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Abstract 20 

Prediction of single-cross hybrid performance has been a major goal of plant breeders since the 21 

beginning of hybrid breeding. Genomic prediction has shown to be a promising approach, but 22 

only limited studies have examined the accuracy of predicting single cross performance. Most of 23 

the studies rather focused on predicting top cross performance using single tester to determine 24 

the inbred parent’s worth in hybrid combinations. Moreover, no studies have examined the 25 

potential of predicting single crosses made among random progenies derived from a series of 26 

biparental families, which resembles the structure of germplasm comprising the initial stages of a 27 

hybrid maize breeding pipeline. The main objective of this study was to evaluate the potential of 28 

genomic prediction for identifying superior single crosses early in the breeding pipeline and 29 

optimize its application. To accomplish these objectives, we designed and analyzed a novel 30 

population of single-cross hybrids representing the Iowa Stiff Stalk Synthetic/Non-Stiff Stalk 31 

heterotic pattern commonly used in the development of North American commercial maize 32 

hybrids. The single cross prediction accuracies estimated using cross-validation ranged from 33 

0.40 to 0.74 for grain yield, 0.68 to 0.91 for plant height and 0.54 to 0.94 for staygreen 34 

depending on the number of tested parents of the single crosses. The genomic estimated general 35 

and specific combining abilities showed a clear advantage over the use of genomic covariances 36 

among single crosses, especially when one or both parents of the single cross were untested in 37 

hybrid combinations. Overall, our results suggest that genomic prediction of the performance of 38 

single crosses made using random progenies from the early stages of the breeding pipeline holds 39 

great potential to re-design hybrid breeding and increase its efficiency. 40 
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INTRODUCTION 41 

Contemporary hybrid breeding programs are based on the ‘pure-line method of corn breeding’ 42 

proposed by (Shull. 1909). This method includes the development of inbreds by self-pollination 43 

followed by evaluation of selected inbreds for single-cross hybrid performance when crossed to 44 

other inbreds. A major challenge with this method is achieving adequate testing of the inbreds to 45 

evaluate performance in single cross combinations (Hallauer et al. 1988). In maize, heterotic 46 

groups are well defined, and production of single crosses are almost exclusively made between 47 

heterotic groups. The fullest assessment of single cross performance in maize, therefore, would 48 

be a complete factorial mating design achieved by making all between-heterotic group crosses. 49 

This would provide complete information on both general combining ability (GCA) and specific 50 

combining ability (SCA) (Comstock and Robinson. 1948). However, a full factorial among 51 

inbreds can be cost prohibitive as advanced breeding programs typically have many inbreds to 52 

evaluate, making the number of all possible single crosses extremely large. For this reason, 53 

predicting single cross performance has always been a major issue in all hybrid breeding 54 

programs (Schrag et al. 2009).  55 

 Several approaches have been used to evaluate the genetic merit of inbreds for single 56 

cross performance with variable success. These approaches include inbred per se performance, 57 

performance when crossed to testers (“topcross” test), best linear unbiased prediction (BLUP) 58 

using pedigrees, and molecular marker-assisted hybrid prediction. Many of these approaches 59 

have been reviewed in detail elsewhere (Schrag et al. 2009; Smith and Betrán. 2004). Per se 60 

performance of inbred is typically found to be a very poor predictor of single cross performance, 61 

especially for traits such as grain yield, where strong dominance effects underlie the genetic 62 

variance (Hallauer. 1977; Love and Wentz. 1914; Smith. 1986). A topcross test is an established 63 
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and simple approach to assess the genetic worth of inbreds in single cross combinations (Jenkins 64 

and Brunson. 1932). However, topcross evaluation of a large number of inbreds is difficult 65 

(Albrecht et al. 2011) and selections based on single cross performances are performed in later 66 

stages which increases the time required for hybrid development. Bernardo. (1996a) showed that 67 

pedigree-based BLUP is useful for prediction of untested single crosses. He used pedigree-based 68 

covariance matrices among tested and untested single crosses to obtain BLUPs for untested 69 

single crosses. The correlations between observed and predicted single cross performance for 70 

prediction of crosses whose both parents have been tested in hybrid combinations were moderate 71 

(0.43-0.76). However, when one or both of the parents of the single crosses were untested, the 72 

correlations were severely decreased (Bernardo. 1996b).  73 

 The relationship between genetic distance (GD) of parental inbreds, measured by 74 

molecular markers, and heterosis has been extensively studied in maize. While it is possible to 75 

predict single cross performance using genetic distances for hybrid sets composed of both intra- 76 

and inter-heterotic pool crosses, correlations for predicting inter-heterotic group crosses only 77 

were reported to be very low (Lee et al. 2007; Melchinger. 1999). Two possible causes of these 78 

low prediction accuracies include (1) loose association between heterotic QTL and the molecular 79 

markers used to estimate GD and (2) opposite linkage phases between the QTL and marker 80 

alleles as generally expected with inter-heterotic hybrids (Bernardo. 1992; Charcosset et al. 81 

1991). Commercial single-cross hybrids consist of only inter-heterotic group crosses, making 82 

them the only ones relevant for prediction in breeding programs. In a modified approach, 83 

prediction of hybrid performance and SCA based on only significant markers was suggested 84 

(Vuylsteke et al. 2000), but this approach was found to be inferior to an established GCA 85 
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method. Also, extending the GCA predictions with SCA estimates from associated markers did 86 

not improve the prediction accuracy (Schrag et al. 2006; Schrag et al. 2007).  87 

 Genomic prediction is an approach that uses markers to predict the genetic value of 88 

complex traits in progeny for selection and breeding (Meuwissen et al. 2001). When genomic 89 

predictions are used to make selections, it is referred to as genomic selection (GS). The primary 90 

difference between GS and traditional forms of marker-assisted selection (MAS) is the 91 

simultaneous use of a large number of markers distributed genome-wide as opposed to a small 92 

set of markers linked to QTL (Heffner et al. 2009). Implementation of genomic prediction and 93 

selection requires the development of training populations or calibration sets consisting of 94 

individuals that have been both phenotyped and genotyped, followed by model calibration. A 95 

whole suite of genomic prediction models have been developed, each deploying different 96 

strategies to estimate genome-wide marker effects (de los Campos et al. 2013).  97 

  Recently, published results from simulation and experimental studies have given first 98 

indications of usefulness of genomic prediction models for hybrid performance in maize 99 

(Albrecht et al. 2011; Albrecht et al. 2014; Jacobson et al. 2014; Massman et al. 2013; 100 

Riedelsheimer et al. 2012; Technow et al. 2012; Technow et al. 2014; Windhausen et al. 2012). 101 

However, most of the experimental studies were focused on prediction of topcross performance 102 

using single tester (Albrecht et al. 2011; Albrecht et al. 2014; Jacobson et al. 2014; 103 

Riedelsheimer et al. 2012; Windhausen et al. 2012). Experimental studies on genomic prediction 104 

of single cross performance have been based on historical data consisting of established inbred 105 

parents with mixed and complex ancestry (Massman et al. 2013; Technow et al. 2014). These 106 

studies used covariances among tested and untested single crosses estimated from realized 107 

genomic relationship matrices to predict the performance of untested crosses. The prediction 108 
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accuracies were high, often exceeding 0.75, even when testcross information was not available 109 

for both parents of the single cross. 110 

  Identification of superior single crosses early in the breeding pipeline would be beneficial 111 

to develop superior hybrids more quickly. The current practice of initial selection among 112 

available inbreds based on their topcross performance using single tester followed by evaluation 113 

of single crosses made among selected inbreds increases time required for the hybrid 114 

development. Moreover, not all possible hybrid combinations among available inbreds get 115 

evaluated with this approach. It is important, therefore, to study the potential of genomic 116 

prediction of single cross performance in the early stages of the breeding pipeline. With this in 117 

mind, the objective of this study was to evaluate the potential of genomic prediction for 118 

identifying superior single crosses early in the breeding pipeline. Also, we evaluated how the 119 

prediction model and the composition of the training set affected the prediction accuracy of 120 

hybrid performance. To accomplish this objective, we designed and analyzed a novel population 121 

of single-cross hybrids. The parental recombinant inbred lines (RILs) and doubled haploid lines 122 

(DHLs) were randomly selected from three Iowa Stiff Stalk Synthetic (SSS) and three Non-Stiff 123 

Stalk synthetic (NSS) biparental populations. All single-cross hybrids, therefore, represented the 124 

SSS/NSS heterotic pattern commonly used in the development of North American commercial 125 

maize hybrids. All RILs and DH lines were genotyped using genotyping by sequencing (GBS) 126 

(Elshire et al. 2011), which represents an affordable genotyping option that is critical to the 127 

routine use of these methods in a breeding program. 128 
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MATERIALS AND METHODS 129 

Germplasm  130 

Three SSS inbred parents (PHG39, PHJ40, and B73) and three NSS inbred parents (LH82, 131 

PHG47, and PHG84) were used for creating six bi-parental families by making each of the three 132 

possible crosses between the three SSS inbreds and also between the three NSS inbreds (Figure 133 

S1). The chosen inbred parents were identified as being both genetically diverse and superior in 134 

GCA for grain yield under high planting density (Mansfield and Mumm. 2014). A total of 217 135 

lines were developed from crosses between these inbred parents. Approximately 10% of these 136 

lines were RILs and 90% DHLs. RILs and DHLs will be hereafter referred collectively as 137 

“inbred progenies”. The number of inbred progenies in each of the six bi-parental families 138 

ranged from 2 to 69 (Table 1). Random crosses among the inbred progenies were made between 139 

heterotic groups to produce 312 single-cross hybrids. Crosses representing each bi-parental 140 

family were balanced to the extent possible while maximizing the number of inbred progenies 141 

used in crosses (Figure 1). Completely balanced representation was not achieved due to seed 142 

limitations and comparatively fewer inbred progenies available for certain crosses. Bi-parental 143 

families are comprised of RILs or DHLs resulting from a common breeding cross (i.e., within 144 

heterotic-group parent crosses). Single crosses were grouped into nine “single-cross families”, 145 

which we defined as a group of single crosses created using parents from the same bi-parental 146 

family on each side of the heterotic pattern (Table 1). For example, a single-cross hybrid with 147 

pedigree (PHJ40×PHG39)DH-1/(PHG47×PHG84)DH-1 belongs to the same single-cross family 148 

as a single-cross hybrid with pedigree (PHJ40×PHG39)DH-2/(PHG47×PHG84)DH-2. The mean 149 

number of times an individual SSS inbred progeny was used in a cross was 6.9. The mean 150 
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number of times an individual NSS inbred progeny was used in a cross was 1.8. Number of 151 

single crosses per single-cross family ranged from 19 to 51 (Table 1). 152 

Field experiments  153 

The 312 single crosses were evaluated at two locations in 2012 and three locations in 2013. Two 154 

locations were common between years. The locations were as follows: South Farms (Urbana, IL; 155 

2012 & 2013), Maxwell Farms (Urbana, IL; 2012 & 2013) and Monmouth (IL; 2013 only). The 156 

five location–year combinations were defined as separate environments. The experimental 157 

design was an α(0, 1)-incomplete block design (Patterson and Williams. 1976) with three 158 

replications at each environment. All trials were planted with an Almaco Seed Pro 360 planter 159 

set at 0.64 m row spacing and 4.46 m long row. Entries were grown in small plots consisting of 160 

two rows. Plots were overplanted by 15% to compensate for germination failure and later 161 

thinned to the target plant density of 116,000 plants ha-1. All fields were controlled for weeds. 162 

Nitrogen (N) was applied before planting as 28% urea-ammonium nitrate at a rate of 336.4 kg 163 

ha-1 to all fields. Phosphorous and potassium were each applied at 112 kg ha-1 according to 164 

recommended levels determined by soil tests performed by the University of Illinois Crop 165 

Science Research and Education Center. Stand counts were recorded and plots with planting 166 

densities lower than 106,000 plants ha-1 discarded. Additionally, issues with seed production 167 

resulted fewer hybrids being planted at all locations in 2013 (South Farms: 260; Maxwell Farms: 168 

259 & Monmouth: 258). Plots were machine harvested and data were recorded for grain yield 169 

and several other agronomic traits. For this study, data on grain yield (GY), plant height (PH) 170 

and staygreen (SG) were used for downstream analyses. Grain yield was converted to Mt ha-1 on 171 

a 155 g kg-1 moisture basis. Plant height was measured post anthesis on a single representative 172 

plant determined by visually surveying the entire plot before measurement. Staygreen was 173 
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evaluated visually as a percentage of total dry down, where a rating of 1 represented complete 174 

senescence and a rating of 10 represented fully green leaves. 175 

Genotyping by sequencing  176 

Five plants of each RIL or DH were germinated. A total of 0.1 g of tissue was sampled from leaf 177 

tips and pooled across the five plants. DNA was extracted using the Qiagen DNeasy Plant 96 kit 178 

following the DNeasy Plant Handbook. DNA samples were sent to the Institute for Genomic 179 

Diversity (IGD) at Cornell University for genotyping by sequencing (GBS) where library 180 

construction and sequencing was performed as described by (Elshire et al. 2011). Single 181 

nucleotide polymorphisms (SNPs) were scored from the raw sequence data using the TASSEL 182 

GBS Pipeline version 3.0 (Glaubitz et al. 2014). SNPs with greater than 20% missing values and 183 

less than 5% minor-allele frequency were removed from the dataset. Heterozygotes were treated 184 

as missing data. Missing data was imputed using naïve imputation. Of the markers remaining 185 

after filtration, markers that were polymorphic among both SSS and NSS progenies were 186 

retained for analysis. The final marker data set consisted of 2296 high-quality SNPs. The 187 

distribution of SNPs among the 10 chromosomes of the B73 reference genome is displayed in 188 

Figure S2. 189 

Phenotypic data analysis  190 

The phenotypic data were unbalanced due to missing observations. We used the following 191 

statistical model for the analysis of the data across the five environments 192 

����� � � � �� � �� � ������ � 	���� � 
����� � �����                                      ….. (1) 193 

where  �����  is the phenotypic observation for  ith hybrid evaluated in the kth environment in the 194 

lth complete block (i.e. replicate) and qth incomplete block.  The effects in the model are as 195 
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follows: μ is the grand mean;  �� represents effect of the �th hybrid; ��  represents the effect of the 196 

kth environment; ������  represents the interaction effect between hybrid and environment; 	���� 197 

represents the effect of the 
th complete block nested within the �th environment; 
����� represents 198 

the effect of the �th incomplete block nested within the 
th complete block in the kth environment; 199 

and �����  represents the residual. Environment and replication nested within environment effects 200 

were modeled as fixed effects while all other effects were treated as random. The distribution of 201 

�� was as follow: ��  ~ ��0, ����. Error and block variances were allowed to be heterogeneous 202 

among environments.  203 

 The above model was implemented using ASReml-R software (Butler et al. 2009) to 204 

obtain restricted maximum likelihood estimates (REML) of all variance components and solve 205 

the mixed linear model equations. Significance of the variance components was determined 206 

using likelihood ratio tests at 0.001 level of significance.  The entry-mean heritability of each 207 

trait was computed according to (Holland et al. 2003) as: �� � ��� ���� � ����
�

��
� ��

�

��
�� , where,  ��

�
 208 

represents the variance among hybrids,  ����
�  represents the variance of interaction effects of 209 

hybrids with environments, ��
�
 is the residual variance, 		 is the harmonic mean of number of 210 

observations per hybrid within an environment,  and �� is the harmonic mean of total number of 211 

observations per hybrid. Similarly, model (1) used to estimate the genetic variance and broad 212 

sense heritability for individual single-cross family. Finally, we calculated best linear unbiased 213 

predictions (BLUP) of hybrids and used these to evaluate hybrid prediction accuracy in further 214 

analyses.  215 

Genomic hybrid prediction model  216 
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We used genomic best linear unbiased prediction (G-BLUP) of untested hybrid performance. 217 

The G-BLUP model was as below: 218 

��	��� � � � �� � �	 � ��	 � �� � 	���� � 
����� � ������ � ����	� � �����	� � ��	���       …. (2) 219 

where  ��	���  is the phenotypic observation of a single-cross hybrid between the ith and jth inbred 220 

progeny evaluated in the kth environment in the lth complete block and qth incomplete block.  The 221 

effects in the model are as follows: μ is the grand mean; �� and �	  represents the GCA effects of 222 

the female (SSS inbreds) and males (NSS inbreds), respectively; ��	  represents the SCA effect of 223 

the single cross; ������ , ����	� , ��� �����	�  represent the interaction effects of respective terms 224 

with the kth environment. The remaining terms are as described in the model (1).  225 

 The random effect vectors �, �, and � were assumed to have the following multivariate 226 

normal distributions:  �~� �!0, "
���
_�
� # , �~� �!0, "����
_�

� #, �~� ��0, $���

� �,  227 

where "
 and "� were additive genomic relationship matrices of females and males, 228 

respectively, calculated according to Method 1 of (VanRaden. 2008). The dominance 229 

relationship matrix, $, was computed according to (Bernardo. 2002) using the corresponding 230 

elements from matrices "
 and "�. The above model (2) was implemented using ASReml-R 231 

software (Butler et al. 2009). 232 

We evaluated four methods to predict single cross performance using the above G-BLUP model. 233 

Broadly, these methods can be grouped into two categories: 1. Parent GCA and SCA effects; 2. 234 

Additive and dominance covariances among single crosses. 235 

1a. Parent GCA  236 
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Performance of untested single crosses ��%�� was predicted from the GCA of the corresponding 237 

parents, i and j estimated from model (2) as  238 

�%� � �̂ � �'� � �(	                                                                                    ...(3) 239 

GCA of female and male lines with no performance data of their hybrids were estimated from 240 

related inbred progenies using the additive genomic relationship matrix in the linear mixed 241 

model analysis.  242 

1b. Parent GCA plus single-cross SCA 243 

Performance of untested single crosses ��%�� was predicted using the sum of parent GCA and 244 

SCA of the crosses as 245 

�%� � �̂ � �'� � �(	 � �̂�	                                                                           …(4) 246 

Like the GCA effects, the SCA effects for untested crosses were estimated using the dominance 247 

genomic relationship matrix in the linear mixed model analysis from model (2). 248 

2a. Additive genetic covariance among single crosses 249 

The performance of untested single crosses ��%�� was predicted based on the covariance among 250 

tested and untested single crosses as  251 

�%� � )��)��
����                                                                                      …(5) 252 

Where, )�� is the genetic covariance matrix of untested and tested single crosses, )�� is the 253 

phenotypic covariance matrix of the tested single crosses and �� is a vector of single cross 254 

BLUPs obtained from model (1). The elements of )�� and )�� were computed according to 255 

(Bernardo. 2002) using the genomic relationship matrices "
 and "�. Briefly, let � and �� denote 256 
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any two female inbred progenies and * and *� any two male inbred progenies. For a given pair of 257 

single crosses, (� × *) and (�� × *�), the elements of  )�� and the off diagonal elements of )�� were 258 

calculated as ("
���
 ���
_�
�  + ("��		
���
_�

� . The diagonal elements of )�� were estimated as 259 

("
���  ���
_�
�  + ("��		���
_�

� � ���
� where  ���

� was equal to ��
� divided by the number of 260 

observations for single cross�� + *�. The estimates of ���
_�
�  and ���
_�

�  were obtained from 261 

model (2). 262 

2b. Additive plus dominance covariance among single crosses 263 

 The method described in 2a was extended by including dominance covariance among the 264 

tested and untested hybrids. Specifically, the elements of )�� and off diagonal elements of )�� 265 

were computed as �"
���
���
_�
�  + ("��		
���
_�

� � �"
���
�"��		
���

� . The diagonal elements 266 

of )�� were estimated as ("
���  ���
_�
�  + ("��		���
_�

� � �"
����"��		���

� � ���

�. The estimates 267 

of ���

�  was obtained from model (2). 268 

Cross-validation and prediction accuracy  269 

Accuracy of single-cross hybrid prediction was evaluated using leave-one-individual-out and 270 

leave-one-family-out cross-validations. In case of leave-one-individual-out cross-validation, the 271 

set of hybrids was divided into two subsets. The training set comprised n–1 hybrids (tested 272 

hybrids) and the remaining one hybrid (untested hybrid) formed the test set. This procedure was 273 

repeated n times such that each hybrid was placed into the “untested” set. Four scenarios 274 

involving varying degrees of tested and untested hybrids were considered. Hybrid types are those 275 

having both (T2), either female (T1F) or male (T1M), or no (T0) parental inbred evaluated for 276 

their performance in hybrid combination (Figure 2). For each cross-validation run, phenotypic 277 

data of the training set were analyzed separately and variance components were re-estimated.   278 
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The performance of the hybrid comprising the test set is then predicted using the four 279 

methods as described above. For leave-one-family-out cross-validations, hybrids from one of the 280 

nine families constituted the test set and remaining eight families were included in the training 281 

set. Only six of the nine single-cross families were used as test set families because of small size 282 

of the remaining three families. For both leave-one-individual-out and leave-one-family-out 283 

cross-validations, training set size was fixed to 250 in order to compare the single cross 284 

prediction accuracy of all cross-validations under a common training set size. The sampling of 285 

training sets comprised of 250 single crosses out of the single crosses from the whole set was 286 

replicated 30 times.  287 

 The hybrid BLUPs estimated from the phenotypic data were treated as the observed 288 

hybrid performance and used as the basis to evaluate hybrid prediction methods. Prediction 289 

accuracy was expressed as the Pearson’s correlation coefficient between the observed and 290 

predicted hybrid performance divided by the square root of the broad-sense heritability on an 291 

entry-mean basis (Dekkers. 2007). The mean prediction accuracy across the 30 samples of 292 

training set (n = 250) was reported. Standard errors of the prediction accuracy were calculated 293 

using the bootstrap method implemented in the R package boot (Canty. 2014). Briefly, for each 294 

cross-validation run, the predicted and observed values were resampled with replacement for 200 295 

times. The distribution of 200 correlation coefficient estimates was used to estimate the bootstrap 296 

SE. This procedure was repeated for each of 30 replicates of the cross validations and the mean 297 

standard error of 30 cross validation replications was reported.   298 
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RESULTS 299 

Variance components and broad-sense heritability  300 

Variance among single-cross hybrids ���
�� was significantly different from zero (, � 0.001� in 301 

the entire population as well as within single cross families for all the three traits (Table 2). For 302 

GY, the entry-mean heritability was 0.58 across the population of entire single crosses and it 303 

ranged from 0.53 to 0.83 within individual single cross families. Similarly, for PH and SG, the 304 

entry-mean heritability was 0.89 and 0.81 in the whole population, respectively, and ranged from 305 

0.88 to 0.91 and 0.67 to 0.80 within individual single cross families, respectively. The sum of 306 

parent ���

�  was greater than ���


�  for all traits. The proportion of ���

�  was highest for GY, 307 

followed by PH and SG (Table 3).  308 

Prediction accuracy for T2, T1F, T1M and T0 scenarios 309 

We first evaluated the prediction accuracy for T2, T1F, T1M and T0 scenarios in the entire 310 

population using leave-one-individual-out cross-validation. Higher prediction accuracies were 311 

observed for SG and PH compared to GY for all scenarios (Figure 3). Prediction accuracies were 312 

highest for T2, followed by T1F, T1M and T0. The four methods were similar in accuracy when 313 

applied to the T2 and T1F cross-validation scenarios. However, methods 1a and 1b were mostly 314 

better than methods 2a and 2b for predicting single-cross hybrid performance in the T1M and T0 315 

scenarios. Modelling SCA led to small increases in prediction accuracy for GY and PH with a 316 

maximum increase under the T0 scenario (Table S1).   317 
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Prediction accuracy for novel family  318 

We next investigated the potential to predict the performance of hybrids in a new single-cross 319 

family using the phenotypic and genotypic information on the hybrids from related single-cross 320 

families. The family size of three single-cross families was too small to obtain robust correlation 321 

coefficient estimates (Table 1). Hence, only six of the nine single-cross families were used as test 322 

set families. When eight of the families were used as training set to predict hybrid performances 323 

within the remaining family, prediction accuracies were generally moderate for GY and high for 324 

PH and SG (Figure 4). The mean within family accuracies were with methods 1a and 1b were 325 

0.67, 0.62 for GY, 0.85, 0.76 for PH and 0.78, 0.78 for SG respectively (Table S2). Some 326 

variation in prediction accuracy across families was observed, especially for GY. We also 327 

evaluated the effect of adding hybrids from the family being predicted to the training set by 328 

comparing prediction accuracy of individual family with leave-one-individual-out and leave-one-329 

family-out cross-validations. The goal of this analysis was to measure the benefit of including 330 

information from the same single-cross family to accurately separate single crosses from the 331 

same family. Although the prediction accuracies were increased slightly for some families, they 332 

were decreased for other families, indicating variable effects across families (Figure 4). The 333 

mean prediction accuracies with method 1a and 1b were 0.603, 606 for GY, 0.838, 0.85 for PH 334 

and 0.788, 0.783 for SG respectively. Method 1a and 1b showed similar prediction accuracies 335 

under both leave-one-individual-out and leave-one-family-out cross-validations for PH and SG. 336 

However, in case of GY, highest prediction accuracy was obtained by different methods for 337 

different families. Adding individuals from the family being predicted (leave-one-individual-out 338 

cross-validations) seemed to benefit method 1b more than method (Table S2).  339 

Genomic predictions of grain yield of all possible single crosses: 340 
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Genomic predictions were calculated for all possible 7866 single crosses between 46 SSS and 341 

171 NSS inbred progenies based on the prediction model including parent GCA and cross SCA 342 

effects (i.e., Method 1b). The genomic predictions for GY ranged from 7590-9515 kg ha-1. The 343 

top 100 crosses based on genomic predictions included only one cross that was actually made 344 

and tested; the remaining 99 crosses were never made. Moreover, more than 50 untested single-345 

cross combinations surpassed the highest genomic prediction of any tested hybrid (Figure 5).   346 
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DISCUSSION 347 

Typical hybrid maize breeding programs involve the creation of large bi-parental families for 348 

topcrossing to elite testers early in the breeding pipeline. Early-stage selections are performed on 349 

the basis of topcross performance with single elite tester, which is the sum of the candidate line 350 

GCA effect and any SCA effect between the candidate line and elite tester used for topcrossing. 351 

While this is a very convenient and routine method, it is recognized that it would be ideal to test 352 

all combinations of possible parents immediately in the hybrid breeding pipeline (Fehr. 1987). 353 

There are two main advantages of early evaluation of all potential single crosses. First, it would 354 

help identify the best single-cross hybrid without uncertainty. If inbred progenies are selected 355 

only on the basis of topcross evaluation, there remains the possibility that some unique parental 356 

combinations never made and evaluated could actually be commercially superior products 357 

(Bernardo. 2002). Secondly, early evaluation based on single cross performance would enable 358 

the development of hybrids in shorter duration of time by essentially skipping the topcross test 359 

and immediately going to single cross evaluation. Despite these advantages, field testing of all 360 

potential single crosses of inbred progenies is completely impractical for a mature hybrid maize 361 

breeding program.  362 

 Advances in genotyping technology, such as GBS, has made it very practical to genotype 363 

all parental candidate lines with dense, genome-wide markers (He et al. 2014). Genomic 364 

prediction models can predict the performance of all possible single cross combinations, 365 

allowing the in-silico evaluation of all parental combinations just as in the ideal scenario. In the 366 

present study, GBS and yield trial data was used to build genomic prediction models for 367 

predicting single cross performance. The single cross prediction accuracies estimated using 368 

cross-validation ranged from 0.40 to 0.74 for grain yield, 0.68 to 0.91 for plant height and 0.54 to 369 
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0.94 for staygreen depending on the number of tested parents of the single crosses. These 370 

prediction accuracies were 52-97, 72-96 and 60-100 percent of phenotype based accuracy !√��# 371 

for GY, PH and SG respectively. The prediction accuracies of single cross performance achieved 372 

in this study, therefore, indicate that this approach holds great potential for increasing the 373 

efficiency of a hybrid breeding program by enabling the effective evaluation of all parental 374 

combinations.  375 

Prediction accuracy for T2, T1 and T0 hybrids  376 

In order to understand the effect of tested versus untested parental lines, we evaluated the 377 

accuracies of prediction of hybrids having both (T2), either male or female (T1F and T1M), or 378 

no (T0) parental lines evaluated for their hybrid performance. The differences in prediction 379 

accuracies of T2, T1 and T0 hybrids were considerable, with the highest prediction accuracy for 380 

T2 hybrids followed by T1 hybrids and T0 hybrids. The T0 scenario was the most difficult to 381 

predict. Similar trends have been observed using simulations (Technow et al. 2012) as well as 382 

experimental studies based on historical data in maize (Massman et al. 2013; Technow et al. 383 

2014), and wheat (Zhao et al. 2015). This finding can be explained by the representation of 384 

parents among a differing number of hybrid combinations in the training set. As the number of 385 

hybrid combinations for each parent increases, the information shared between the single crosses 386 

being predicted and the training set increases.  As a result, the GCA and SCA effects are 387 

estimated with high accuracy as indicated by decreases in the standard errors with higher the 388 

number of training set hybrids parent involved (Figure 6). In the T2 scenario, both parents are 389 

represented in multiple hybrid combinations within the training set, enabling accurate estimation 390 

of parent GCA effects. With a preponderance of GCA variance over SCA variance, genotypic 391 

values of T2 hybrids can, therefore,, be predicted with higher accuracy. In the case of T1 392 
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hybrids, however, only one of the parents is represented in hybrid combination. Consequently, 393 

the prediction accuracy of T1 hybrids is lower than for T2 hybrids. In the present study, the 394 

prediction accuracy of the T1F hybrids is greater than that of the T1M hybrids. This finding can 395 

be explained by the smaller total number of female than male lines, which increases the number 396 

of times each female occures in hybrid combinations. Nevertheless, the mean of T1 hybrid 397 

prediction accuracies were 78, 86 and 80 percent of the T2 hybrid prediction for GY, PH, and 398 

SG, respectively. The mean T0 hybrid prediction accuracies were 53, 75 and 59 percent of the 399 

T2 hybrid prediction accuracy for GY, PH and SG, respectively. This indicates that performance 400 

of hybrids having one untested parent can be effectively predicted using genomic estimated GCA 401 

and SCA effects, but prediction accuracies suffer considerably more if both parents are untested. 402 

This issue should be studied using larger population sizes – both in terms of more inter-403 

connected bi-parental populations and progenies per population – to determine if population size 404 

can overcome parent representation in the training set.  405 

Comparison of prediction methods  406 

The published studies on prediction of single cross performance have used covariance among 407 

tested and untested crosses (Method 2a & 2b) to predict the performance of untested crosses 408 

(Massman et al. 2013; Technow et al. 2014). In an alternate approach, we used genomic 409 

estimated GCA and SCA (Method 1a & 1b) to predict the performance of untested single 410 

crosses. The comparison of prediction accuracies showed that the four methods achieved 411 

comparable accuracies for predicting T2 and T1F single crosses. For T1M and T0 hybrids, 412 

however, Method 1a and 1b provided higher prediction accuracies compared to Method 2a and 413 

2b. Although the two groups of methods use the same information (i.e., additive genomic 414 

relationship matrices of inbred parents, dominance relationship matrix of the crosses and tested 415 
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hybrid data), there are two noteworthy differences between the methods in using this 416 

information. First, methods 1a and 1b use the three genomic relationship matrices separately to 417 

predict the GCA of each parent and SCA of the cross. Methods 2a and 2b, on the other hand, 418 

combine these matrices to calculate the covariance matrices among the tested and untested single 419 

crosses. Secondly, in case of method 1a and 1b, all the tested hybrid data is summed by parent 420 

and utilized for estimating female and male GCA and cross SCA, while, methods 2a and 2b, use 421 

the tested hybrid data as such. The differences in prediction accuracies between two groups of 422 

methods for T1M and T0 single crosses can be explained by the above differences in use of the 423 

information by these methods. In general, the accuracy of BLUP for untested genotype depends 424 

on availability and precise use of information from related tested genotypes and the accuracy of 425 

information (or records) on these tested genotypes. The prior part depends on the covariance 426 

which is a function of relationship between the tested and untested genotype and genetic 427 

variance. When a single population is under consideration, two individuals having high 428 

covariance are expected to be more closely related than two individuals having lower covariance. 429 

However, when two separate populations are under consideration, two individuals with higher 430 

covariance from the first population would not necessarily be more closely related than two 431 

individuals with a lower covariance from second population. The reason is that estimate of 432 

covariance is population specific as it depends on the genetic variance within a population 433 

(Falconer et al. 1996) which could differ between populations. As a result, hybrids, where two 434 

populations are involved (female population and male population), having higher covariance (as 435 

estimated in this and previous studies) may not be more related than two hybrids having lower 436 

covariance. Methods 2a and 2b, however, invariably assumes that hybrids having higher 437 

covariance are more related than hybrids with lower covariance.  438 
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Consider an example of BLUP for T1M hybrids and assume that GCA variance of female is 439 

greater than males and compare the two groups of methods in terms of using information from 440 

relatives. The methods 1a and 1b, as a result of separately estimating GCA of females and males, 441 

will use maximum information from most related tested female to predict the GCA of untested 442 

female as GCA variance is constant for female (covariance is simply function of genetic 443 

relationship) and covariance between males is not considered in estimating GCA of untested 444 

female. Contrastingly, in case of methods 2a and 2b, the information utilized from given tested 445 

hybrids depends on covariance between tested and untested hybrid. The hybrid covariance is 446 

calculated by summation of covariance between the female parents and covariance between the 447 

male parents. For the reasons explained above, the maximum information may not be extracted 448 

from most related hybrid because GCA variances of female population and male population are 449 

not equal. Specifically, the relationship between female parents, although the male parent is 450 

tested for T1M hybrid, is given more weight because GCA variance of females is greater than 451 

males. This could result in more use of information from comparatively less related hybrid which 452 

affect the prediction accuracy. Now, consider the accuracy of observations on tested genotypes 453 

which can also affect the BLUP accuracy. In case of methods 1a and 1b, the GCA of tested 454 

parent, which takes into account observations on all tested hybrid where given parent is involved 455 

is used for estimating the GCA of untested parent. In case of methods 2a and 2b, the individual 456 

observation on hybrid is used for estimating the performance of untested hybrids. The GCA 457 

would be more accurate than single observation of tested hybrids as prior is the average of more 458 

than one observations. Similarly, the differences in the prediction accuracy of two groups of 459 

methods for T0 hybrids can be explained.  The similar accuracies of both group of methods for 460 

T2 hybrids could also be explained based on above considerations. In predicting the T2 hybrids, 461 
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as individual has highest relationship with itself, method 1a and 1b are expected to use maximum 462 

information from parents of the respective hybrids to estimate their GCA and methods 2a and 2b 463 

are also expected to use maximum information from other hybrids of the parents of the 464 

respective hybrids. Additionally, more than one closely related hybrids (hybrids involving 465 

parents of given T2 hybrid) becomes available for predicting T2 hybrid which leads to accurate 466 

determination of the performance of given T2 hybrid by method 2a and 2b as well.  467 

To test this hypothesis for differences in prediction accuracy of two groups of methods, 468 

we randomly sampled a balanced (equal females and males) subset of hybrids among 40 females 469 

and 40 males. The methods 2a and 2b were modified to correct the discrepancies in weighting of 470 

relationship between females and males by using average of GCA variance of females and 471 

males. Specifically, for method 2a, the elements of )�� and off diagonal elements of )�� were 472 

computed as �"
���
����
_�
� � ���
_�

�

�
� + ("��		
 /���
_�

� � ���
_�
�

�
0. The diagonal elements of )�� 473 

were estimated as ("
���  ����
_�
� � ���
_�

�

�
� + ("��		����
_�

� � ���
_�
�

�
� � ���

�. Method 2b was 474 

similarly modified. The GY prediction accuracy of four methods for T2, T1F, T1M and T0 475 

hybrid was evaluated using leave-one-individual cross-validations. The modified 2a and 2b 476 

methods obtained higher accuracies for T1M and T0 hybrids than original methods 2a and 2b 477 

(Table 4). The accuracies were comparable to method 1a and 1b. This confirmed our hypothesis 478 

for different prediction accuracy of two groups of methods. For T2 and T1F hybrids, however, 479 

the modified 2a and 2b obtained lower accuracies than the original methods. This could also be 480 

explained based on our hypothesis. The use of average GCA variance enabled the model to 481 

extract information of closer related tested hybrids. However, the amount information extracted 482 

depends on variance. The T2 and T1F hybrid involve tested female parent. As GCA variance of 483 
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females in larger, use of average GCA variance lowered the amount of information extracted due 484 

to covariance between female parents. Overall, these results indicate that hybrid covariance 485 

based methods, i.e. method 2a and 2b, are inferior in terms of using information from tested 486 

hybrids. The combining ability based methods, i.e. methods 1a and 1b, correctly uses genetic 487 

relationship and genetic variance by separately estimating female and male GCA. The previous 488 

studies on hybrid prediction in maize (Schrag et al. 2009; Schrag et al. 2010; Technow et al. 489 

2014), wheat (Longin et al. 2013), sunflower (Reif et al. 2013) and triticale (Gowda et al. 2013) 490 

have reported different estimates of GCA variance between two parental populations of hybrids. 491 

This coupled with more accuracy of GCA estimate compared to individual observation on hybrid 492 

suggest hybrid prediction based on genomic estimated GCA and SCA is better approach 493 

compared to genomic covariance method commonly used.      494 

 The prediction accuracies for T2, T1, and T0 hybrids reported by (Technow et al. 2014) 495 

and T2 and T1 hybrids reported by (Massman et al. 2013) are higher than corresponding 496 

accuracies observed in the present study. This discrepancy is likely due to the differences in 497 

population and family structure between the present study and those previously reported. Let’s 498 

consider two prediction scenarios, one from these previous studies and one in our study. 499 

Massman et al. (2013) and Technow et al. (2014) have used single crosses made among diverse 500 

set of established inbred parents. These inbred parents are likely to belong distinct groups based 501 

on their hybrid performances. As Windhausen et al. (2012) reported, the prediction accuracy 502 

under such scenario results mostly from differences in mean performances between groups and 503 

less from genetic relationship between training and validation set because large amount variation 504 

happen to be between groups compared to within groups. In our case, larger genetic variation 505 

was within families because there were many inbred progenies from each bi-parental family and 506 
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there was one grandparent common between the families. Therefore, hybrid prediction accuracy 507 

was mostly resulted from genetic relationship and less from differences in mean performances 508 

between groups. However, the closer genetic relationship between training and validation set 509 

generated due to the common grandparent made challenging to distinguish the hybrid 510 

performances among closely related inbred progenies. In addition, the average number of hybrid 511 

combinations per parental line was higher in these studies which significantly increases the 512 

hybrid prediction accuracy as evidenced from higher prediction accuracy of T1F crosses 513 

compared to T1M crosses  514 

The benefit of modeling SCA  515 

We observed an increase in prediction accuracy for GY by modeling and estimating SCA effects 516 

and subsequently summing GCA and SCA effects. The increase in accuracy by modeling SCA 517 

was highest for T0 hybrids followed by T1 and T2 hybrids. This result suggests that modeling 518 

SCA can be more beneficial for hybrids with untested parents compared to hybrids with one or 519 

two tested parents. These findings could possibly be explained by a small number of hybrid 520 

combinations per parental line. If parents are tested in a small number of hybrid combinations, as 521 

in the present study, their GCA effect predictions could capture a significant portion of the SCA 522 

effect as well.  The increase in prediction accuracy achieved by adding SCA would clearly 523 

depend on the magnitude of the SCA bias of the predicted GCA effect. We do not have the 524 

ability to estimate this bias, but in our study the ratio of SCA vs. GCA variance was small for all 525 

traits (Table 3). When a parent has no performance data in hybrid combination, its GCA is 526 

predicted based on all tested relatives, resulting in a predicted GCA effect less biased by SCA. 527 

Hence, SCA is expected to improve the predictions for hybrids with untested parents. The 528 

highest increase in prediction accuracy by modeling SCA covariance was achieved for GY 529 
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followed by PH, and SG. This trend can be explained by a higher proportion of ���

�  in total 530 

genetic variance for GY compared to PH and SG (Table 3).  531 

 When predicting the GY of hybrids from the novel family (i.e. leave-one-family-out 532 

cross-validations), the accuracy was similar or slightly lower when both GCA and SCA used in 533 

comparison to using only GCA for prediction. However, when hybrids from novel family added 534 

in the training set (i.e. leave-one-individual-out cross-validation), the prediction accuracy 535 

generally increased with method 1b. When no information was available from hybrids within a 536 

novel family, SCA is determined from hybrid combinations of relatives in other families, which 537 

are expected to be less accurate since SCA depends on specific parental combinations. 538 

Alternatively, when some hybrids from the same family are present in training set, they are used 539 

in SCA estimation which is expected to be more accurate because of closer relatedness among 540 

hybrid combinations in this case. Overall, this suggest that using SCA in addition to GCA for 541 

hybrid prediction is beneficial when closer related hybrids (i.e. same single-cross family) are 542 

available and GCA estimates are less biased. 543 

The previous experimental studies in maize (Bernardo. 1994), wheat (Zhao et al. 2013), 544 

triticale (Gowda et al. 2013) and sunflower (Reif et al. 2013) reported a small decrease in 545 

prediction accuracy by modelling SCA effect in addition to GCA effects. These studies have 546 

used diverse set of inbreds. As we observed in predicting hybrids from novel family, this 547 

decrease in prediction accuracy can be attributed to inability to accurately predict SCA from 548 

distantly related hybrid combinations.   549 

Efficiency of early-stage hybrid prediction 550 
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Although we don’t have topcross data, the comparisons of “early-stage hybrid prediction” 551 

suggested in this study with current practice of “topcross based initial selections” could be made. 552 

There are total 217 inbred progenies used in this study. Single tester based selection would need 553 

217 test crosses to be made for first screening of inbreds. This is followed by additional test 554 

crosses of inbreds selected from first screening with more testers. Now, our results are based on 555 

training set size of 250. Therefore, number of crosses required to be made can be assumed 556 

comparable. Two important differences, however, can easily be seen between the two schemes. 557 

First, the breeding cycle of hybrid development is short in “early-stage hybrid prediction” 558 

compared to “topcross based initial selections”. Secondly, in “early-stage hybrid prediction”, 559 

actual GCA of inbreds and SCA of all crosses are estimated and, subsequently, used to determine 560 

the genetic value of all potential hybrid combinations (i.e. 7866). The prediction accuracy for 561 

unobserved hybrid combinations is expected to be similar to T2 scenario as each parent of hybrid 562 

is tested in hybrid combinations (Zhao et al. 2015). Hence, superior single crosses are identified 563 

with high certainty. In case of “topcross based initial selections”, early selections among 564 

available inbreds are based on test cross value and only hybrid combinations among selected 565 

inbreds are evaluated in later stages. There is good possibility of losing some superior hybrid 566 

combinations because SCA is important component of hybrid performance as indicated by 567 

significant SCA variance for all traits in the present study (Table 3). Overall, this suggest that 568 

genomic prediction of the performance of single crosses made using random progenies from the 569 

early stages of the breeding pipeline holds great potential to re-design hybrid breeding and 570 

increase its efficiency. 571 

Prospects for optimization of genomic hybrid prediction 572 
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Pedigree selection and frequent use of successful parents creates a family structure within typical 573 

hybrid maize breeding programs consisting of inter-connected bi-parental families. This family 574 

structure should be leveraged to optimize hybrid genomic prediction training sets. If a common 575 

training set useful across large segments of the breeding germplasm could be designed, 576 

significant resources could be saved. The results from this study not only show that prediction of 577 

single cross performance holds great potential, it also demonstrates its potential during the very 578 

early stages of a breeding program where breeding populations are comprised of many random 579 

progenies from large bi-parental families. Along these lines, we demonstrated that hybrid 580 

genomic prediction methods even hold potential for separating single crosses from a common 581 

family background (Figure 4). The prediction accuracy of single crosses across families was 582 

accurate and the addition of single crosses from the same family to the training set only 583 

minimally improved accuracy. This finding suggests that training sets can be formed and used to 584 

predict related families not represented in the training set. Further study of the optimization of 585 

larger training sets through leveraging family structure will likely improve accuracies far beyond 586 

those measured herein.  587 
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Figure Legends 697 

Figure 1. Crossing scheme between RILs or DHLs derived from three bi-parental families 698 

representing the SSS (y-axis) and NSS (x-axis) heterotic groups. Colored boxes indicate the 699 

presence while unfilled boxes indicate absence of a particular single cross. Bold lines delineate 700 

single cross families. 701 

Figure 2. Schematic visualization of T2, T1F, T1M and T0 cross-validation scenarios. 702 

Figure 3. Prediction accuracies estimated using leave-one-individual-out cross validation for 703 

each genomic prediction method and cross validation scheme. Traits analyzed were grain yield 704 

(GY), plant height (PH), and stay green (SG).  705 

Figure 4. Mean prediction accuracy and standard errors of methods 1a (orange) and 1b (blue) in 706 

predicting performance of hybrids within single-cross families. Two cross-validation schemes 707 

were used: leave-one-family out (bottom panel) and leave-one-individual out (top panel). Traits 708 

analyzed were grain yield (GY), plant height (PH), and stay green (SG). Standard errors were 709 

estimated using the bootstrap method. 710 

Figure 5. Distribution of genomic predictions for all 7866 possible single crosses between the 46 711 

SSS inbred progenies and 171 NSS inbred progenies.  712 

Figure 6. Standard errors of predicted GCA and SCA effects estimated using differing numbers 713 

of single crosses per parental inbred progeny. 714 

 

Supplementary Figure 1.  The connected bi-parental population structure. Six inbreds were 715 

selected as parents for the connected bi-parental population based on the results of the plant 716 
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density tolerance survey by Mansfield and Mumm. (2014). RILs and DH lines were available for 717 

each of the three possible crosses within the heterotic groups. These RILs and DH lines from the 718 

SSS and NSS families were crossed to maximize the number of RIL and DH parents used in the 719 

creation of the population, as well as maintain the balance of individuals in each of the nine 720 

single-cross families.   721 

 

Supplementary Figure 2.  Distribution of 2296 single nucleotide polymorphisms scored using 722 

genotyping by sequencing on the ten chromosomes of maize 723 
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Tables 724 

 725 
Table 1. Family designations of nine single-cross families and number of single crosses belonging to each of the 726 
nine families. Bi-parental families are listed in the row and column headings. The numbers in the parentheses 727 
indicate numbers of recombinant inbred lines (RILs) or doubled haploid lines (DHLs) in the bi-parental family or 728 
number of single crosses in each single-cross family. Total number of single crosses per bi-parental family are 729 
displayed in the table margins.  730 
 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

Table 2. Mean, range, genetic variance and broad-sense heritability estimates in whole population as well as 740 

individual single-cross families for grain yield (GY; Mt/ha), plant height (PH; cm), and staygreen (SG; 1-10 rating). 741 

 PHG47xPHG84 
(35) 

LH82xPHG47 
(69) 

LH82xPHG84 
(67) 

Total 

PHJ40xPHG39 
(8) 

f1 
(27) 

f2 
(39) 

f3 
(33) 

99 
 

B73xPHG39 
(36) 

f4 
(51) 

f5 
(49) 

f6 
(49) 

 

149 

PHJ40xB73 
(2) 

f7 
(21) 

f8 
(19) 

f9 
(24) 

 

64 

Total 99 107 106 312 

Trait Statistic Single-cross Populations 
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Table 3. General combining ability variance of stiff stalk synthetic (����_�
� ) and non-stiff stalk (����_�

� ) inbred 742 

progenies and specific combining ability variance (����
� ) of single crosses between them.  743 

Variance components Grain yield Plant height Staygreen 

����_�
�  0.44** 60.32** 0.23** 

����_�
�  0.26** 53.09** 0.39** 

����
�  0.16** 9.71** 0.04** 

����
� /������

� � ����_�
� � 0.23 0.09 0.06 

** Significant at α = 0.001  744 

 

Table 4. Correlation between observed and predicted grain yield (GY) in a random balanced subset of hybrids for 745 

three groups of hybrid prediction methods as evaluated by leave-one-individual-out cross-validation 746 

† Modified method 

 

Whole f1 f2 f3 f4 f5 f6 

GY Mean 8.67 8.6 8.85 8.87 8.88 9.03 9.13 

(Mt ha-1) Range 7.14-10.2 7.13-9.91 6.94-9.94 7.79-9.99 6.74-10.7 7.52-10.4 7.46-10.5 

 ��
� 
 �� 0.50 
 0.07 0.9 
 0.31 0.48 
 0.18 0.25 
 0.12 0.55 
 0.19 0.51 
 0.15 0.51 
 0.16 

 �� 
 �� 0.58 
 0.04 0.80 
 0.07 0.66 
 0.09 0.53 
 0.13 0.57 
 0.10 0.71 
 0.07 0.71 
 0.07 

PH Mean 210.1 213.4 206.6 205.7 221.2 208.9 216.1 

(cm) Range 191 - 231 197 - 227 187-222 187-222 202-243 182-230 191 - 241 

 ��
� 
 �� 1.18 
 0.1 0.71 
 0.23 0.8 
 0.22 0.95 
 0.27 0.87 
 0.21 0.9 
 0.20 1.07 
 0.24 

 �� 
 �� 0.89 
 0.01 0.88 
 0.04 0.86 
 0.04 0.90 
 0.03 0.83 
 0.04 0.90 
 0.02 0.91 
 0.02 

SG Mean 6.79 6.96 7.05 6.68 6.35 6.75 6.22 

(1-10 
rating) 

Range 5.48-8.31 5.57-7.96 5.82-8.5 5.57-7.96 4.61-7.88 5.67-7.92 5.07-7.39 

 ��
� 
 �� 0.69 
 0.07 0.36 
 0.15 0.52 
 0.16 0.26 
 0.1 0.58 
 0.14 0.38 
 0.1 0.26 
 0.07 

 �� 
 �� 0.81 
 0.02 0.67 
 0.10 0.74 
 0.07 0.68 
 0.09 0.80 
 0.04 0.78 
 0.05 0.78 
 0.05 

Hybrid Prediction methods 
 1a 2a 2a† 1b 2b 2b† 

T0 0.185 0.136 0.201 0.197 0.144 0.196 
T1M 0.200 0.147 0.180 0.071 0.111 0.161 
T1F 0.449 0.422 0.378 0.449 0.422 0.374 
T2 0.445 0.419 0.315 0.336 0.346 0.301 

Table 3. Correlation between observed and predicted grain yield (GY) in a random balanced subset of hybrids

for three groups of hybrid prediction methods as evaluated by leave-one-individual-out cross-validation 
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Table 747 

S1. Prediction accuracy for T2, T1F, T1M and T0 hybrids for traits GY, PH and SG obtained using the four methods 748 

1a (Parent GCA), 1b (Parent GCA plus single-cross SCA), 2a (Additive genetic covariance among single crosses) 749 

and 2b (Additive plus dominance covariance among single crosses) as evaluated with training set of 250 and leave-750 

one-individual-out cross-validation 751 

 

Validation 
Group 

Prediction 
Method 

GY PH SG 

Accuracy SE Accuracy SE Accuracy SE 

T2 1a 0.677 0.046 0.881 0.022 0.936 0.02 

T2 1b 0.741 0.042 0.914 0.017 0.937 0.02 

T2 2a 0.767 0.039 0.888 0.022 0.931 0.021 

T2 2b 0.743 0.041 0.887 0.024 0.935 0.021 

T1F 1a 0.526 0.054 0.789 0.031 0.853 0.028 

T1F 1b 0.628 0.047 0.842 0.024 0.854 0.028 

T1F 2a 0.632 0.047 0.786 0.031 0.859 0.026 

T1F 2b 0.629 0.046 0.776 0.032 0.859 0.027 

T1M 1a 0.449 0.048 0.699 0.033 0.639 0.035 

T1M 1b 0.529 0.047 0.737 0.031 0.648 0.034 

T1M 2a 0.386 0.05 0.618 0.042 0.554 0.039 

T1M 2b 0.371 0.052 0.614 0.041 0.542 0.039 

T0 1a 0.294 0.05 0.619 0.036 0.539 0.039 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 18, 2016. ; https://doi.org/10.1101/054015doi: bioRxiv preprint 

https://doi.org/10.1101/054015


41 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S2. Accuracy of predicting the hybrids from novel family obtained using the methods 1a (Parent GCA), 1b 752 

(Parent GCA plus single-cross SCA) as evaluated with training set of 250 and leave-one-individual-out and leave-753 

one-family-out cross-validations for traits GY, PH and SG. 754 

 

Family GY PH SG 
Leave one 

individual out 
Leave one 
family out 

Leave one 
individual out 

Leave one 
family out 

Leave one 
individual out 

Leave one 
family out 

1a 1b 1a 1b 1a 1b 1a 1b 1a 1b 1a 1b 
f1 0.528 0.671 0.79 0.647 0.856 0.854 0.854 0.811 0.793 0.79 0.790 0.854 
f2 0.847 0.840 0.874 0.715 0.869 0.876 0.876 0.842 0.857 0.87 0.870 0.807 
f3 0.396 0.261 0.545 0.49 0.883 0.879 0.879 0.929 0.828 0.816 0.816 0.949 
f4 0.620 0.714 0.544 0.565 0.834 0.861 0.861 0.8 0.784 0.775 0.775 0.712 
f5 0.702 0.600 0.771 0.717 0.819 0.83 0.830 0.767 0.889 0.872 0.872 0.923 
f6 0.525 0.550 0.487 0.556 0.772 0.802 0.802 0.421 0.580 0.575 0.575 0.453 

 

 

 

 

T0 1b 0.395 0.048 0.681 0.033 0.548 0.039 

T0 2a 0.284 0.052 0.538 0.044 0.465 0.041 

T0 2b 0.285 0.052 0.533 0.044 0.448 0.044 
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