  
1 chromosome 

1 bp –  
1 chromosome 40 bp – 8 kb Fixed window 

size 

Information 
on shifted 
relationships 

Yes No No Limited b No No No 

Required 
input 
parameters  

None Window size 

MACS: p-value 
threshold, tag 
length/shift 
SICER: size of 
gap & window, 
FDR 

Resolution, scale 
number, p-value 
threshold 

State number, p-
value threshold None None 

Number of 
data sets 2 1 1 1 b >1 1 1 

Noise 
sensitivity  Low d Low High d n.d. n.d. Low Low 
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Genome locus 
annotation No Yes Yes Yes Yes No Yes 

Output e 

Domain sizes, 
nucleosome 
spacing, spatial 
relationships, 
normalized 
occupancy 

Enrichment over 
average Local enrichment Scale dependent 

enrichment 

Length 
distribution, 
abundance of 
chromatin states 

Feature profile, 
nucleosome 
spacing 

Peak separation 
distance 

Operating 
system f All All All Unix, Windows 

All (ChromHMM) 
Linux (Segway) 

Unix, Mac OS X All 

Comment 
Low sensitivity to 
noise, bias and 
undersampling 

Read counting in 
a window of 
predefined size  

Restricted scale-
range 

Can be applied 
as a peak caller 
with pruning. 

Predefined 
number and type 
of states. 

Removes large-
scale structures 
by filtering 

Recommended 
analysis prior to 
peak calling 

Reference This study (7-9) (10-12) (13) (14-17) (18) (7, 19) 

 

Table S1 | Comparison of MCORE with other software tools 

The table represents a non-comprehensive list of tools that are used to extract information about chromatin features from deep sequencing data sets. 
a Exemplary tools are mentioned. For other programs see compilations in ref. (20, 21). 
b MSR can be applied to identify region of simultaneous enrichments for two different ChIP-seq data sets by computing a matrix of segments, but this 

analysis is not part of the current implementation. In some cases differential correlation of the matrix indicates the presence of shifted correlations. 
c Control reactions depend on the type of sequencing data and could involve for example a ChIP-seq reaction without the specific antibody.  

d See ref. (22) for peak calling and Figs. S5 and S6 for MCORE 
e The “enrichment” analysis of a given feature would also provide the information about its depletion with respect to a given average signal. 
f All operating systems refers to Unix, Windows and Mac OS X. 
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Feature Function Location Reference 

5mC repression, splicing, TF 
binding CpG dinucleotides (23) 

H3K4me1 poised enhancer (24) 

H3K4me3 activation promoter (25) 

H3K9ac activation promoter (26) 

H3K9me3 repression promoter, enhancer, repeats (27) 

H3K27ac activation promoter, enhancer (24) 

H3K27me3 repression promoter, enhancer, CpG islands (27) 

H3K36me3 activation, splicing active gene bodies (28, 29) 

H3K4me1, 
H3K27ac activation enhancer (24) 

H3K4me3, 
H3K27me3 bivalent promoter (30) 

RNAP II transcription promoter, active gene bodies, 
active nuclear compartments (31, 32) 

RNAP II 
ChIA-PET 

promoter-promoter/ 
enhancer interactions promoter, enhancer (33, 34) 

Hi-C trans interactions between two 
chromosomes 

surface of  
chromosome territory (35, 36) 

RNA transcript transcribed chromatin (37) 

 

Table S2 | Overview of chromatin features assessed in this study. Due to the plethora 
of functions associated with each feature only a coarse-grained assignment of the most 
important function is provided. 
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ESC H3K4me3 H3K9me3 H3K27me3 H3K36me3 

number 
of 

domains 

3 4 5 3 

value SE value SE value SE value SE 
a1 (%) 18.0 0.5 27.6 0.6 25.3 1.2 26.9 <0.5 
a2 (%) 75.7 0.6 46.4 2.4 20.0 4.3 51.4 3.0 
a3 (%) 6.3 0.3 21.0 3.0 23.3 6.0 21.7 1.8 
a4 (%) - - 5.0 3.9 22.1 3.5 - - 
a5 (%) - - - - 9.3 8.3 - - 
b1 (bp) 132 2 107 2 106 3 119 2 
b2 (bp) 926 6 1586 18 3198 173 14803 296 
b3 (kb) 33 6 11 2 16 2 356 105 
b4 (kb) - - 1121 704 322 46 - - 
b5 (kb) - - - - 4481 195 - - 
c1 (%) 99 fixed 98 <0.05 69 1 97 1 
c2 (bp) 173 fixed 182 9 207 5 182 5 
c3 (bp) 1000 fixed 654 340 219 9 802 303 
n1 1.97 0.05 2.20 0.10 3.31 0.27 2.30 0.50 
n2 1.25 0.01 1.11 0.00 1.96 0.25 0.62 0.01 
n3 0.38 0.02 0.64 0.10 1.28 0.33 0.45 0.04 
n4 - - 0.39 0.10 0.79 0.17 - - 
n5 - - - - 3.96 0.97 - - 
 
Table S3 | Fit parameters for selected correlation functions in ESCs. Correlation 
functions calculated for replicates of H3K4me3, H3K9me3, H3K27me3 and H3K36me3 
(Figs. 2 A and S11) were fitted with Eq. 7 (Materials and Methods), yielding the indicated fit 
parameters and corresponding standard errors (SE). The minimum number of domains 
required to yield uncorrelated fit residuals was chosen. The amplitudes a1-a5 represent the 
relative domain abundance, the decay length parameters b1-b5 represent half of the 
respective domain sizes, and the value of c2 reflects nucleosome spacing. See text and 
Materials and Methods for further details. 
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NC H3K4me3 H3K9me3 H3K27me3 H3K36me3 

number 
of 

domains 

3 4 4 3 

value SE value SE value SE value SE 

a1 (%) 18.2 1.5 47.5 3.1 54.7 1.2 25.7 0.4 
a2 (%) 79.9 1.5 23.2 3.6 11.5 1.9 57.3 0.9 
a3 (%) 1.9 1.9 17.7 2.9 17.5 2.4 17.0 0.9 
a4 (%) - - 11.6 5.5 16.3 3.2 - - 
b1 (bp) 243 4 202 19 111 2 111 1 
b2 (bp) 985 14 2036 142 1791 91 11848 287 
b3 (kb) 617 106 64 13 48 9 1412 85 
b4 (kb) - - 3771 256 3132 131 - - 
c1 (%) 98 <0.5 74 4 82 2 99 <0.5 
c2 (bp) 134 3 175 4 218 15 182 6 
c3 (bp) 3017 3017a 367 41 224 27 11505 11505a 
n1 2.01 0.12 2.31 0.60 2.67 0.09 2.47 0.07 
n2 1.43 0.03 1.11 0.15 1.54 0.24 0.59 0.01 
n3 0.53 0.07 0.62 0.13 0.52 0.09 0.79 0.05 
n4 - - 1.56 0.24 1.64 0.15 - - 
 
Table S4 | Fit parameters for selected correlation functions in NCs. Correlation 
functions calculated for replicates of H3K4me3, H3K9me3, H3K27me3 and H3K36me3 
(Figs. 2 B and S11) were fitted with Eq. 7, yielding the indicated fit parameters and 
corresponding standard errors (SE) as described in the Materials and Methods section and 
the legend to Table S3.  
 
a Fit error truncated since it exceeded the allowed parameter range 
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target cell type accession 
replicate1 

accession 
replicate2 reference 

Input ESC GSM1516068 GSM1516069 This study 
Input ESC SRX499123 SRX499124 (5) 
IgG ESC GSM1516070  GSM1516071 This study (RA073) 
IgG ESC GSM1516072 GSM1516073 This study (PP500P) 
IgG ESC SRR331056 SRR331057 (4) 
5mC ESC  SRX080191  (38) 
H3K27ac ESC GSM1516076 GSM1516077 This study (ab4729) 
H3K27me3 ESC GSM1516074 GSM1516075 This study (ab6002)) 
H3K36me3 ESC GSM1516082 GSM1516083 This study (ab9050) 
H3K4me1 ESC GSM1516080  GSM1516081 This study (ab8895) 
H3K4me3 ESC GSM1516086 GSM1516087 This study (ab8580) 
H3K9me3 ESC GSM1516084 GSM1516085 This study (ab8898) 
Hi-C ESC SRX116341 SRX116342 (35) 
Input ESC SRR317225 SRR317226 ENCODE 
Oct4 ESC SRX499114 SRX499115 (5) 
Otx2 ESC SRX499116 SRX499117 (5) 

RNA ESC GSM1516088 
GSM1516089 

GSM1516090 
GSM1516091 This study 

RNAP II ESC SRR489721 SRR489722 ENCODE 
RNAP II-ChIA ESC SRX243706 SRX243707  (34) 
TAF3 ESC SRR331054 SRR331055 (4) 
Input NPC SRX604258 SRX604259 (39) 
IgG NPC GSM1516092 GSM1516093 This study (RA073) 
5mC NPC SRX080193-5  (38) 
H3K27ac NPC GSM1516096 GSM1516097 This study (ab4729) 
H3K27me3 NPC GSM1516094 GSM1516095 This study (ab6002)) 
H3K36me3 NPC SRX604262 SRX604263 (39) 
H3K4me1 NPC GSM1516100 GSM1516101 This study (ab8895) 
H3K4me3 NPC GSM1516102 GSM1516103 This study (ab8580) 
H3K9me3 NPC SRX604260 SRX604261 (39) 
Hi-C Cortex SRX128219 SRX128220 (35) 
Input Brain E14.5 SRR489727 SRR578284 ENCODE 

RNA NPC GSM1516104 
GSM1516105 

GSM1516106 
GSM1516107 This study 

RNAP II Brain E14.5 SRR578272 SRR578273 ENCODE 
RNAP II-ChIA NPC SRX243710  (34) 
 
Table S5 | Summary of data sets used in this study. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 6, 2017. ; https://doi.org/10.1101/054049doi: bioRxiv preprint 

https://doi.org/10.1101/054049
http://creativecommons.org/licenses/by-nc-nd/4.0/


MCORE - Supporting Material 

26 

Supporting References 
1. Creyghton, M. P., A. W. Cheng, G. G. Welstead, T. Kooistra, B. W. Carey, E. J. 

Steine, . . . R. Jaenisch. 2010. Histone H3K27ac separates active from poised 
enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107:21931-
21936. 

2. Zentner, G. E., P. J. Tesar, and P. C. Scacheri. 2011. Epigenetic signatures 
distinguish multiple classes of enhancers with distinct cellular functions. Genome 
Res 21:1273-1283. 

3. Natoli, G., and J. C. Andrau. 2012. Noncoding transcription at enhancers: general 
principles and functional models. Annu Rev Genet 46:1-19. 

4. Liu, Z., D. R. Scannell, M. B. Eisen, and R. Tjian. 2011. Control of embryonic stem 
cell lineage commitment by core promoter factor, TAF3. Cell 146:720-731. 

5. Buecker, C., R. Srinivasan, Z. Wu, E. Calo, D. Acampora, T. Faial, . . . J. Wysocka. 
2014. Reorganization of enhancer patterns in transition from naive to primed 
pluripotency. Cell Stem Cell 14:838-853. 

6. Yang, S. H., T. Kalkan, C. Morissroe, H. Marks, H. Stunnenberg, A. Smith, and A. D. 
Sharrocks. 2014. Otx2 and Oct4 drive early enhancer activation during embryonic 
stem cell transition from naive pluripotency. Cell Rep 7:1968-1981. 

7. Kharchenko, P. V., M. Y. Tolstorukov, and P. J. Park. 2008. Design and analysis of 
ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 26:1351-1359. 

8. Ji, H., H. Jiang, W. Ma, D. S. Johnson, R. M. Myers, and W. H. Wong. 2008. An 
integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat 
Biotechnol 26:1293-1300. 

9. Jothi, R., S. Cuddapah, A. Barski, K. Cui, and K. Zhao. 2008. Genome-wide 
identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids 
Res 36:5221-5231. 

10. Barski, A., S. Cuddapah, K. Cui, T. Roh, D. Schones, Z. Wang, . . . K. Zhao. 2007. 
High-resolution profiling of histone methylations in the human genome. Cell 129:823-
837. 

11. Zhang, Y., T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein, . . . X. 
S. Liu. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137. 

12. Zang, C., D. E. Schones, C. Zeng, K. Cui, K. Zhao, and W. Peng. 2009. A clustering 
approach for identification of enriched domains from histone modification ChIP-Seq 
data. Bioinformatics 25:1952-1958. 

13. Knijnenburg, T. A., S. A. Ramsey, B. P. Berman, K. A. Kennedy, A. F. Smit, L. F. 
Wessels, . . . I. Shmulevich. 2014. Multiscale representation of genomic signals. Nat 
Methods 11:689-694. 

14. Filion, G. J., J. G. van Bemmel, U. Braunschweig, W. Talhout, J. Kind, L. D. Ward, . . 
. B. van Steensel. 2010. Systematic protein location mapping reveals five principal 
chromatin types in Drosophila cells. Cell 143:212-224. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 6, 2017. ; https://doi.org/10.1101/054049doi: bioRxiv preprint 

https://doi.org/10.1101/054049
http://creativecommons.org/licenses/by-nc-nd/4.0/


MCORE - Supporting Material 

27 

15. Ernst, J., and M. Kellis. 2012. ChromHMM: automating chromatin-state discovery 
and characterization. Nat Methods 9:215-216. 

16. Hoffman, M. M., O. J. Buske, J. Wang, Z. Weng, J. A. Bilmes, and W. S. Noble. 
2012. Unsupervised pattern discovery in human chromatin structure through 
genomic segmentation. Nat Methods 9:473-476. 

17. Hoffman, M. M., J. Ernst, S. P. Wilder, A. Kundaje, R. S. Harris, M. Libbrecht, . . . W. 
S. Noble. 2013. Integrative annotation of chromatin elements from ENCODE data. 
Nucleic Acids Res 41:827-841. 

18. Stanton, K. P., F. Parisi, F. Strino, N. Rabin, P. Asp, and Y. Kluger. 2013. Arpeggio: 
harmonic compression of ChIP-seq data reveals protein-chromatin interaction 
signatures. Nucleic Acids Res 41:e161. 

19. Landt, S. G., G. K. Marinov, A. Kundaje, P. Kheradpour, F. Pauli, S. Batzoglou, . . . 
M. Snyder. 2012. ChIP-seq guidelines and practices of the ENCODE and 
modENCODE consortia. Genome Res 22:1813-1831. 

20. Pepke, S., B. Wold, and A. Mortazavi. 2009. Computation for ChIP-seq and RNA-seq 
studies. Nat Methods 6:S22-32. 

21. Park, P. J. 2009. ChIP-seq: advantages and challenges of a maturing technology. 
Nat Rev Genet 10:669-680. 

22. Jung, Y. L., L. J. Luquette, J. W. Ho, F. Ferrari, M. Tolstorukov, A. Minoda, . . . P. J. 
Park. 2014. Impact of sequencing depth in ChIP-seq experiments. Nucleic Acids Res 
42:e74. 

23. Schubeler, D. 2015. Function and information content of DNA methylation. Nature 
517:321-326. 

24. Calo, E., and J. Wysocka. 2013. Modification of enhancer chromatin: what, how, and 
why? Mol Cell 49:825-837. 

25. Ruthenburg, A. J., C. D. Allis, and J. Wysocka. 2007. Methylation of lysine 4 on 
histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25:15-
30. 

26. Karmodiya, K., A. R. Krebs, M. Oulad-Abdelghani, H. Kimura, and L. Tora. 2012. 
H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while 
H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem 
cells. BMC Genomics 13:424. 

27. Mozzetta, C., E. Boyarchuk, J. Pontis, and S. Ait-Si-Ali. 2015. Sound of silence: the 
properties and functions of repressive Lys methyltransferases. Nat Rev Mol Cell Biol 
16:499-513. 

28. Wagner, E. J., and P. B. Carpenter. 2012. Understanding the language of Lys36 
methylation at histone H3. Nat Rev Mol Cell Biol 13:115-126. 

29. de Almeida, S. F., and M. Carmo-Fonseca. 2012. Design principles of 
interconnections between chromatin and pre-mRNA splicing. Trends Biochem Sci 
37:248-253. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 6, 2017. ; https://doi.org/10.1101/054049doi: bioRxiv preprint 

https://doi.org/10.1101/054049
http://creativecommons.org/licenses/by-nc-nd/4.0/


MCORE - Supporting Material 

28 

30. Voigt, P., W. W. Tee, and D. Reinberg. 2013. A double take on bivalent promoters. 
Genes Dev 27:1318-1338. 

31. Quinodoz, M., C. Gobet, F. Naef, and K. B. Gustafson. 2014. Characteristic bimodal 
profiles of RNA polymerase II at thousands of active mammalian promoters. Genome 
Biol 15:R85. 

32. Papantonis, A., and P. R. Cook. 2013. Transcription factories: genome organization 
and gene regulation. Chem Rev 113:8683-8705. 

33. Li, G., X. Ruan, R. K. Auerbach, K. S. Sandhu, M. Zheng, P. Wang, . . . Y. Ruan. 
2012. Extensive promoter-centered chromatin interactions provide a topological 
basis for transcription regulation. Cell 148:84-98. 

34. Zhang, Y., C. H. Wong, R. Y. Birnbaum, G. Li, R. Favaro, C. Y. Ngan, . . . C. L. Wei. 
2013. Chromatin connectivity maps reveal dynamic promoter-enhancer long-range 
associations. Nature 504:306-310. 

35. Dixon, J. R., S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, . . . B. Ren. 2012. 
Topological domains in mammalian genomes identified by analysis of chromatin 
interactions. Nature 485:376-380. 

36. Cremer, T., M. Cremer, B. Hubner, H. Strickfaden, D. Smeets, J. Popken, . . . C. 
Cremer. 2015. The 4D nucleome: Evidence for a dynamic nuclear landscape based 
on co-aligned active and inactive nuclear compartments. FEBS Lett 589:2931-2943. 

37. Wang, Z., M. Gerstein, and M. Snyder. 2009. RNA-Seq: a revolutionary tool for 
transcriptomics. Nat Rev Genet 10:57-63. 

38. Stadler, M. B., R. Murr, L. Burger, R. Ivanek, F. Lienert, A. Scholer, . . . D. Schubeler. 
2011. DNA-binding factors shape the mouse methylome at distal regulatory regions. 
Nature 480:490-495. 

39. Muller-Ott, K., F. Erdel, A. Matveeva, J. P. Mallm, A. Rademacher, M. Hahn, . . . K. 
Rippe. 2014. Specificity, propagation, and memory of pericentric heterochromatin. 
Mol Syst Biol 10:746. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 6, 2017. ; https://doi.org/10.1101/054049doi: bioRxiv preprint 

https://doi.org/10.1101/054049
http://creativecommons.org/licenses/by-nc-nd/4.0/

