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Abstract

Motivations: Biological networks play an increasingly important role in the
exploration of functional modularity and cellular organization at a systemic level.
Quite often the first tools used to analyze these networks are clustering
algorithms. We concentrate here on the specific task of predicting protein
complexes (PC) in large protein-protein interaction networks (PPIN). Currently,
many state-of-the-art algorithms work well for networks of small or moderate
size. However, their performance on much larger networks, which are becoming
increasingly common in modern proteome-wise studies, needs to be re-assessed.
Our aim is to push forward the state-of the-art in PPIN clustering providing an
algorithmic solution with polynomial running time that attains experimentally
demonstrable good output quality and speed on challenging large real networks.

Results: We present a new fast algorithm for clustering large sparse networks:
Core&Peel, which runs essentially in time and storage O(a(G)m+ n) for a
network G of n nodes and m arcs, where a(G) is the arboricity of G (which is
roughly proportional to the maximum average degree of any induced subgraph in
G). We evaluated Core&Peel on five PPI networks of large size and one of
medium size from both yeast and homo sapiens, comparing its performance
against those of ten state-of-the-art methods. We demonstrate that Core&Peel
consistently outperforms the ten competitors in its ability to identify known
protein complexes and in the functional coherence of its predictions. Our method
is remarkably robust, being quite insensible to the injection of random
interactions. Core&Peel is also empirically efficient attaining the second best
running time over large networks among the tested algorithms.
Availability: http://bioalgo.iit.cnr.it (via web interface)
Contact: marco.pellegrini@iit.cnr.it
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1 Introduction
Due to recent advances in high-throughput proteomic techniques, such as yeast two-

hybrid system (Y2H) and Tandem Affinity Purification coupled with Mass Spec-

trometry (TAP-MS), it is now possible to compile large maps of protein interac-

tions, which are usually denoted as protein-protein interaction networks (PPIN).

However, extracting useful knowledge from such networks is not straightforward.

Therefore sophisticated PPI network analysis algorithms have been devised in the

last decade for several goals such as: the prediction of protein-complexes ([1]), the

prediction of higher level functional modules ([2, 3, 4]), the prediction of unknown
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interactions ([5, 6]), the prediction of single protein functions ([7]), the elucidation

of the molecular basis of diseases ([8]), and the discovery of drug-disease associations

([9]), to name just a few. In this paper we concentrate on the issue of predicting

protein-complexes (PC) in PPI networks. An incomplete list of complex prediction

algorithms in chronological order is: MCODE [10], RNSC [11], Cfinder [12], MCL

[13], COACH [14], CMC [15], HACO [3], CORE [16], CFA [17], SPICi [18], MCL-

CAw [19], ClusterONE [20], Prorank [21], the Weak ties method [22], Overlapping

Cluster Generator (OCG) [23], PLW [24], PPSampler2 [25], and Prorank+ [26].

Further references to existing methods can be found in recent surveys by [27], [28],

[29], [1], [30], and [31].

The graph representing a PPIN can also be augmented so to include additional bi-

ological knowledge, annotations and constraints. The conservation of protein com-

plexes across species as an additional constraint is studied in [32]. Jung et al. [33]

encode in PPIN the information on mutually exclusive interactions. Proteins in

PPIN can also be marked with cellular localization annotations ([34]), and several

types of quality scores. Though all these aspects are important, they are possible

refinements applicable to the majority of the algorithms listed above, involving the

modeling of additional knowledge in the PPIN framework (see [35]). In this paper we

concentrate on the basic case of a PPIN modeled as an undirected and unweighted

graph. The size of PPIN found in applications tend to grow over time because

one can obtain with modern techniques from a single high-throughput experiment

thousands of novel PPI, and also because one can collate groups of PPI from dif-

ferent experiments into a single larger network (ensemble PPIN) [36]. For example

very large PPIN arise in multi-species PPI studies, ([37], [38]), in immunology stud-

ies ([39, 40]) and cancer data analysis ([41]). Large PPIN can be challenging for

clustering algorithms as many of them have been designed and tested in the origi-

nal publication with PPIN of small and medium size (with the possible exception

of SPICi ([18]), that was designed intentionally for large PPIN). Greedy methods

that optimize straightforward local conditions may be fast but speed may penalize

quality. Thus, although more than a decade has passed since the first applications

of clustering to PPIN, the issue of growing PPIN size poses new challenges and

requires a fresh look at the problem.

We develop a new algorithm (Core&Peel) designed for clustering large PPIN and we

apply it to the problem of predicting protein complexes in PPIN. The complexes we

seek have just very basic properties, they should appear within the PPIN as ego-

networks of high density and thus we can model them as maximal quasi-cliques.

These features are not particularly new, but we show in section 5 that they are

sufficient to characterize a large fraction of PCs in a sample of five large PPIN for

two species (yeast and human). Computational efficiency is attained by a system-

atic exploitation of the concept of core decomposition of a graph, which for each

vertex (protein) in a graph provides a tight upper bound to the size of the largest

quasi-clique that includes that vertex. We use this upper bound to trim locally the

subgraphs of interest in order to isolate the sought quasi-clique, and proceed then

to the final peeling out of loosely connected vertices. Our approach has some super-

ficial similarity with that of CMC ([15]) which applies the enumeration algorithm of

[42] to produce, as an intermediate step, a listing of all maximal cliques in a graph.
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We avoid this intermediate step that may cause an exponential running time in

large PPIN and cannot be adapted easily to listing all maximal quasi-cliques, when

density below 100% is sought. Our approach is both more direct (no intermediate

listing of potentially exponential size is produced) and more flexible (as we can tune

freely and naturally the density parameter).

CFinder ([12]) lists all k-cliques, for a user defined value of k, and then merges

together k-cliques sharing a (k-1)-clique. CFinder might produce too many low

density clusters if the user choosees k too small, or miss interesting complexes

if k is too large. Core&Peel avoids both pitfalls since we have a more adaptive

control over cluster overlaps. Our algorithm is empirically very fast: all instances

in this paper run in less than 2 minutes on common hardware. The asymptotic

analysis (see Additional file 1 Section 8) indicates a running time very close to linear

for sparse graphs. More precisely, with some additional mild sparsity assumptions,

the algorithm runs in time O(a(G)m + n) for a graph G of n nodes and m arcs,

where a(G) is the arboricity of G (which is roughly proportional to the maximum

average degree of any induced subgraph in G). The output quality is assessed by

comparative measures of the ability to predict known complexes and of the ability to

produce biologically homogeneous clusters, against 10 state-of-the art methods. In

both quality assessments Core&Peel leads or ties in most tests vs all other methods,

often by a large margin (See Section 6). The robustness of our method is remarkably

high, since practically no output variation is measured even when adding up to 25%

random edges in the input graph. Finally, we show several high quality predicted

clusters that involve a known complex with additional proteins, which correspond

to biologically relevant mechanisms described in literature.

2 Paper Organization

In Section 3 we start by reviewing the issue of false positive/negative PPI in large

PPIN with hindsight from the work in [5] indicating quasi-cliques as good models

for protein complexes in our settings (Section 3.1). Next, in Section 3.2 we recall

the basic graph-theoretic definitions of subgraph density, quasi-cliques, and core-

decompositions, that are central to our algorithmic design. In Section 3.3 we intro-

duce the notion of a partial dense cover as a formalization of our problem, showing

its similarities with well known NP-hard problems of minimum clique cover and

maximum clique [43]. In Section 3.4 we give a high level description of our proposed

polynomial time heuristic. For ease of description it is split in four phases, though

in optimized code some of the phases may be interleaved. The rationale behind

certain design choices is explained in further detail in Section 3.5. The asymptotic

analysis of the proposed algorithm can be found in Additional file 1 (Section 8).

The experimental set up is described in Section 4, including the sources of raw data,

the initial data cleaning (Section 4.1) and the quality score functions (Sections 4.2

and 4.3). Further data statistics and details of the comparative evaluations are in

Section 5 and 6. In particular we report on the ability to capture known complexes

in Section 6.1, to produce functionally coherent clusters (Section 6.2), on robustness

in presence of random noise (Section 6.3), and on computation timings (Section 6.4).
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In Section 6.5 we list ten interesting predictions in which a known complex interacts

with an additional protein. These findings have an independent support in the liter-

ature. Finally in Section 7 we comment on the potential applications and extensions

of the proposed method, as well as on its limitations.

3 Method
3.1 On false positive and false negative PPI in dense and large PPIN

The estimation of the number of erroneous PPI calls (false positive/false nega-

tive) in PPI networks is highly dependent on the technology and the experimental

protocols used. Yu et al. [5] report an experiment on 56 proteins of Saccharomyces

cerevisiae (yeast) for which PPI were detected using both error-prone high through-

put technologies and more precise low throughput technologies. In 563 cases (pairs

of proteins) for which the two methods differ, the vast majority (92.5%) were false

negatives (FN), and just 7.5% false positive (FP). A similar ratio among FP/FN

rates is reported in [36] for PPI obtained through Y2H and high confidence AP-

MS techniques. While each technology has its own systematic biases, it is observed

in [36] that such biases tend to compensate each other when data from several

sources is used to compile ensemble PPIN. The implication is that, over time, as

the evidence on reliable PPI accumulates, the number of undetected real PPI (FN)

will steadily decrease, while the number of spurious PPI (FP) should increase quite

slowly. In graph terms the subgraphs representing complexes in the PPI will become

denser (i.e. closer to a clique), while the noisy interactions will still remain within

a controllable level (assuming that only high quality interaction data is encoded in

the PPI networks). Expanding on these finding Yu et al. [5] demonstrate that quasi-

cliques (cliques with a few missing edges) are good predictors of the presence of a

protein complex, provided the PPIN is large. Our own measurents on one medium

size graphs (≈ 20K PPI) and four large graphs (≈ 130K/220K PPI) in Section 5

confirm this tendency of protein complex density increase in larger PPIN. Besides

the increase in density, a second notable phenomenon, is that protein complexes

often resemble ego-networks, that is, the protein complex is mostly contained in the

1-neighborhood of some protein (see Section 5).

3.2 Preliminaries

An early incarnation of the Core&Peel algorithm targeting communities in so-

cial graphs is described in [44]. In order to make this paper self-contained we

are describing in this section a version of Core&Peel that includes all the mod-

ifications needed to target potentially overlapping protein complexes in PPI net-

work. Let G = (V,E ⊆ V × V ) be a simple (undirected) graph (no self-loops,

no multiple edges). A subset Q ⊂ V induces a subgraph HQ = (Q,EQ), where

EQ = {(a, b) ∈ E|a ∈ Q ∧ b ∈ Q}. For a graph G its average degree is:

av(G) =
2|E|
|V |

.

The density of a graph D(G) is the following ratio:

D(G) =
|E|(|V |
2

) =
2|E|

|V |(|V | − 1)
,
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which gives the ratio of the number of edges in G to the maximum possible number

of edges in a complete graph with the same number of nodes. We restrict ourselves

to local density definitions, such as the two listed above, that are those for which the

density of a subgraph induced by a subset Q ⊆ V is a function depending only on Q

and on the induced edges set EQ. A nice survey of concepts and algorithms related to

local density of subgraphs is in [45]. Cliques are subgraphs of density 1, and finding

a maximum induced clique in a graph G is an NP-complete problem [46]. Several

relaxations of the notion of clique have been proposed (see [47] for a survey), most

of which also lead to NP-complete decision problems. Given a parameter γ ∈ [0..1],

a γ-quasi clique is a graph G = (V,E) such that:

∀v ∈ V |NG(v)| ≥ γ(|V | − 1),

where NG(v) = {u ∈ V |(v, u) ∈ E} is the set of immediate neighbors of v in G.

Note that a γ-quasi clique has density D(G) ≥ γ. In general, however, for a dense

graph with density D(G) we cannot infer a bound on the value of γ for which there

exists a quasi-clique in G (except for the value D(G) = 1 that implies γ = 1, and

those cases covered by Turán’s theorem ([48])). If we impose that the number of

vertices in a subgraph is exactly k, then the average degree and the density depend

only on the number of edges, and thus they attain their maximum values for the

same subgraphs. Without this constraint, finding the subgraph of maximum average

degree or the subgraph of maximum density are quite different problems: the former

admits a polynomial time solution, the latter is NP-complete. In this paper we aim

at detecting dense-subgraphs with a lower bound on the size of each sub-graph

and on its density, thus still an NP-complete problem. A k-core of a graph G is a

maximal connected subgraph of G in which all vertices have degree at least k. A

vertex u has core number k if it belongs to a k-core but not to any (k+1)-core. A

core decomposition of a graph is the partition of the vertices of a graph induced by

their core numbers ([49]).

3.3 Partial dense cover of a graph

In this section we formalize our problem as that of computing a partial dense cover of

a graph. We aim at collecting efficiently only high quality candidate dense sets that

cover the dense regions of the input graph. A Partial Dense Cover PDC(G, r, δ, q)

is defined as the range of the function f : V → 2V that associates to any vertex

v ∈ V a subset of V with these properties:

(a) if f(v) 6= ∅ then v ∈ f(v), (the set f(v) contains the seed v or it is empty).

(b) f(v) ⊆ Nr(v) ∪ {v}, (the set f(v) is a subset of the r-neighborhood of v, i.e.

all its vertices are at distance at most r from v. (In this study, we set r = 1

throughout)

(c) f(v) is the largest set having size at least q, density at least δ, satisfying (a)

and (b), or otherwise it is the empty set.

Note that there may be more than one set f(v) that, for a given v, satisfies (a),

(b) and (c). If this is the case, we pick arbitrarily one such set as the value of f(v).

Since the PDC(δ, q)[1] is the range of the function f , by definition, it contains no

[1]We drop G and r from the notation when they are clear from the context.
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duplicate sets, though its elements can be highly overlapping. One way to imagine

this structure is as a relaxation of a minimum clique cover of a graph that is the

problem of determining the minimum value k such that the vertices of a graph can

be partitioned into k cliques. We relax this problem by (1) relaxing the disjointness

condition (we allow sets to overlap) (2) allowing also a covering with graphs of

density smaller than 1.0 (cliques correspond to density value δ = 1.0). Computing

a clique cover of minimum size k is a well known NP-complete problem [50], and it is

hard to approximate [51]. Even in this weaker form it remains NP-complete, by an

easy reduction to the maximum clique problem. The cover we seek is partial since we

do not insist that every vertex must be included in some set. We exclude sets that

are too small (below a size threshold q) or too sparse (below a density threshold

δ). The size parameter q and density parameter δ ensure that we can focus the

computational effort towards those part of the graph that are more interesting (i.e. of

large size and high density) with the goal of attaining computational efficiency while

collecting high quality dense candidate sets. Note that for δ = 1.0 the PDC(1.0, q)

is a subset of the set of all maximal cliques. While the set of all maximal cliques

can be much larger than |V |, actually a worst case exponential number [43, 52], the

PDC(δ, q) has always at most |V | elements (and in practical cases quite fewer than

that).

3.4 Algorithm Core&Peel in highlight

As noted above, computing a partial dense cover of a graph is a NP-complete

problem. In this section we describe an efficient heuristic algorithm which is based on

combining in a novel way several algorithmic ideas and procedures already presented

separately in the literature. For each step we give intuitive arguments about its

role and an intuitive reason for its contribution to solving the problem efficiently

and effectively. We first give a concise description of the four main phases of the

Core&Peel algorithm. Subsequently we describe each phase in more detail.

Algorithm Overview. Phase I. Initially we compute the Core Decomposition of G

(denoted with CD(G)) using the linear time algorithm in [53], giving us the core

number C(v) for each node v ∈ V . Moreover we compute for each vertex v in G

the Core Count of v, denoted with CC(v), defined as the number of neighbors of

v having core number at least as large as C(v). Next, we sort the vertices of V in

decreasing lexicographic order of their core values C(v) and core count value CC(v).

Phase II. In Phase II we consider each node v in turn, in the order given by Phase

I. For each v we construct the set NC(v)(v) of neighbors of v in G having core

number greater than or equal to C(v). We apply some filters based on simple

node/edge counts in order to decide whether v should be processed in Phase III. If

|NC(v)(v)| < q we do not process this node any more, being too small a set to start

with. Otherwise we apply one of the following filters. We compute the density δ(v)

of the induced subgraph G[NC(v)(v)]. If this density is too small (i.e. δ(v) ≤ δlow)

for a threshold δlow, which we specify later, we do not process this node any more

(filter (f=0)). In the second filter (f=1) we check if there are at least q nodes with

degree at least (q− 1)δ. The third filter (f=2) is a combination of the previous two

filters. Nodes that pass the chosen filter are processed in Phase III.
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Phase III. In this phase we take v and the induced subgraph G[NC(v)(v)] and we

apply a variant of the peeling procedure described in [54] that iteratively removes

nodes of minimum degree in the graph. The peeling procedure stops (and reports

failure) when the number of nodes drops below the threshold q. The peeling pro-

cedure stops (and reports success) when the density of the resulting subgraph is

above or equal to the user defined threshold δ. The set of nodes returned by the

successful peeling procedure is added to the output cover set.

Phase IV. Here we eliminate duplicates and sets completely enclosed in other sets,

among those passing the Phase III. We also test the Jaccard coefficient of similarity

between pairs of predicted complexes, removing one of the two predictions if they

are too similar according to a user-defined threshold.

3.5 Algorithm description: Details

Many of our choices rely in part on provable properties of the core number and of

the peeling procedure shown in [54], and in part on the hypothesis that the peeling

procedure will converge to the same dense subgraph for both notions of density,

when the initial superset of nodes is sufficiently close to the final subset. However

the connections between these properties, the approximation to a partial dense cover

computed by the algorithm, and the properties of validated protein complexes in a

PPIN network can be only conjectured. The final justification of individual choices

is mainly based on the good outcome of the experimental evaluation phase.

Details on Phase I. The core decomposition of a graph G = (V,E) associates to any

vertex v a number C(v) which is the largest number such that v has at least C(v)

neighbors having core number at least C(v). Consider now a clique Kx of size x, for

each node v ∈ Kx its core number is x− 1. If Kx is an induced subgraph of G, then

its core number is at least x − 1, thus C(v) is an upper bound to the size of the

largest induced clique incident to v. Consider a γ-quasi-clique K(x,γ) of x nodes, for

each node v in K(x,γ) its core number is at least γ(x − 1). If K(x,γ) is an induced

subgraph of G, then its core number can only be larger, thus C(v) is an upper

bound to the size of the largest (in terms of average degree) quasi-clique incident

to v. Thus if the upper bound provided by the core number is tight, examining the

nodes in (decreasing) order of their core number allows us to detect first the largest

cliques (or quasi-cliques), and subsequently the smaller ones.

In a clique Kx each node is a leader for the clique, meaning that it is at distance

1 to any other node in the clique. Thus the first node of Kx encountered in the

order computed in Phase I is always a leader. In the case of quasi-cliques of radius

1 we have by definition the existence of at least one leader node. For an isolated

quasi-clique the leader node will have the maximum possible core count value, thus

by sorting (in the descending lexicographic order) on the core count value we force

the leader node to be discovered first in the order (assuming all nodes in the quasi-

clique have the same core number). For an induced quasi-clique the influence of

other nodes may increase the value of the core count for any node, but, assuming

that the relative order between the leader and the other nodes does not change,

we still obtain the effect of encountering the leader before the other nodes of the

quasi-clique.
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The core number of a node v gives us an estimate of the largest (in terms of average

degree) quasi-clique (or clique) incident to v, thus it provides a very powerful filter.

We employ the very simple and very efficient algorithm in [53] that computes the

core decomposition of a graph in time and storage O(|V |+ |E|).
Details on Phase II. In Phase II we aim at computing simple conditions and we

decide whether node v should be processed in the next (more expensive) phase III.

The first condition to test is |NC(v)(v)| < q, i.e. whether the number of nodes is

below the user defined lower bound for the size (this is applied always). We apply

then one of the following filter policies. We define the filter policy f = 0, by checking

a sufficient condition for the existence of a clique in a dense graph based on the

classical results of Turán ([48] ) that guarantees the existence of a clique (or a clique

with a few edges missing) in graphs with sufficiently many edges. (approximately

above n2/4 for a graph of n nodes). This corresponds to setting δlow = 1/2, which

indeed did perform well in our experiments with radius 1. We define the filter policy

f = 1, by checking the necessary condition for the existence of a δ-quasi clique of

at least q nodes (this condition is that G[NC(v)(v)] must contain at least q nodes of

degree at least (q− 1)δ). Finally, we define the filter policy f = 2, that is the union

of the previous two filters.

Details on Phase III. The peeling procedure we use is similar to the one described

in [54]. It consists in an iterative procedure that removes a node of minimum degree

and all its incident edges, and iterates on the residual graph. In [54] the graph of

highest average degree constructed in this process is returned as output. We modify

this procedure by returning the first subgraph generated that satisfies the density

and size constraints. It is shown in [54] that this procedure is (1/2)-approximate

for the maximum average degree, i.e. it returns a subgraph whose average degree is

within a factor 1/2 of that of the subgraph of highest average degree. Empirically, we

rely on the intuition that the input to the peeling procedure produced after Phase II

is a superset of the target dense subgraph and that it is sufficiently tight and dense

so that the peeling procedure converges quickly and the target dense subgraph is

isolated effectively. We also use a novel heuristic to solve cases of ties within the

peeling algorithm in [54]. When two or more vertices are of minimum degree the

original peeling procedure picks one arbitrarily. In our variant we compute the sum

of degrees of the adjacent nodes S(v) =
∑
w∈N(v) |N(w)| and we select the vertex

among those of minimum degree minimizing S(.). This secondary selection criterion

is inspired by observations in [55], where the objective is to select an independent

set by iteratively removing small degree nodes, which is a dual of the problem of

detecting cliques.

Details on Phase IV. In order to eliminate duplicate sets, we collect all the sets

passing phase III, we split them in equal length classes and we represent them as

lists of node identifiers in sorted order. Next we do a lexicographic order of each

class, thus lists that are equal to each other end up as neighbors in the final sorted

order and they can be easily detected and removed. In order to further exploit

the sparsity of the output of phase III, we represent the collection of sets {Γi}
produced in phase III, with duplicates removed, as a graph whose nodes are the

sets and elements of {Γi}. The edges represent the inclusion relation. In this graph

the number of 2-paths joining nodes Γi and Γj is exactly |Γi∩Γj |. If |Γi∩Γj | = |Γj |,
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we know Γj ⊂ Γi and we can remove Γj . We can count efficiently such number of

2-paths by doing a Breadth First Search at depth 2 starting from each set-node in

the bipartite graph in increasing order of size, and by removing each starting node

after its use. This operation allows us to compute if a set is a subset of another set,

and also the Jaccard coefficient of similarity of any two non-disjoint sets.

4 Experimental set up
4.1 Used Data and preprocessing

We used the following freely accessible data sets to test our method.

Protein Protein interaction networks. Biogrid ([56]): we downloaded both Bi-

ogrid homo sapiens[2] and Biogrid yeast[3]. String ([38]): we downloaded the general

String file[4] and then we extracted the two subsets of interest: the homo sapiens

one (related to the 9606 NCBI taxonomy id) and the yeast one (related to the 4932

NCBI taxonomy id). DIP ([57]): we downloaded the yeast db[5].

Protein databases. From the NCBI web site we downloaded the two files for homo

sapiens[6] and yeast[7], the Uniprot db (uniprot sprot.dat on 26/03/2013), and the

Ensembl mapping for the associations of ensemblproteinid with entrez id for homo

sapiens.

Protein Complexes. We downloaded CYC2008 ([58]) and CORUM ([59]) data

on 26/03/2013.

Gene Ontology (GO). We downloaded the files for homo sapiens[8] on 10/09/2014,

and for yeast[9] on 10/09/2014

Preprocessing. Files from different sources of PPI are heterogeneous in many

aspects. DIP exploits the Uniprot accession id (or other db entries as aliases) to

represent the proteins involved in the interaction, Biogrid exploits the NCBI en-

trez id , and String uses Ensembl proteins id for homo sapiens and gene locus or

Uniprot accession for yeast. The first operation was to represent in a uniform way

the proteins for both the PPI files and the gold standard files. We decided to repre-

sent each protein with their associated NCBI entrez-id. In the process we removed

possible duplications, and proteins for which the mapping was not possible. For the

String data we also removed PPI with a quality score below 700. For the GO file, we

identified and separated the three principal categories of the gene ontology, which

are Cellular Component (CC), Biological Process (BP), and Molecular Functions

(MF). Following the methodology in [20], these files are filtered to remove the anno-

tation with IEA, ND and NAS evidence codes (corresponding to the ”Inferred from

electronic annotation”, ”No biological data available” and ”Non-traceable author

statement”, respectively). Each protein associated to an annotated function is then

mapped to its NCBI entrez id. Eventual repetitions of proteins for an annotation

have been removed.

[2]BIOGRID-ORGANISM-Homo sapiens-3.2.104.tab2.txt
[3]BIOGRID-ORGANISM-Saccharomyces cerevisiae-3.2.104.tab2.txt
[4]protein.links.v9.05.txt.zip
[5]Scere20141001.txt
[6]Homo sapines gene info.txt on 14/10/2013
[7]saccharomyces cerevisiae gene info on 20/09/2013
[8]gene association.goa human.gz
[9]gene association.sgd.gz
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4.2 Evaluation measures for protein complex prediction

In order to better capture the nuisances of matching predicted clusters with actual

complexes, we use four scalar measures (one from [28], and three from [60]) and we

sum them to form a single scalar Aggregated Score (AS). Each of the four measures

differs form the others in some key aspects: some use a step-function, while other

use cluster-size as weights. All four, however, aim at balancing precision and recall

effects. A similar aggregation of indices has been used in [20], although we use a

different pool of indices.

F-measure. From [28] we adopted the following f-measure computation to estimate

the degree of matching between the found cluster and the gold standard complex.

Let P be the collection of discovered clusters and let B be the collection of the

gold standard complexes. For a pair of sets p ∈ P and b ∈ B, the precision-recall

product score is defined as PR(p, b) = |p∩b|2
|p|×|b| . Only the clusters and complexes

that pass a PR(p, b) threshold ω (step function) are then used to compute pre-

cision and recall measures. Namely we define the matching sets: Np = |{p|p ∈
P,∃b ∈ B,PR(p, b) ≥ ω}|, and Nb = |{b|b ∈ B, ∃p ∈ P, PR(p, b) ≥ ω}|. Afterwards:

Pecision =
Np

|P | , Recall = Nb

|B| , and the F-measure is the harmonic mean of precision

and recall. In line with [28] and other authors we use ω = 0.2. Experiments in [61]

indicate that the relative ranking of methods is robust against variations of the

value of ω.

From [60] we adopted three measures to evaluate the overlap between complexes

and predicted clusters: the Jaccard measure, the precision-recall measure and the

semantic similarity measure.

Jaccard measure. Let the sets P and B be as above, for a pair of sets p ∈ P

and b ∈ B, their Jaccard coefficient is Jac(p, b) = |p∩b|
|p∪b| . For each cluster p it is

defined Jac(p) = maxb∈BJac(p, b), and for each complex b it is defined Jac(b) =

maxp∈PJac(p, b). Next, we compute the weighted average Jaccard measures us-

ing, respectively, the cluster and complex sizes: Jaccard(P ) =
∑

p∈P |p|Jac(p)∑
p∈P |p|

, and

Jaccard(B) =
∑

b∈B |b|Jac(b)∑
b∈B |b|

. Finally, the Jaccard measure is the harmonic mean of

Jaccard(P ) and Jaccard(B).

Precision Recall Product. This measure is computed using exactly the same

work flow as Jaccard, except that we replace the Jaccard coefficient with the

precision-recall product score used also in [28].

Semantic similarity Measure. Let the sets P and B be as above, for a protein x,

we define P (x) as the set of predicted clusters that contain x: P (x) = {p ∈ P |x ∈ p},
and B(x) as the set of golden complexes that contain x: B(x) = {b ∈ B|x ∈ b}. De-

note with I(.) the indicator function of a set that is 0 for the empty set and 1 for any

other set. Let Bin(.) denote the set of unordered pairs of distinct elements of a set.

The semantic similarity of p in B is: Den(p,B) =
∑

(x,y)∈Bin(p) I(B(x)∩B(y))

|Bin(p)| . Anal-

ogously the semantic similarity of b in P is: Den(b, P ) =
∑

(x,y)∈Bin(b) I(P (x)∩P (y))

|Bin(b)| .

Next, we compute the weighted average semantic similarity weighted respectively

by cluster and complex size: Density(P ) =
∑

p∈P |p|Den(p,B)∑
p∈P |p|

, and Density(B) =∑
b∈B |b|Den(b,P )∑

b∈B |b|
. Finally, the Semantic Similarity Measure is computed as the har-

monic mean of Density(P ) and Density(B).
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Handling of small protein complexes. The presence or absence of small protein

complexes in the golden standard and in the outcome of the algorithms complicates

the evaluation, thus in Additional file 1 Section 4 we describe a fair method for

placing all algorithms on a level field with respect to this issue.

4.3 Evaluation measure for Gene ontology coherence

For a predicted cluster p ∈ P we compute a q-value score trying to assess its bio-

logical coherence and relevance. Let G be a collection of gene ontology annotations,

and g one GO class. Let M be the set of all proteins. For a predicted cluster p, we

compute the hypergeometric p-value H(M,p, g) of the association of p to g, when

g ∩ p 6= ∅:

H(M,p, g) =

min(|p|,|g|)∑
i=|p∩g|

(|M |−|g|
|p|−i

)(|g|
i

)(|M |
|p|
) ,

which represents the probability that a subset of M of size |p| chosen uniformly

at random has with g an intersection of size larger than or equal to |p ∩ g|. As, in

general, p will have an hypergeometric score for each gene ontology class it intersects,

following [20] and [62], we associate to each p the intersecting gene ontology class

of lower p-value. In order to correct for multiple comparisons we correct the vector

of p-values using the q-value method of [63] which is a regularized version of the

Benjamini Hochberg FDR estimation method. The q-values for the vector of p-

values are computed via the R package provided at http://genomine.org/qvalue/.

5 Experiments
Basic direct measures. Basic measures on the PPINs and protein complexes data

sets are reported in Table 1 and in Table 2, respectively. When we map the known

curated complexes onto the PPI-networks we obtain 5 different data sets in which

the number and density of the embedded complexes is specific to the involved PPIN

(see Table 3). The resulting embedded complexes have variable density. We report

in Table 3 the 90% and the 50% density percentiles. One of the assumptions we have

used in our algorithm is that for each embedded complex there is one vertex that

is linked to (almost) all the other nodes in the embedded complex (egocentricity) .

This is an important property that measures on the actual data support (see Table

4). In Table 5 we report on the degree of overlap among complexes by counting

the number of proteins belonging to one, two, three or more than three complexes.

This is an important feature of the prediction problem since algorithms need to

handle properly overlapping clusters. Human complexes have higher overlap rates

than yeast complexes. In Additional file 1 (section 6) we report the distributions of

basic measures relative to the graph (degree, core number, clustering coefficients),

and to the embedded PC (size, average degree, density).

Quality testing. We report the comparative evaluation of our algorithm vs several

other algorithms, among those considered state-of-the-art. We used for these exper-

iments an Intel core i7 processor (4 cores) at 2.6GHz, with 16Gb RAM memory,

and with Mac OS X 10.8.5.
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We have selected 10 algorithms[10] among those in literature by applying these cri-

teria: (a) we selected algorithms that appeared in several surveys and comparative

evaluations, and well cited in the literature; (b) we included both old classical al-

gorithms and more recent ones; (c) we have included algorithms using definitions

of density similar to the one we adopt; (d) we included algorithms with available

implementation in the public domain or obtainable from the authors upon request;

(e) we preferred implementations based on widely available (i.e. non-proprietary)

platforms; (f) we avoided algorithms that make use of additional biological annota-

tions (e.g. gene expression data); (g) we preferred methods with a clear and unique

underlying algorithm (e.g. ”ensemble” methods are not included); (h) we preferred

methods that aim at ”protein complex detection” vs. those that aim at ”functional

module discovery”, since the evaluation methodologies for these two classes are

quite different, although many methods could be construed as dual-use.

Each method has its own pool of parameters to be set. For the quality score shown

in section 4.2 we have considered for each method an extensive range of input

parameter values (see File Additional file 1, section 2 and 3) and we selected for

each quality measure used in the Aggregated Score the best result obtained. Note

that each best value for the four base quality measures may be obtained with

slightly different values of the control parameters. Missing measures indicate that,

for a specific algorithm and data set, the computation would not complete within

a reasonable amount of time (without any sign of progress) or it generated fatal

runtime errors.

6 Comparative evaluation

6.1 Performance of Protein Complex Prediction

Figures 1, 2, 3, 4 and 5 report the F-measure, the Semantic Similarity, the J-

measure, the PR-measure and the Aggregated Score (as defined in Section 4.2) for

three data sets relative to yeast PPIN (DIP, Biogrid and String). Out of 15 measure-

ments, Core&Peel has the best value in 12 cases, CMC in 2 cases, and ClusterOne

in 1 case. The Aggregated Score, which balances strong and weak points of the four

basic measures, indicates that Core&Peel, CMC and ClusterOne have about the

same performance for the medium-size PPI newtwork DIP. But for Biogrid data

and even more for String data Core&Peel takes the lead, even with a wide margin.

Figures 6, 7, 8, 9 and 10 report the F-measure, the Semantic similarity, the J-

measure, the PR-measure and the aggregated score for three data sets relative to

homo sapiens PPI (Biogrid and String). During the evaluation of the predicted

clusters for Biogrid data we realized that the Biogrid PPI network had one node

of very high degree corresponding to the Ubiquitin (UBC) protein. This fact has

a straightforward biological explanation. Since UBC is involved in the degradation

process of other proteins, UBC is linked to many other proteins at a certain time in

their life-cycle. Given this special role of UBC, when protein degradation is not the

[10]Namely: MCL, Coach, MCODE, CMC, MCL-CAW, ProRank+, SPICi, Clus-

terOne, RNSC, and Cfinder. A brief description of each is in Additional file 1 section

1.
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main focus of the intended investigation, it may be convenient to consider also the

same PPI network with the UBC node and its incident edges removed[11] (labelled

BG-hs-UBC). We tested also the other PPI network used in our study and this is

the only case in which removing a node of maximum degree changes significantly

the outcome of the prediction. Out of 15 measures, Core&Peel has the best value in

all 15 cases. Good performance is obtained on some measures by CMC and Spici.

It is interesting to notice how the algorithms perform differently on the BG-hs with

and without UBC. On Biogrid data without UBC, Core&Peel, Spici and ClusterOne

improve their AS value, while RNSC and COACH have a reduced AS value. The

improvement in absence of UBC can be easily explained by the fact that UBC

appears only in a few complexes of the golden standard, thus the evaluation phase

is made more precise by its removal from the network and thus from the predicted

clusters. The better results attained by RNSC and COACH on the graph with UBC

may be a hint that, for these two approaches, the presence of UBC helps in homing

in more quickly on the true complexes hidden in the graph.

We include as a sanity check also three random predictions (Rand1, Rand2, and

Rand3). The purpose of this check is to assess how well the measure we are using are

able to discriminate the predictions on real data sets from those generated randomly

by generators allowed to access some partial knowledge about the structure of the

golden standard.

The method Rand1 is given the size distribution of the sets in the golden standard

and produce a random collection of sets out of the vertices of the PPI with the same

size distribution. The method Rand2 is as Rand1 except that the random sets are

generated starting from the subset of all vertices in the PPI that belong to some

complex in the golden standard.

The method Rand3 is obtained by taking the golden standard and applying to it

a random permutation of the nodes of the PPI. Note that this approach besides

preserving the size distribution preserves also the distribution of the size of the

intersections of any number of sets of the golden standard.

In terms of performance, Rand1 behaves almost like Rand3, while Rand2 (having

stronger hints) attains better results. The semantic similarity measure is the one

that has better discrimination power vs all the three random test cases.

Core&Peel has better SS performance on all the 6 PPIN tested than the 10 compet-

ing methods. Semantic similarity is the only measure that explicitly places a pre-

mium in correctly identifying the proteins that simultaneously belong to multiple

complexes, thus we can infer that Core&Peel successfully uncovers the overlapping

structure of the the known protein complexes.

6.2 Coherence with Gene Ontology Annotation

The second index is the number of predicted clusters with an associated functional

annotation (Biological Processes (BP) of Gene Onontology (GO)) below a given

False Discovery Rate (FDR) threshold. Note that here we use a non-normalized

measure (absolute count) since we want to favor algorithms with a rich high qual-

ity output. We are safeguarded against rewarding unduly methods that inflate their

[11]Rolland et al. in [64] also remove interactions involving UBC in their high quality

human PPIN.
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output since we operate each algorithm with the parameters that optimize the (bal-

anced) F-measure. Moreover, even though none of the methods we use incorporates

GO as part of its model, it is relatively safe to assume that, in most cases of in-

terest, GO annotations are indeed available and may be used for a post-processing

re-ranking or filtering of the predictions.

The biological function enrichment measure (using the BP annotation in GO) is

shown in Figures 11, 12, 13, 14, 15, and 16. We used in abscissa the FDR thresholds

ranging from 10−2 to 10−7 on the q-value.

Core&Peel has a larger or equal absolute number of high quality predictions below

q-value 10−3 than the competing methods on five data sets out of six. For the BG-

hs-UBC dataset Core&Peel leads below q-value 10−4. The overall trend is fairly

consistent for all the six data sets tested.

Table 6 reports examples of predicted clusters with a notable low p-value, and the

corresponding GO class. The top 10 predicted clusters we identify have p-value

for their prevalent GO-annotation (all distinct) in the range 10−191 − 10−72. For

a comparison, the top 10 functional modules detected by the recent method ADM

(Adaptive Density Modularity) of Shen et al. [65, Table 3] relative to the same GO

BP annotation have p-values in the range 10−63 − 10−28.

6.3 Robustness against noise in the PPIN graph

We have tested our method for its robustness against injection of random noise

in the input network. Starting with the the Biogrid HS network we have added

randomly additional (noise) edges for a number of additions ranging from 5% to

25% of the initial number of edges in steps of 5%. We have generated 10 networks for

each class and taken the mean value of the 4 basic quality indices of section 4.2. The

results are remarkably robust showing for three indices no variation up to the fourth

decimal digit, and for the f-measure a variability of 0,001 across the range of noise

values. Further tests with large random graphs are described in Additional file 1

section 7, where we use the two stage multiple hypothesis test proposed in [66, 67]

to bound the false discovery rate (FDR) associated with the identified complexes.

6.4 Running times

Figures 17, 18, 19, 20, 21, and 22 report in logarithmic scale the running times

(seconds) for the 11 algorithms on the six data sets, with the parameters optimizing

the f-measure. For MCL-caw we report the post-processing time in the graphic, thus

a timing comparable with those of the other methods requires adding the MCL

datum. Spici is the fastest method on all the data sets, often completing in less

than a second. Core&Peel comes second in speed in all the data set (except for DIP

where it is third).

6.5 Some predictions with support in the literature

In the long run the effectiveness of a protein-complex prediction method hinges upon

its capability to uncover interesting and unexpected new phenomena of biological
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relevance. As an intermediate step we report on predictions made by Core&Peel

that involve a known complex and one or two additional proteins, for which there is

evidence of a biological function in the literature. We take the clusters detected by

Core&Peel in the Biogrid and String homo sapiens network, we rank them by the

highest value of the Jaccard correlation coefficient (jacc) and the semantic similarity

(SS) with a matching known complex, we analyze the discrepancies (i.e. proteins non

listed in the known complex but with a large number of PPI connections to it) and

we highlight the literature supporting the functional relevance of the interaction.

We chose here the parameter setting maximizing the f-measure.

Case 1 (rank=2 , jacc=0.875). This predicted cluster matches almost perfectly

with the 20S proteasome complex (Corum-id 191). Moreover the predicted clus-

ter includes two additional proteins: UBC (Ubiquitin C) and IQCB1 (IQ motif

containing B1). The hitpredict database (http://hintdb.hgc.jp) also predicts high

quality interactions between IQCB1 and six PSA plus three PSB proteins. The

functional connection of UBC and the proteasome complex within the protein

degradation pathway is also well known (see e.g. [68]).

Case 2 (rank=5, jacc =0.875). This predicted cluster matches almost perfectly

with complex TFIIH (transcription factor complex TFIIH)(Corum-id 5495). More-

over the predicted cluster includes an additional protein: AR (androgen receptor).

Indeed the phosphorilation action of TFIIH upon AR is reported in [69].

Case 3 (rank=9, jacc=0.833). This predicted cluster matches almost perfectly

with the TFIIIC containing complex (corum-id 1105), (and also with TFIIIC2, a

second TFIIIC containing complex, corum-id 1101). Moreover the predicted clus-

ter includes an additional protein: GTF3C6 (general transcription factor IIIC,

polypeptide 6). Dumay et al. [70] identified a sixth human TFIIIC subunit, specif-

ically GTF3C6, which corresponds to a previously uncharacterized 213-amino acid

human protein (C6ORF51).

Case 4 (rank=14, jacc=0.823). This predicted cluster matches almost perfectly

with the 20S proteasome complex (Corum-id 191). Moreover the predicted cluster

includes two additional proteins: PSMB8 (Proteasome subunit beta type-8) and

POMP (proteasome maturation protein). The protein encoded by the POMP

gene is a molecular chaperone that binds the 20S preproteasome components

and it is essential for 20S proteasome formation. The POMP protein is degraded

before the maturation of the 20S proteasome is complete. A mutation in the 5’

UTR of this gene has been associated with KLICK syndrome, a rare skin disorder

([71]).

Case 5 (rank 15, jacc = 0.818). This predicted cluster matches almost perfectly

with PA700 complex (26S protease/19S protease) (corum-id 32). Moreover

the predicted cluster includes an additional protein: UCHL5 (ubiquitin carboxyl-

terminal hydrolase L5). Interestingly, Darcy et al. [72] report that a small molecule

(b-AP15) inhibits the activity of two 19S deubiquitinases regulatory particles:

ubiquitin C-terminal hydrolase 5 (UCHL5) and ubiquitin-specific peptidase 14

(USP14), resulting in accumulation of polyubiquitin, which in turn induces tumor

cell apoptosis. Thus Darcy et al. suggest that the deubiquitinating activity of this

regulatory molecule may form the basis for a new anticancer drug.
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Case 6 (rank=16, jacc=0.818). This predicted cluster matches almost perfectly

with BAF complex (Synonyms: SWI/SNF complex A) (corum-id 1251 and 1237).

Moreover the predicted cluster includes two additional proteins: BCL7B (B cell

CLL/lymphoma 7B) and ARID1B (AT rich interactive domain 1B SWI1-like). A

connection of the SWI/SNF complex with the first protein (BCL7B) is described

in [73] where it is reported a proteomic analysis of endogenous mSWI/SNF com-

plexes, which identified several new dedicated stable subunits of SWI/SNF com-

plexes, including, among others, BCL7B.

Case 7(rank=20 , jacc=0.8). This predicted cluster matches almost perfectly

with corum-id 1097, eIF3 complex (which is made of 13 proteins). Moreover the

predicted cluster includes an additional protein: Gag-Pol [Human immunodefi-

ciency virus 1]. It is reported in [74] that ”A conserved structure within the HIV

gag open reading frame that controls translation initiation directly recruits the 40S

subunit and eIF3”.

Case 8 (rank 27, ss=0.952). This predicted cluster matches almost perfectly

with SAP complex (Sin3-associated protein complex) (corum id 591). Moreover

the predicted cluster includes an additional protein: ING2 (inhibitor of growth fam-

ily, member 2). It is reported in [75] that “Besides the paralogous proteins, including

HDAC1/HDAC2, mSin3A/mSin3B, and the histone-interacting RbAp46/RbAp48

proteins, the mammalian Rpd3L/Sin3L complex comprises at least five other sub-

units, including SAP30, Sds3, SAP180/RBP1, SAP130, and ING1b/ING2, whose

precise roles at the molecular level are poorly understood but most likely involve

targeting the complex to specific genomic loci via one or more interaction surfaces”.

Case 9 (rank 28, ss= 0.92). This predicted cluster matches almost perfectly with

the Ribosome complex (corum-id 306). Moreover the predicted cluster includes an

additional protein: SIRT7 (Sirtuin 7). Tsai et al. [76] investigate the role of Sirtuin

7 in the Ribosome biogenesis and protein synthesis.

Case 10 (String-hs data, rank=10, jacc=0.916). This predicted cluster

matches almost perfectly with the Exosome (11 prot) complex (corum-id 789).

Moreover the predicted cluster includes an additional protein: XRN1 (5’-3’ exori-

bonuclease 1). Li et al. [77] describe the competing role played by XRN1 and the

Exosome complex in Hepatitis C-Virus RNA decay.

7 Discussion
The experimental results reported in Section 5 show that Core&Peel is remarkably

consistent in finding known complexes across 1 medium and 5 large data sets,

ranking first in aggregated score against ten state-of-the-art methods in all 6 cases

(CMC is second trice; SPICi twice, and Clusterone once).

Core&Peel also leads in the ability to produce cluster predictions that are highly

consistent with GO-BP annotations. The specific complex-protein interaction pre-

dictions listed in section 6.5 have all a strong support in the literature. Although

such predictions may not always correspond to actual complexes, they do indeed

point at functionally relevant phenomena.

The Core&Peel algorithm exploits properties of complexes embedded in PPINs

(egocentricity, density) that are more evident the larger the PPINs become, and it

does not suffer from phenomena of combinatorial explosion (as both the theoretical
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analysis and the empirical running time attest). Thus we believe that Core&Peel

can become a method of choice when even larger PPINs are built and analyzed,

such as those arising in multi-species PPIN studies (see [37]) and those arising in

immunology studies ( see [40]).

Core&Peel is fast and easy to use, requiring the setting of very few natural param-

eters relative to the minimum size, density and separation of the target complexes.

Indeed, having a small sample of the type of complexes to be sought, these param-

eters can be extracted directly form the sample.

Core&Peel uses very little biological information except that embedded in the PPIN

topology. Thus we believe further gains can be achieved by augmenting our scheme

with the ability to handle PPINs endowed with edge weights[12] (modeling, for

example, PPI quality, or other types of a priori knowledge), or by incorporating

GO annotations-based filters within the basic algorithmic framework. Improvements

and tests along these lines are left for future research.

In this paper our main focus is to compare our proposed algorithm versus 10 com-

peting algorithms on a sufficiently diverse pool of test data (2 species, 3 repositories,

6 PPIN, 2 PC golden standard sets) so to gain confidence in the robustness of the

main thesis (i.e. the suitability of Core&Peel for discovering PC in large PPIN).

We do not aim at suggesting that a particular type of PPIN repository should be

preferred over others, and we do not even aim at implying that one should always

use large PPIN in place of smaller ones (see e.g. [78]). Both questions are worthy

of attention but fall outside the scope of the present article. The choice of the PPI

data to be used for a given study is a non-trivial choice since many hidden biases

could be implicit in the data (due both to its experimental origin, and to subsequent

filtering) [79], thus these issues should be considered carefully at the initial stage of

any experimental design.
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Tables

PPI Sp. Ref. |V | |E| d̄ Fil.
DIP y [57] 4,637 21,107 9.1 No
Biogrid y [56] 6,686 220,499 65.9 No
String y [38] 5,590 133,082 47.6 Yes
Biogrid hs [56] 18,170 137,775 15.1 No
String hs [38] 12,717 193,105 30.3 Yes

Table 1 Columns give: PPI name, Species (Sp.)(hs=homo sapiens, y=yeast), reference, number
of proteins |V |, number of interactions |E|, average degree d̄, and whether a quality filter (Fil.)
has been applied.

Name Sp. Ref. # complexs # compl. size > 2 # compl. size ≤ 2 # proteins
CYC2008 y [58] 408 236 172 1627
CORUM hs [59] 1750 1257 493 2506

Table 2 Columns give: name of the data set, Species (Sp.)(hs=homo sapiens, y=yeast),
reference, total number of complexes, number of complexes of size 3 or larger, number of
complexes of size up to 2, total number of proteins covered by the complexes.

Name # CX min max mean δ > 0.9 δ > 0.5
DIP-CYC2008 226 3 40 6.02 60 (25%) 131 (55%)
BioGrid-CYC2008 236 3 81 6.67 173 (73%) 223 (94%)
String-CYC2008 236 3 81 6.67 220 (93%) 235 (99%)
BioGrid-CORUM 1257 3 143 6.12 516 (41%) 943 (75%)
String-CORUM 1188 3 133 6.07 621 (52%) 981 (82%)

Table 3 Columns give: Name of the PPI and complex data set, number of complexes of size ≥ 3,
min size, max size, average size, number of complexes with density δ greater than 0.9 and 0.5.

Name # CX r1 > 0.9 r1 > 0.5 r2 > 0.9 r2 > 0.5
DIP-CYC2008 226 131 (55%) 197 (83%) 163 212
BioGrid-CYC2008 236 216 (91%) 234 (99%) 234 236
String-CYC2008 236 235 (99%) 236 (100%) 236 236
BioGrid-CORUM 1257 891 (70%) 1162 (92%) 1176 1246
String-CORUM 1188 923 (77%) 1139 (95%) 1085 1188

Table 4 Columns give: Name of the PPI and complex data set, number of complexes of size ≥ 3,
number of complexes with at least one center at distance 1 (r = 1) for a fraction of at least 0.9
of its size and at least 0.5 of its size. Similar data for a center at distance 2, (r = 2).

Name # P 1 CX. 2 CX. 3 CX. > 3 CX
DIP-CYC2008 1175 1005 (86%) 134 (11%) 23 (2%) 13 (1%)
BioGrid-CYC2008 1342 1166 (87%) 139 (10%) 24 (2%) 13 (1%)
String-CYC2008 1341 1165 (87%) 139 (10%) 24 (2%) 13 (1%)
BioGrid-CORUM 2227 909 (41%) 483 (21%) 233 (11%) 602 (27%)
String-CORUM 2067 852 (42%) 430 (20%) 217 (10%) 568 (28%)

Table 5 Columns give: Name of the PPI and complex data set. Number of proteins covered by
some complex. Number of protein covered by one, two, three or more then three complexes.
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GO annotation Type GO id cluster size intersection class size Hyp. p-value
mRNA splicing, via spliceosome BP GO:0000398 91 90 183 8.23E-191
G2/M transition of mitotic cell cycle BP GO:0000086 52 52 121 5.62E-120
Mitotic cell cycle BP GO:0000278 68 68 384 6.24E-118
G-protein coupled receptor signaling pathway BP GO:0007186 126 97 918 1.16E-101
Type I interferon signaling pathway BP GO:0060337 33 33 65 4.48E-86
O-glycan processing BP GO:0016266 30 30 55 7.44E-81
Platelet degranulation BP GO:0002576 32 32 82 4.14E-79
Interferon-gamma-mediated signaling pathway BP GO:0060333 30 30 70 1.33E-76
Extracellular matrix organization BP GO:0030198 40 40 272 2.26E-75
Transferrin transport BP GO:0033572 24 24 32 2.40E-72

Table 6 Data set STRING-CORE (homo sapiens). Functionally enriched clusters found with min
size 8 and filtering policy 1. We report the top ten clusters by hypergeometric p-value. Each row
reports: the GO annotation class, GO class type (BP=Biological Process), the GO id, the size of
the cluster, the size of the intersection, the size of the functional class, and the hypergeometric
p-value.
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Figures
Quality of protein complex predictions
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Figure 1 F-measure score for 11 algorithms and 3 random baselines on yeast data. Runs
optimizing the f-measure for each algorithm.
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Figure 2 Semantic Similarity score for 11 algorithms and 3 random baselines on yeast data. Runs
optimizing the ss-measure for each algorithm.
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Figure 3 J-measure score for 11 algorithms and 3 random baselines on yeast data. Runs
optimizing the J-measure for each algorithm.
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Figure 4 PR-measure score for 11 algorithms and 3 random baselines on yeast data. Runs
optimizing the PR-measure for each algorithm.
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Figure 5 Aggregated score for 11 algorithms and 3 random baselines on yeast data.
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Figure 6 F-measure score for 11 algorithms and 3 random baselines on homo sapiens data. Runs
optimizing the f-measure for each algorithm.
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Figure 7 Semantic Similarity score for 11 algorithms and 3 random baselines on homo sapiens
data. Runs optimizing the SS-measure for each algorithm.
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Figure 8 J-measure score for 11 algorithms and 3 random baselines on homo sapiens data. Runs
optimizing the J-measure for each algorithm.
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Figure 9 PR-measure score for 11 algorithms and 3 random baselines on homo sapiens data. Runs
optimizing the PR-measure for each algorithm.

0 

0,2 

0,4 

0,6 

0,8 

1 

1,2 

1,4 

1,6 

1,8 

    BG-hs   BG-hs-UBC    STR-hs 

C&P 
MCL 
COACH 
MCODE 
CMC 
MCL-CAW 
ProRank 
Spici 
ClusterOne 
RNSC 
Cfinder 
Rand1 
Rand2 
Rand3 

Figure 10 Aggregated score for 11 algorithms and 3 random baselines on homo sapiens data.
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GO annotation enrichment analysis
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Figure 11 Number of predicted clusters with GO enrichment q-value below threshold, as a
function of the threshold, for DIP yeast data
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Figure 12 Number of predicted clusters with GO enrichment q-value below threshold, as a
function of the threshold, for Biogrid yeast data
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Figure 13 Number of predicted clusters with GO enrichment q-value below threshold, as a
function of the threshold, for String yeast data
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Figure 14 Number of predicted clusters with GO enrichment q-value below threshold, as a
function of the threshold, for Biogrid Homo sapiens data
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Figure 15 Number of predicted clusters with GO enrichment q-value below threshold, as a
function of the threshold, for Biogrid Homo sapiens data (UBC removed).
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Figure 16 Number of predicted clusters with GO enrichment q-value below threshold, as a
function of the threshold, for String Homo sapiens data
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Figure 17 Time (in seconds) in Log10 scale for DIP data. Runs optimizing the f-measure for each
algorithm.
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Figure 18 Time (in seconds) in Log10 scale for Biogrid yeast data. Runs optimizing the f-measure
for each algorithm.
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Figure 19 Time (in seconds) in Log10 scale for String yeast data. Runs optimizing the f-measure
for each algorithm.
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Figure 20 Time (in seconds) in Log10 scale for Biogrid homo sapiens data. Runs optimizing the
f-measure for each algorithm.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 17, 2016. ; https://doi.org/10.1101/053876doi: bioRxiv preprint 

https://doi.org/10.1101/053876


Pellegrini et al. Page 33 of 34

-0,5 

0 

0,5 

1 

1,5 

2 

2,5 

3 

3,5 

4 

4,5 
 BG-Hs-UBC 

 BG-Hs-UBC 

Figure 21 Time (in seconds) in Log10 scale for Biogrid homo sapiens data without UBC. Runs
optimizing the f-measure for each algorithm.
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Figure 22 Time (in seconds) in Log10 scale for String homo sapiens data. Runs optimizing the
f-measure for each algorithm.
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Additional Files
Additional file 1 — Detailed Experimental settings
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